metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1142-m1143

(Benzoato-κO)chlorido[(–)-sparteine-κ2N,N′]zinc(II)

aCentro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Edif. 103F Complejo de Ciencias CU, San Manuel, 72570 Puebla, Pue., Mexico, bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, and cLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, BUAP, AP 1067, 72001 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 8 June 2009; accepted 23 August 2009; online 29 August 2009)

The title complex, [Zn(C7H5O2)Cl(C15H26N2)], used for the magnetic dilution of the analogous CuII complex, was synthesized through a direct synthesis route. The coordination geometry around ZnII is best described as distorted tetra­hedral, the largest deviation arising from the (–)-sparteine ligand, as is invariably found in complexes containing this rather rigid mol­ecule. The benzoate anion behaves as a monodentate ligand, with a non-coordinating Zn⋯O separation of 2.969 (5) Å. Mol­ecules are packed in the crystal without significant inter­molecular inter­actions. The shortest Zn⋯Zn separation [6.8186 (7) Å] is observed between mol­ecules related through the 21 screw axis. This is an important feature for the magnetic behaviour of the CuII analogue, which is intended for modeling isolated metal centers in the active site of type 1 blue copper proteins.

Related literature

For related ZnII and CuII complexes bearing sparteine as ligand, see: Alcántara-Flores, Bernès et al. (2003[Alcántara-Flores, J. L., Bernès, S., Reyes-Ortega, Y. & Zamorano-Ulloa, R. (2003). Acta Cryst. C59, m79-m81.]); Alcántara-Flores, Vázquez-Bravo et al. (2003[Alcántara-Flores, J. L., Vázquez-Bravo, J. J., Gutiérrez-Pérez, R., Ramírez-Rosales, D., Bernès, S., Pérez-Ramírez, J. G., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2003). J. Mol. Struct. 657, 137-143.]); Jasiewicz et al. (2005[Jasiewicz, B., Boczon, W., Warzajtis, B., Rychlewska, U. & Rafalowicz, T. (2005). J. Mol. Struct. 753, 45-52.]); Lee et al. (2002[Lee, Y.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2002). Acta Cryst. C58, m453-m454.]): Reyes-Ortega et al. (2006[Reyes-Ortega, Y., Alcántara-Flores, J. L., Hernández-Galindo, M. C., Gutiérrez-Pérez, R., Ramírez-Rosales, D., Bernès, S., Cabrera-Vivas, B. M., Durán-Hernández, A. & Zamorano-Ulloa, R. (2006). J. Mol. Struct. 788, 145-151.]). For the κO-coord­ination mode of benzoate, see: Shanmuga Sundara Raj et al. (2000[Shanmuga Sundara Raj, S., Fun, H.-K., Zhao, P.-S., Jian, F.-F., Lu, L.-D., Yang, X.-J. & Wang, X. (2000). Acta Cryst. C56, 742-743.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H5O2)Cl(C15H26N2)]

  • Mr = 456.31

  • Monoclinic, P 21

  • a = 8.7784 (9) Å

  • b = 11.8238 (13) Å

  • c = 10.8438 (11) Å

  • β = 109.671 (8)°

  • V = 1059.84 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 296 K

  • 0.34 × 0.26 × 0.04 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.760, Tmax = 0.951

  • 3583 measured reflections

  • 2166 independent reflections

  • 1812 reflections with I > 2σ(I)

  • Rint = 0.033

  • 2 standard reflections every 48 reflections intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.069

  • S = 1.01

  • 2166 reflections

  • 254 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 199 Friedel pairs

  • Flack parameter: −0.001 (16)

Table 1
Selected geometric parameters (Å, °)

Zn1—O2 1.940 (3)
Zn1—N1 2.077 (4)
Zn1—N16 2.101 (4)
Zn1—Cl1 2.2189 (13)
O2—Zn1—N1 114.94 (15)
O2—Zn1—N16 98.37 (14)
N1—Zn1—N16 89.06 (14)
O2—Zn1—Cl1 113.80 (12)
N1—Zn1—Cl1 124.97 (12)
N16—Zn1—Cl1 107.58 (10)

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The search for suitable structural, spectroscopic and magnetic models for type 1 blue copper proteins remains an active field. The title complex deals with such researches; it was first obtained as a by-product during the magnetic dilution of the analogous CuII complex. Unfortunately, although we accumulated a number of spectroscopic and magnetic data for the CuII complex, we were unable to get suitable single crystals for its accurate X-ray structural characterization. The structure of the title ZnII complex is, however, a first approach for solving this problem.

