metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)pyridinium] tetra­bromidobis(4-methyl­phen­yl)stannate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: kmlo@um.edu.my

(Received 8 June 2009; accepted 30 July 2009; online 8 August 2009)

In the title compound, (C7H11N2)2[SnBr4(C7H7)2], the tetra­bromidobis(4-methyl­phen­yl)stannate(IV) anion possesses a centre of inversion located at the SnIV atom. In the crystal structure, two inversion-related cations are linked to the anion via weak N—H⋯Br hydrogen bonds.

Related literature

For related crystal structures, see Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m630.]); Koon et al. (2009[Koon, Y. C., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m663.]); Yap et al. (2008[Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[SnBr4(C7H7)2]

  • Mr = 866.94

  • Monoclinic, P 21 /n

  • a = 10.2178 (3) Å

  • b = 10.4808 (3) Å

  • c = 14.5833 (3) Å

  • β = 95.063 (1)°

  • V = 1555.64 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.98 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.229, Tmax = 0.353 (expected range = 0.174–0.268)

  • 11555 measured reflections

  • 3569 independent reflections

  • 3225 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.045

  • S = 1.05

  • 3569 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1i 0.88 2.75 3.448 (2) 138
N1—H1⋯Br2i 0.88 2.94 3.517 (2) 125
Symmetry code: (i) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1.

Related literature top

For related crystal structures, see Lo & Ng (2009); Koon et al. (2009); Yap et al. (2008).

Experimental top

Tetra(4-methylphenyl)tin (0.49 g, 1 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (0.40 g, 1 mmol) were dissolved in absolute ethanol (25 ml) and refluxed for six hours. The solution was filtered and colourless crystals were isolated upon cooling to room temperature.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95 to 0.98 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times U(C,N). N—H was refined and placed in the calculated position of N—H 0.88 ± 0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius and dashed lines indicate hydrogen bonds (symmetry codes: (A) 1+x, -1+y, z and (B) 2-x, -y, -z).
Bis[4-(dimethylamino)pyridinium] tetrabromidobis(4-methylphenyl)stannate(IV) top
Crystal data top
(C7H11N2)2[SnBr4(C7H7)2]F(000) = 844
Mr = 866.94Dx = 1.851 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6698 reflections
a = 10.2178 (3) Åθ = 2.3–30.5°
b = 10.4808 (3) ŵ = 5.98 mm1
c = 14.5833 (3) ÅT = 100 K
β = 95.063 (1)°Block, colourless
V = 1555.64 (7) Å30.35 × 0.30 × 0.22 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3569 independent reflections
Radiation source: fine-focus sealed tube3225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1310
Tmin = 0.229, Tmax = 0.353k = 138
11555 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0246P)2 + 0.5727P]
where P = (Fo2 + 2Fc2)/3
3569 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
(C7H11N2)2[SnBr4(C7H7)2]V = 1555.64 (7) Å3
Mr = 866.94Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.2178 (3) ŵ = 5.98 mm1
b = 10.4808 (3) ÅT = 100 K
c = 14.5833 (3) Å0.35 × 0.30 × 0.22 mm
β = 95.063 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3569 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3225 reflections with I > 2σ(I)
Tmin = 0.229, Tmax = 0.353Rint = 0.019
11555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
3569 reflectionsΔρmin = 0.45 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn11.00000.00000.00000.01042 (5)
Br10.951470 (19)0.180492 (17)0.131083 (12)0.01383 (5)
Br21.261950 (18)0.018292 (18)0.055861 (14)0.01597 (6)
N10.24150 (18)0.65685 (17)0.11335 (13)0.0237 (4)
H10.20280.72810.12800.028*
N20.43055 (16)0.33066 (16)0.04249 (11)0.0166 (3)
C10.98097 (18)0.15055 (17)0.09731 (12)0.0106 (3)
C21.06827 (19)0.25260 (18)0.10370 (13)0.0140 (4)
H21.14170.25270.06800.017*
C31.04872 (19)0.35431 (19)0.16189 (13)0.0158 (4)
H31.10890.42360.16510.019*
C40.94235 (19)0.35675 (19)0.21573 (13)0.0148 (4)
C50.85693 (19)0.25278 (19)0.21028 (13)0.0142 (4)
H50.78470.25140.24710.017*
C60.87603 (18)0.15088 (18)0.15165 (12)0.0136 (4)
H60.81670.08090.14880.016*
C70.9200 (2)0.46954 (19)0.27623 (15)0.0204 (4)
H7A0.89700.54430.23770.031*
H7B1.00040.48730.31600.031*
H7C0.84820.45060.31440.031*
C80.2184 (2)0.6093 (2)0.02768 (15)0.0249 (5)
H80.15930.65260.01570.030*
C90.2777 (2)0.5010 (2)0.00204 (15)0.0201 (4)
H90.25960.46870.05860.024*
C100.36716 (18)0.43551 (18)0.06587 (13)0.0131 (4)
C110.3857 (2)0.48772 (18)0.15624 (14)0.0171 (4)
H110.44210.44610.20220.021*
C120.3229 (2)0.5969 (2)0.17697 (14)0.0202 (4)
H120.33670.63140.23730.024*
C130.4097 (2)0.2765 (2)0.05001 (14)0.0208 (4)
H13A0.32000.24310.05990.031*
H13B0.47260.20720.05650.031*
H13C0.42250.34300.09560.031*
C140.5171 (2)0.2619 (2)0.11039 (15)0.0249 (5)
H14A0.58370.32040.13870.037*
H14B0.56030.19200.08010.037*
H14C0.46530.22700.15800.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01059 (9)0.00929 (9)0.01105 (9)0.00024 (6)0.00081 (6)0.00130 (6)
Br10.01585 (10)0.01282 (10)0.01285 (9)0.00079 (7)0.00140 (7)0.00179 (7)
Br20.01007 (10)0.01519 (10)0.02186 (11)0.00061 (7)0.00312 (7)0.00193 (7)
N10.0260 (10)0.0161 (9)0.0291 (10)0.0075 (7)0.0021 (8)0.0008 (7)
N20.0155 (8)0.0160 (8)0.0179 (8)0.0010 (7)0.0002 (6)0.0011 (7)
C10.0124 (9)0.0099 (8)0.0091 (8)0.0006 (7)0.0018 (7)0.0002 (7)
C20.0120 (9)0.0134 (9)0.0165 (9)0.0010 (7)0.0013 (7)0.0003 (7)
C30.0139 (9)0.0119 (9)0.0210 (10)0.0036 (7)0.0009 (7)0.0015 (7)
C40.0157 (9)0.0137 (9)0.0143 (9)0.0041 (8)0.0027 (7)0.0022 (7)
C50.0119 (9)0.0185 (10)0.0124 (9)0.0022 (7)0.0024 (7)0.0002 (7)
C60.0126 (9)0.0143 (9)0.0136 (9)0.0019 (7)0.0006 (7)0.0005 (7)
C70.0218 (11)0.0158 (10)0.0232 (10)0.0042 (8)0.0005 (8)0.0068 (8)
C80.0252 (11)0.0265 (12)0.0225 (11)0.0073 (9)0.0016 (9)0.0083 (9)
C90.0193 (11)0.0246 (11)0.0157 (10)0.0023 (8)0.0021 (8)0.0035 (8)
C100.0110 (9)0.0119 (9)0.0165 (9)0.0037 (7)0.0011 (7)0.0020 (7)
C110.0153 (10)0.0175 (10)0.0177 (10)0.0019 (8)0.0035 (8)0.0019 (8)
C120.0208 (11)0.0179 (10)0.0214 (10)0.0019 (8)0.0012 (8)0.0016 (8)
C130.0203 (11)0.0228 (11)0.0194 (10)0.0016 (9)0.0025 (8)0.0038 (8)
C140.0275 (12)0.0205 (11)0.0259 (11)0.0108 (9)0.0016 (9)0.0030 (9)
Geometric parameters (Å, º) top
Sn1—C1i2.1424 (18)C5—C61.393 (3)
Sn1—C12.1424 (18)C5—H50.9500
Sn1—Br2i2.7349 (2)C6—H60.9500
Sn1—Br22.7349 (2)C7—H7A0.9800
Sn1—Br12.7652 (2)C7—H7B0.9800
Sn1—Br1i2.7652 (2)C7—H7C0.9800
N1—C121.346 (3)C8—C91.356 (3)
N1—C81.346 (3)C8—H80.9500
N1—H10.8800C9—C101.422 (3)
N2—C101.335 (2)C9—H90.9500
N2—C141.459 (3)C10—C111.424 (3)
N2—C131.462 (3)C11—C121.359 (3)
C1—C61.388 (3)C11—H110.9500
C1—C21.391 (3)C12—H120.9500
C2—C31.388 (3)C13—H13A0.9800
C2—H20.9500C13—H13B0.9800
C3—C41.396 (3)C13—H13C0.9800
C3—H30.9500C14—H14A0.9800
C4—C51.394 (3)C14—H14B0.9800
C4—C71.504 (3)C14—H14C0.9800
C1i—Sn1—C1180.00 (13)C1—C6—C5120.63 (18)
C1i—Sn1—Br2i89.88 (5)C1—C6—H6119.7
C1—Sn1—Br2i90.12 (5)C5—C6—H6119.7
C1i—Sn1—Br290.12 (5)C4—C7—H7A109.5
C1—Sn1—Br289.88 (5)C4—C7—H7B109.5
Br2i—Sn1—Br2180.000 (12)H7A—C7—H7B109.5
C1i—Sn1—Br189.22 (5)C4—C7—H7C109.5
C1—Sn1—Br190.78 (5)H7A—C7—H7C109.5
Br2i—Sn1—Br191.340 (6)H7B—C7—H7C109.5
Br2—Sn1—Br188.660 (6)N1—C8—C9121.3 (2)
C1i—Sn1—Br1i90.78 (5)N1—C8—H8119.3
C1—Sn1—Br1i89.22 (5)C9—C8—H8119.3
Br2i—Sn1—Br1i88.660 (6)C8—C9—C10120.1 (2)
Br2—Sn1—Br1i91.340 (6)C8—C9—H9120.0
Br1—Sn1—Br1i180.000 (10)C10—C9—H9120.0
C12—N1—C8120.94 (19)N2—C10—C9121.88 (18)
C12—N1—H1119.5N2—C10—C11121.65 (18)
C8—N1—H1119.5C9—C10—C11116.47 (18)
C10—N2—C14120.81 (17)C12—C11—C10120.16 (19)
C10—N2—C13121.38 (17)C12—C11—H11119.9
C14—N2—C13117.71 (17)C10—C11—H11119.9
C6—C1—C2118.88 (17)N1—C12—C11121.0 (2)
C6—C1—Sn1119.98 (13)N1—C12—H12119.5
C2—C1—Sn1121.04 (13)C11—C12—H12119.5
C3—C2—C1120.37 (17)N2—C13—H13A109.5
C3—C2—H2119.8N2—C13—H13B109.5
C1—C2—H2119.8H13A—C13—H13B109.5
C2—C3—C4121.28 (18)N2—C13—H13C109.5
C2—C3—H3119.4H13A—C13—H13C109.5
C4—C3—H3119.4H13B—C13—H13C109.5
C5—C4—C3117.91 (17)N2—C14—H14A109.5
C5—C4—C7121.42 (17)N2—C14—H14B109.5
C3—C4—C7120.66 (18)H14A—C14—H14B109.5
C6—C5—C4120.90 (17)N2—C14—H14C109.5
C6—C5—H5119.5H14A—C14—H14C109.5
C4—C5—H5119.5H14B—C14—H14C109.5
C1i—Sn1—C1—C60.00 (18)C7—C4—C5—C6177.77 (18)
Br2i—Sn1—C1—C644.67 (14)C2—C1—C6—C51.2 (3)
Br2—Sn1—C1—C6135.33 (14)Sn1—C1—C6—C5175.23 (14)
Br1—Sn1—C1—C646.67 (14)C4—C5—C6—C10.1 (3)
Br1i—Sn1—C1—C6133.33 (14)C12—N1—C8—C91.1 (3)
C1i—Sn1—C1—C20.00 (7)N1—C8—C9—C100.4 (3)
Br2i—Sn1—C1—C2131.72 (15)C14—N2—C10—C9177.10 (19)
Br2—Sn1—C1—C248.28 (15)C13—N2—C10—C90.9 (3)
Br1—Sn1—C1—C2136.94 (15)C14—N2—C10—C112.9 (3)
Br1i—Sn1—C1—C243.06 (15)C13—N2—C10—C11179.12 (18)
C6—C1—C2—C31.5 (3)C8—C9—C10—N2178.0 (2)
Sn1—C1—C2—C3174.92 (14)C8—C9—C10—C112.0 (3)
C1—C2—C3—C40.5 (3)N2—C10—C11—C12177.86 (18)
C2—C3—C4—C50.9 (3)C9—C10—C11—C122.1 (3)
C2—C3—C4—C7178.05 (19)C8—N1—C12—C111.0 (3)
C3—C4—C5—C61.1 (3)C10—C11—C12—N10.7 (3)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br1ii0.882.753.448 (2)138
N1—H1···Br2ii0.882.943.517 (2)125
Symmetry code: (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula(C7H11N2)2[SnBr4(C7H7)2]
Mr866.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.2178 (3), 10.4808 (3), 14.5833 (3)
β (°) 95.063 (1)
V3)1555.64 (7)
Z2
Radiation typeMo Kα
µ (mm1)5.98
Crystal size (mm)0.35 × 0.30 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.229, 0.353
No. of measured, independent and
observed [I > 2σ(I)] reflections
11555, 3569, 3225
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.045, 1.05
No. of reflections3569
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.45

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br1i0.882.753.448 (2)138
N1—H1···Br2i0.882.943.517 (2)125
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

We thank the University of Malaya (grant No. PS072/2007C and PS320/2008C) for supporting this study.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoon, Y. C., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds