metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N′-(3-cyano­benzyl­­idene)isonicotino­hydrazide]silver(I) tri­fluoro­acetate

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn

(Received 15 July 2009; accepted 23 July 2009; online 8 August 2009)

In the title compound, [Ag(C14H10N4O)2]CF3CO2, the AgI ion is coordinated by two N atoms of the pyridine rings of two N′-(3-cyano­benzyl­idene)isonicotinohydrazide ligands in a nearly linear geometry. In the crystal structure, a combination of close contacts formed via Ag⋯N inter­actions [Ag⋯N = 3.098 (2) and 3.261 (2) Å] from symmetry-related mol­ecules and inter­molecular N—H⋯O hydrogen bonds between CF3CO2 anions and the hydrazone groups of two ligands give rise to chains. Furthermore, there are Ag⋯O inter­actions with a separation of 2.765 (2) Å between chains. The F atoms of the CF3CO2 anion are disordered over two sites with refined occupancies of 0.593 (5) and 0.407 (5).

Related literature

For related silver complexes, see: Dong et al. (2004[Dong, Y.-B., Zhao, X. & Huang, R.-Q. (2004). Inorg. Chem. 43, 5603-5612.]); Niu et al. (2008[Niu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305-m307.], 2009[Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Wan, X.-S., Zhang, H.-Y., Niu, Y.-Y. & Meng, L.-Y. (2009). CrystEngComm, 11, 1373-1382.]); Sumby & Hardie (2005[Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395-6399.]); Abu-Youssef et al. (2007[Abu-Youssef, M. A. M., Dey, R., Gohar, Y., Massoud, A. A., Ohrstrom, L. & Langer, V. (2007). Inorg. Chem.. 46, 5893-5903.]); Zheng et al. (2003[Zheng, Y., Du, M., Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509-1514.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C14H10N4O)2]C2F3O2

  • Mr = 721.41

  • Triclinic, [P \overline 1]

  • a = 7.5345 (14) Å

  • b = 13.744 (3) Å

  • c = 14.098 (3) Å

  • α = 86.562 (3)°

  • β = 88.126 (3)°

  • γ = 83.792 (3)°

  • V = 1448.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 173 K

  • 0.32 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.791, Tmax = 0.881

  • 8015 measured reflections

  • 5306 independent reflections

  • 4046 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.137

  • S = 1.03

  • 5306 reflections

  • 443 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N5 2.143 (3)
Ag1—N1 2.147 (3)
N5—Ag1—N1 174.20 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H40⋯O4i 0.88 1.93 2.805 (4) 172
N6—H39⋯O3ii 0.90 2.13 2.936 (4) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2002[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Silver coordination complexes with pyridyl organic ligands are of great interests for their utilities in fluorescent materials and antibiotic aspects (Dong et al., 2004; Abu-Youssef, et al., 2007). In the title compound, (I), the central AgI ion is coordinated by two nitrogen atoms from two pyridine rings of two different ligands, defining a slightly distorted linear coordination geometry (Fig. 1). Coordinating bond distances and angle around metal center are shown in Table 1. In the crystal structure, there are N—H···O hydrogen bonds between the hydrazone groups of 3-cyanobenzylidene isonicotinohydrazide ligands and CF3CO2- anions (Table 2). In addition, there are weak Ag···N interactions between two neighbouring silver monomers with separations of 3.098 (2) and 3.261 (2) Å and Ag···O interactions between two neighbouring silver monomers with separations of 2.765 (2) Å. Hydrogen bonds and Ag···N interactions link parallel silver monomers together to construct one-dimensional chains (Fig. 2) and Ag···O interactions contribute to the three-dimensional structure.

Related literature top

For related silver complexes, see: Dong et al. (2004); Niu et al. (2008, 2009); Sumby & Hardie (2005); Abu-Youssef et al. (2007); Zheng et al. (2003).

Experimental top

A solution of AgCF3CO2 (0.022 g, 0.1 mmol) in CH3OH (10 ml) was carefully layered on a CH3OH/CHCl3 solution (5 ml/10 ml) of 3-Cyanobenzylidene isonicotinohydrazide (0.025 g, 0.1 mmol) in a straight glass tube. About ten days later, colourless single crystals suitable for X-ray analysis were obtained (yield about 43%).

Refinement top

C-bound H atoms were placed in calculated positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The N-bound H atoms were first introduced in calculated positions and refined freely with Uiso(H) = 1.2Ueq(carrier N). Three F atoms (F1—F3) of the trifluoroacetate anion are disordered over two positions, with maximum and minimum occupancies of 0.593 (5) and 0.407 (5), respectively. All C—F bond lengths were restrained to 1.26 (2) Å. Restraints of displacement parameters for three F or disordered F atoms were also performed. The final difference Fourier map had a highest peak at 0.96 Å from atom Ag1 and a deepest hole at 0.96 Å from atom Ag1, but were otherwise featureless.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. In the anion, the dashed lines indicate the minor component of disorder.
[Figure 2] Fig. 2. Part of the the one-dimensional chain formed via intermolecular hydrogen bonds indicated by green dashed lines and Ag···N interactions indicated by pink dashed lines.
Bis[N'-(3-cyanobenzylidene)isonicotinohydrazide]silver(I) trifluoroacetate top
Crystal data top
[Ag(C14H10N4O)2]C2F3O2Z = 2
Mr = 721.41F(000) = 724
Triclinic, P1Dx = 1.654 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5345 (14) ÅCell parameters from 2885 reflections
b = 13.744 (3) Åθ = 2.1–25.5°
c = 14.098 (3) ŵ = 0.77 mm1
α = 86.562 (3)°T = 173 K
β = 88.126 (3)°Needle, yellow
γ = 83.792 (3)°0.32 × 0.22 × 0.17 mm
V = 1448.2 (5) Å3
Data collection top
Bruker APEXII CCD detector
diffractometer
5306 independent reflections
Radiation source: fine-focus sealed tube4046 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.791, Tmax = 0.881k = 1616
8015 measured reflectionsl = 817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0871P)2 + 0.05P]
where P = (Fo2 + 2Fc2)/3
5306 reflections(Δ/σ)max = 0.001
443 parametersΔρmax = 0.95 e Å3
48 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Ag(C14H10N4O)2]C2F3O2γ = 83.792 (3)°
Mr = 721.41V = 1448.2 (5) Å3
Triclinic, P1Z = 2
a = 7.5345 (14) ÅMo Kα radiation
b = 13.744 (3) ŵ = 0.77 mm1
c = 14.098 (3) ÅT = 173 K
α = 86.562 (3)°0.32 × 0.22 × 0.17 mm
β = 88.126 (3)°
Data collection top
Bruker APEXII CCD detector
diffractometer
5306 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4046 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.881Rint = 0.025
8015 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04648 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.03Δρmax = 0.95 e Å3
5306 reflectionsΔρmin = 0.83 e Å3
443 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.07174 (4)0.80139 (2)0.31966 (2)0.07153 (17)
N10.1905 (4)0.8820 (2)0.4222 (2)0.0511 (7)
N20.4458 (4)1.0110 (2)0.71224 (19)0.0467 (6)
H400.49750.95050.71650.056*
N30.4965 (4)1.0684 (2)0.78081 (19)0.0499 (7)
N40.9740 (5)0.9994 (3)1.2069 (2)0.0771 (10)
N50.0205 (4)0.7130 (2)0.2151 (2)0.0542 (7)
N60.3086 (4)0.5740 (2)0.06091 (19)0.0499 (7)
H390.32300.63970.07170.060*
N