The title ZnII complex crystallizes in a chiral space group with the molecule placed in a general position. The (–)-sparteine ligand has the expected RSSS absolute configuration and coordinates to the ZnII ion trough N atoms. A benzoate ligand is κO-bonded by a single O atom, a mode of coordination documented for ZnII complexes, albeit not very common (Shanmuga Sundara Raj et al., 2000). The non-bonding Zn···O intramolecular separation, 2.969 (5) Å, makes clear that (I) is a four-coordinated complex. The last coordination site is occupied by a Cl- ion, at the expected distance. The local geometry around Zn is better described as tetrahedral distorted (Fig. 1), the largest deviation arising from the (–)-sparteine ligand, as invariably found in complexes containing this rather rigid molecule. The dihedral angle between N1/Zn1/N16 and Cl1/Zn1/O2 planes is 87.25 (12)°, reflecting the steric hindrance of the sparteine ligand.

The title complex is closely related to paramagnetic CuII complexes [Cu((–)sparteine)(PhCOO)X], for which we reported X-ray structures (X = Cl: Alcántara-Flores, Vázquez-Bravo et al., 2003; X = Br: Reyes-Ortega et al., 2006). However, CuII complexes are clearly five-coordinated species, with the benzoate behaving as a bidentate κ2O,O'-ligand. This difference is consistent with an atomic radius larger for CuII than for ZnII, and with a further electron withdrawing capacity for the d9 metal ion compared to d10 ions. Finally, it should be mentioned that with ZnII as metal center, sparteine-containing complexes more symmetrical than the title complex have been obtained, by coordinating two identical carboxylato-κ1O ligands or by using α-isosparteine (e.g. Jasiewicz et al., 2005).

In the crystal structure, the molecules pack at van der Waals distances into two different alternating layers (A and B, see Fig. 2) parallel to the plane (010). All molecules in a layer have the same spatial orientation. Neighboring A and B layers are related by a twofold screw 21 axis. An important criterion for the use of these molecules as models for the active site in type 1 copper proteins is the metal-metal separation, which should be as long as possible, in order to mimic magnetically isolated CuII centers in the native proteins. In the case of the title complex, this distance is 6.8186 (7) Å, and is thus intermediate between separations found in dimorphic dibromo-[(–)-sparteine]-zinc(II) complex, for which metal separations were observed at 6.534 Å (orthorhombic polymorph: Lee et al., 2002) or 7.4715 (6) Å (triclinic polymorph: Alcántara-Flores, Bernès et al., 2003).

Related literature top

For related ZnII and CuII complexes bearing sparteine as ligand, see: Alcántara-Flores, Bernès et al. (2003); Alcántara-Flores, Vázquez-Bravo et al. (2003); Jasiewicz et al. (2005); Lee et al. (2002): Reyes-Ortega et al. (2006). For the κO-coordination mode of benzoate, see: Shanmuga Sundara Raj et al. (2000).

Experimental top

Equimolar amounts (1.5 mmol) of zinc powder, (–)-sparteine, benzoyl chloride and DMSO (4.5 ml) were placed in a flask and the mixture was kept under magnetic stirring at 338 K for 8 h. The reaction mixture was then filtered and allowed to stand for 26 days at room temperature, after which a solid material, identified as the title complex, was filtered off (25% yield) and recrystallized from methanol. M.p. 459–461 K. A complete spectroscopic characterization was carried out, which is in agreement with the X-ray structure (see archived CIF).

Refinement top

All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.97 (methylene CH2), and 0.98 Å (methine CH). Isotropic displacement parameters were calculated as Uiso(H) = 1.2Ueq(carrier atom). The absolute configuration was assigned by refinement of a Flack parameter, and agrees the chirality expected from the synthetic route.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound, viewed down [100]. The color scheme is used for the sake of clarity and H atoms have been omitted.
(Benzoato-κO)chlorido[(–)-sparteine-κ2N,N']zinc(II) top
Crystal data top
[Zn(C7H5O2)Cl(C15H26N2)]F(000) = 480
Mr = 456.31Dx = 1.430 Mg m3
Monoclinic, P21Melting point = 459–461 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.7784 (9) ÅCell parameters from 49 reflections
b = 11.8238 (13) Åθ = 3.7–10.8°
c = 10.8438 (11) ŵ = 1.31 mm1
β = 109.671 (8)°T = 296 K
V = 1059.84 (19) Å3Plate, colourless
Z = 20.34 × 0.26 × 0.04 mm
Data collection top
Bruker P4
diffractometer
1812 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω scansh = 105
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 141
Tmin = 0.760, Tmax = 0.951l = 1212
3583 measured reflections2 standard reflections every 48 reflections
2166 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0305P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.36 e Å3
2166 reflectionsΔρmin = 0.31 e Å3
254 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0038 (9)
0 constraintsAbsolute structure: Flack (1983), 199 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (16)
Secondary atom site location: difference Fourier map
Crystal data top
[Zn(C7H5O2)Cl(C15H26N2)]V = 1059.84 (19) Å3
Mr = 456.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.7784 (9) ŵ = 1.31 mm1
b = 11.8238 (13) ÅT = 296 K
c = 10.8438 (11) Å0.34 × 0.26 × 0.04 mm
β = 109.671 (8)°
Data collection top
Bruker P4
diffractometer
1812 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.033
Tmin = 0.760, Tmax = 0.9512 standard reflections every 48 reflections
3583 measured reflections intensity decay: 1.5%
2166 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.36 e Å3
S = 1.01Δρmin = 0.31 e Å3
2166 reflectionsAbsolute structure: Flack (1983), 199 Friedel pairs
254 parametersAbsolute structure parameter: 0.001 (16)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.35428 (6)0.83945 (5)0.07075 (4)0.03626 (17)
Cl10.59957 (15)0.88938 (12)0.07478 (13)0.0568 (4)
O10.1273 (6)0.8988 (4)0.1933 (5)0.0736 (14)
O20.2371 (4)0.7472 (3)0.0791 (3)0.0593 (10)
N10.2098 (5)0.9334 (3)0.1500 (4)0.0395 (10)
C20.1470 (6)1.0382 (5)0.0733 (5)0.0561 (15)
H2B0.07281.07570.10900.067*
H2C0.08741.01800.01680.067*
C30.2813 (8)1.1188 (5)0.0761 (7)0.0694 (18)
H3B0.23531.18650.02710.083*
H3C0.35111.08360.03430.083*
C40.3824 (8)1.1517 (5)0.2180 (7)0.0728 (19)
H4B0.47511.19640.21830.087*
H4C0.31731.19670.25620.087*
C50.4390 (6)1.0444 (5)0.2981 (6)0.0540 (14)
H5A0.51531.00510.26610.065*
H5B0.49491.06480.38880.065*
C60.2997 (6)0.9655 (4)0.2909 (5)0.0439 (12)
H6C0.22391.00880.32120.053*
C70.3460 (5)0.8603 (4)0.3779 (4)0.0414 (14)
H7B0.40030.88630.46790.050*
C80.1909 (6)0.8004 (5)0.3750 (5)0.0534 (14)
H8C0.21530.73820.43690.064*
H8D0.11930.85270.39770.064*
C90.1123 (6)0.7570 (4)0.2361 (5)0.0448 (12)
H9A0.01110.71950.23200.054*
C100.0684 (5)0.8584 (5)0.1438 (5)0.0473 (15)
H10A0.01960.83110.05480.057*
H10B0.01210.90340.16470.057*
C110.2198 (5)0.6685 (4)0.2039 (5)0.0396 (12)
H11A0.16850.64910.11120.047*
C120.2309 (6)0.5589 (5)0.2815 (5)0.0481 (13)
H12A0.27170.57610.37440.058*
H12B0.12330.52720.26140.058*
C130.3404 (7)0.4711 (5)0.2515 (6)0.0583 (15)
H13A0.35030.40580.30780.070*
H13B0.29360.44630.16130.070*
C140.5068 (7)0.5220 (5)0.2737 (5)0.0523 (14)
H14A0.57440.46770.24920.063*
H14B0.55800.53990.36580.063*
C150.4904 (6)0.6294 (4)0.1917 (4)0.0389 (11)
H15A0.59710.66160.20860.047*
H15B0.44810.60900.09970.047*
N160.3824 (4)0.7178 (3)0.2180 (3)0.0312 (8)
C170.4586 (5)0.7755 (4)0.3460 (4)0.0400 (11)
H17A0.55510.81470.34470.048*
H17B0.49150.71900.41480.048*
C180.0832 (5)0.7189 (4)0.2985 (4)0.0352 (11)
C190.1471 (6)0.6117 (4)0.2996 (5)0.0427 (12)
H19A0.23130.58660.22690.051*
C200.0874 (6)0.5418 (5)0.4072 (5)0.0517 (14)
H20A0.13220.47050.40670.062*
C210.0384 (6)0.5774 (6)0.5152 (6)0.0551 (16)
H21C0.07830.53050.58780.066*
C220.1042 (6)0.6824 (6)0.5147 (5)0.0584 (16)
H22C0.19060.70560.58710.070*
C230.0445 (5)0.7555 (5)0.4080 (4)0.0475 (13)
H23C0.08880.82710.40970.057*
C240.1522 (7)0.7978 (6)0.1842 (6)0.0446 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0429 (3)0.0340 (3)0.0326 (2)0.0013 (3)0.01358 (19)0.0000 (3)
Cl10.0589 (8)0.0505 (7)0.0747 (8)0.0089 (7)0.0404 (7)0.0045 (7)
O10.100 (4)0.049 (3)0.059 (3)0.014 (3)0.010 (2)0.010 (2)
O20.078 (2)0.055 (2)0.0324 (18)0.005 (2)0.0018 (17)0.0018 (18)
N10.044 (2)0.032 (2)0.041 (2)0.006 (2)0.0127 (19)0.0016 (19)
C20.066 (4)0.046 (3)0.059 (3)0.022 (3)0.024 (3)0.005 (3)
C30.097 (5)0.035 (3)0.089 (5)0.016 (3)0.048 (4)0.016 (3)
C40.091 (5)0.037 (4)0.102 (5)0.004 (4)0.048 (4)0.009 (4)
C50.065 (4)0.042 (3)0.057 (3)0.008 (3)0.022 (3)0.017 (3)
C60.055 (3)0.035 (3)0.044 (3)0.002 (3)0.021 (3)0.009 (2)
C70.057 (3)0.041 (4)0.028 (2)0.004 (2)0.0160 (19)0.010 (2)
C80.073 (3)0.044 (3)0.057 (3)0.002 (3)0.039 (3)0.004 (2)
C90.038 (3)0.043 (3)0.057 (3)0.006 (2)0.021 (2)0.008 (3)
C100.037 (2)0.045 (4)0.060 (3)0.003 (2)0.018 (2)0.002 (3)
C110.036 (3)0.044 (3)0.037 (3)0.010 (2)0.011 (2)0.006 (2)
C120.052 (3)0.039 (3)0.054 (3)0.015 (3)0.019 (3)0.001 (2)
C130.082 (4)0.036 (3)0.058 (3)0.010 (3)0.025 (3)0.002 (3)
C140.066 (4)0.041 (3)0.050 (3)0.013 (3)0.019 (3)0.010 (3)
C150.047 (3)0.036 (3)0.036 (2)0.004 (2)0.018 (2)0.001 (2)
N160.035 (2)0.030 (2)0.0298 (18)0.0029 (18)0.0128 (16)0.0057 (16)
C170.047 (3)0.041 (3)0.026 (2)0.005 (2)0.004 (2)0.005 (2)
C180.031 (3)0.049 (3)0.025 (2)0.005 (2)0.008 (2)0.000 (2)
C190.043 (3)0.043 (3)0.040 (3)0.003 (2)0.012 (2)0.003 (2)
C200.055 (3)0.049 (3)0.057 (3)0.005 (3)0.027 (3)0.009 (3)
C210.047 (4)0.073 (5)0.047 (4)0.018 (4)0.019 (3)0.019 (3)
C220.039 (3)0.091 (5)0.037 (3)0.003 (3)0.003 (2)0.001 (3)
C230.041 (3)0.057 (3)0.043 (3)0.008 (3)0.012 (2)0.006 (3)
C240.049 (3)0.046 (3)0.039 (3)0.003 (3)0.015 (3)0.000 (3)
Geometric parameters (Å, º) top
Zn1—O21.940 (3)C10—H10A0.9700
Zn1—N12.077 (4)C10—H10B0.9700
Zn1—N162.101 (4)C11—N161.501 (6)
Zn1—Cl12.2189 (13)C11—C121.530 (7)
O1—C241.213 (6)C11—H11A0.9800
O2—C241.280 (7)C12—C131.523 (7)
N1—C21.491 (6)C12—H12A0.9700
N1—C101.509 (6)C12—H12B0.9700
N1—C61.514 (6)C13—C141.522 (7)
C2—C31.508 (8)C13—H13A0.9700
C2—H2B0.9700C13—H13B0.9700
C2—H2C0.9700C14—C151.529 (7)
C3—C41.545 (9)C14—H14A0.9700
C3—H3B0.9700C14—H14B0.9700
C3—H3C0.9700C15—N161.502 (6)
C4—C51.522 (9)C15—H15A0.9700
C4—H4B0.9700C15—H15B0.9700
C4—H4C0.9700N16—C171.488 (5)
C5—C61.519 (7)C17—H17A0.9700
C5—H5A0.9700C17—H17B0.9700
C5—H5B0.9700C18—C191.387 (7)
C6—C71.532 (7)C18—C231.399 (6)
C6—H6C0.9800C18—C241.506 (8)
C7—C81.526 (7)C19—C201.381 (7)
C7—C171.527 (6)C19—H19A0.9300
C7—H7B0.9800C20—C211.377 (8)
C8—C91.520 (7)C20—H20A0.9300
C8—H8C0.9700C21—C221.370 (9)
C8—H8D0.9700C21—H21C0.9300
C9—C101.526 (7)C22—C231.397 (8)
C9—C111.527 (7)C22—H22C0.9300
C9—H9A0.9800C23—H23C0.9300
O2—Zn1—N1114.94 (15)C9—C10—H10B108.7
O2—Zn1—N1698.37 (14)H10A—C10—H10B107.6
N1—Zn1—N1689.06 (14)N16—C11—C9110.5 (4)
O2—Zn1—Cl1113.80 (12)N16—C11—C12113.0 (4)
N1—Zn1—Cl1124.97 (12)C9—C11—C12112.6 (4)
N16—Zn1—Cl1107.58 (10)N16—C11—H11A106.8
C24—O2—Zn1118.0 (4)C9—C11—H11A106.8
C2—N1—C10108.6 (4)C12—C11—H11A106.8
C2—N1—C6108.9 (4)C13—C12—C11112.8 (4)
C10—N1—C6109.5 (4)C13—C12—H12A109.0
C2—N1—Zn1112.1 (3)C11—C12—H12A109.0
C10—N1—Zn1106.0 (3)C13—C12—H12B109.0
C6—N1—Zn1111.6 (3)C11—C12—H12B109.0
N1—C2—C3112.0 (4)H12A—C12—H12B107.8
N1—C2—H2B109.2C14—C13—C12109.7 (4)
C3—C2—H2B109.2C14—C13—H13A109.7
N1—C2—H2C109.2C12—C13—H13A109.7
C3—C2—H2C109.2C14—C13—H13B109.7
H2B—C2—H2C107.9C12—C13—H13B109.7
C2—C3—C4111.2 (5)H13A—C13—H13B108.2
C2—C3—H3B109.4C13—C14—C15109.8 (4)
C4—C3—H3B109.4C13—C14—H14A109.7
C2—C3—H3C109.4C15—C14—H14A109.7
C4—C3—H3C109.4C13—C14—H14B109.7
H3B—C3—H3C108.0C15—C14—H14B109.7
C5—C4—C3109.1 (5)H14A—C14—H14B108.2
C5—C4—H4B109.9N16—C15—C14114.2 (4)
C3—C4—H4B109.9N16—C15—H15A108.7
C5—C4—H4C109.9C14—C15—H15A108.7
C3—C4—H4C109.9N16—C15—H15B108.7
H4B—C4—H4C108.3C14—C15—H15B108.7
C6—C5—C4112.3 (5)H15A—C15—H15B107.6
C6—C5—H5A109.1C17—N16—C11112.8 (3)
C4—C5—H5A109.1C17—N16—C15112.5 (3)
C6—C5—H5B109.1C11—N16—C15110.4 (3)
C4—C5—H5B109.1C17—N16—Zn1107.2 (3)
H5A—C5—H5B107.9C11—N16—Zn1108.9 (3)
N1—C6—C5110.0 (4)C15—N16—Zn1104.6 (3)
N1—C6—C7111.0 (4)N16—C17—C7113.0 (4)
C5—C6—C7115.2 (4)N16—C17—H17A109.0
N1—C6—H6C106.7C7—C17—H17A109.0
C5—C6—H6C106.7N16—C17—H17B109.0
C7—C6—H6C106.7C7—C17—H17B109.0
C8—C7—C17109.4 (4)H17A—C17—H17B107.8
C8—C7—C6108.3 (4)C19—C18—C23119.1 (4)
C17—C7—C6116.8 (4)C19—C18—C24121.4 (4)
C8—C7—H7B107.3C23—C18—C24119.5 (5)
C17—C7—H7B107.3C20—C19—C18120.9 (5)
C6—C7—H7B107.3C20—C19—H19A119.5
C9—C8—C7106.4 (4)C18—C19—H19A119.5
C9—C8—H8C110.5C21—C20—C19120.2 (6)
C7—C8—H8C110.5C21—C20—H20A119.9
C9—C8—H8D110.5C19—C20—H20A119.9
C7—C8—H8D110.5C22—C21—C20119.5 (5)
H8C—C8—H8D108.6C22—C21—H21C120.3
C8—C9—C10108.3 (4)C20—C21—H21C120.3
C8—C9—C11110.4 (4)C21—C22—C23121.5 (5)
C10—C9—C11115.3 (4)C21—C22—H22C119.3
C8—C9—H9A107.5C23—C22—H22C119.3
C10—C9—H9A107.5C22—C23—C18118.8 (5)
C11—C9—H9A107.5C22—C23—H23C120.6
N1—C10—C9114.2 (4)C18—C23—H23C120.6
N1—C10—H10A108.7O1—C24—O2124.5 (6)
C9—C10—H10A108.7O1—C24—C18122.2 (6)
N1—C10—H10B108.7O2—C24—C18113.3 (5)
N1—Zn1—O2—C2465.5 (4)N16—C11—C12—C1352.9 (5)
N16—Zn1—O2—C24158.3 (4)C9—C11—C12—C13179.0 (4)
Cl1—Zn1—O2—C2488.2 (4)C11—C12—C13—C1454.9 (6)
O2—Zn1—N1—C279.6 (3)C12—C13—C14—C1555.7 (6)
N16—Zn1—N1—C2178.4 (3)C13—C14—C15—N1657.1 (5)
Cl1—Zn1—N1—C270.6 (3)C9—C11—N16—C1750.9 (5)
O2—Zn1—N1—C1038.7 (3)C12—C11—N16—C1776.3 (5)
N16—Zn1—N1—C1060.1 (3)C9—C11—N16—C15177.7 (4)
Cl1—Zn1—N1—C10171.0 (2)C12—C11—N16—C1550.5 (5)
O2—Zn1—N1—C6157.9 (3)C9—C11—N16—Zn168.0 (4)
N16—Zn1—N1—C659.1 (3)C12—C11—N16—Zn1164.8 (3)
Cl1—Zn1—N1—C651.9 (3)C14—C15—N16—C1773.2 (5)
C10—N1—C2—C3179.2 (4)C14—C15—N16—C1153.7 (5)
C6—N1—C2—C360.0 (5)C14—C15—N16—Zn1170.7 (3)
Zn1—N1—C2—C364.0 (5)O2—Zn1—N16—C17174.8 (3)
N1—C2—C3—C457.7 (6)N1—Zn1—N16—C1759.8 (3)
C2—C3—C4—C553.0 (7)Cl1—Zn1—N16—C1766.8 (3)
C3—C4—C5—C654.2 (7)O2—Zn1—N16—C1152.6 (3)
C2—N1—C6—C559.4 (5)N1—Zn1—N16—C1162.5 (3)
C10—N1—C6—C5178.0 (4)Cl1—Zn1—N16—C11170.9 (2)
Zn1—N1—C6—C564.9 (4)O2—Zn1—N16—C1565.5 (3)
C2—N1—C6—C7172.0 (4)N1—Zn1—N16—C15179.4 (3)
C10—N1—C6—C753.3 (5)Cl1—Zn1—N16—C1552.8 (3)
Zn1—N1—C6—C763.7 (4)C11—N16—C17—C750.6 (5)
C4—C5—C6—N158.4 (6)C15—N16—C17—C7176.3 (4)
C4—C5—C6—C7175.3 (4)Zn1—N16—C17—C769.2 (4)
N1—C6—C7—C862.6 (5)C8—C7—C17—N1656.5 (5)
C5—C6—C7—C8171.5 (4)C6—C7—C17—N1667.0 (5)
N1—C6—C7—C1761.4 (5)C23—C18—C19—C200.6 (7)
C5—C6—C7—C1764.4 (5)C24—C18—C19—C20177.3 (5)
C17—C7—C8—C961.8 (5)C18—C19—C20—C210.6 (8)
C6—C7—C8—C966.6 (5)C19—C20—C21—C220.3 (8)
C7—C8—C9—C1063.1 (5)C20—C21—C22—C231.3 (9)
C7—C8—C9—C1164.1 (5)C21—C22—C23—C181.4 (8)
C2—N1—C10—C9170.5 (4)C19—C18—C23—C220.4 (7)
C6—N1—C10—C951.7 (5)C24—C18—C23—C22178.3 (5)
Zn1—N1—C10—C968.8 (4)Zn1—O2—C24—O17.4 (9)
C8—C9—C10—N157.6 (5)Zn1—O2—C24—C18173.0 (3)
C11—C9—C10—N166.7 (5)C19—C18—C24—O1161.3 (6)
C8—C9—C11—N1658.9 (5)C23—C18—C24—O116.6 (9)
C10—C9—C11—N1664.3 (5)C19—C18—C24—O219.1 (7)
C8—C9—C11—C1268.5 (5)C23—C18—C24—O2163.1 (5)
C10—C9—C11—C12168.3 (4)

Experimental details

Crystal data
Chemical formula[Zn(C7H5O2)Cl(C15H26N2)]
Mr456.31
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.7784 (9), 11.8238 (13), 10.8438 (11)
β (°) 109.671 (8)
V3)1059.84 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.34 × 0.26 × 0.04
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.760, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
3583, 2166, 1812
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.069, 1.01
No. of reflections2166
No. of parameters254
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.31
Absolute structureFlack (1983), 199 Friedel pairs
Absolute structure parameter0.001 (16)

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
Zn1—O21.940 (3)Zn1—N162.101 (4)
Zn1—N12.077 (4)Zn1—Cl12.2189 (13)
O2—Zn1—N1114.94 (15)O2—Zn1—Cl1113.80 (12)
O2—Zn1—N1698.37 (14)N1—Zn1—Cl1124.97 (12)
N1—Zn1—N1689.06 (14)N16—Zn1—Cl1107.58 (10)
 

Acknowledgements

The present work has been supported by Secretaría de Educación Pública, Sub-Secretaría de Educación Superior and Vicerrectoría de Investigación y Estudios de Posgrado from BUAP, project 52/NAT/06-I.

References

First citationAlcántara-Flores, J. L., Bernès, S., Reyes-Ortega, Y. & Zamorano-Ulloa, R. (2003). Acta Cryst. C59, m79–m81.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlcántara-Flores, J. L., Vázquez-Bravo, J. J., Gutiérrez-Pérez, R., Ramírez-Rosales, D., Bernès, S., Pérez-Ramírez, J. G., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2003). J. Mol. Struct. 657, 137–143.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJasiewicz, B., Boczon, W., Warzajtis, B., Rychlewska, U. & Rafalowicz, T. (2005). J. Mol. Struct. 753, 45–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, Y.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2002). Acta Cryst. C58, m453–m454.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReyes-Ortega, Y., Alcántara-Flores, J. L., Hernández-Galindo, M. C., Gutiérrez-Pérez, R., Ramírez-Rosales, D., Bernès, S., Cabrera-Vivas, B. M., Durán-Hernández, A. & Zamorano-Ulloa, R. (2006). J. Mol. Struct. 788, 145–151.  Web of Science CrossRef CAS Google Scholar
First citationShanmuga Sundara Raj, S., Fun, H.-K., Zhao, P.-S., Jian, F.-F., Lu, L.-D., Yang, X.-J. & Wang, X. (2000). Acta Cryst. C56, 742–743.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1142-m1143
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds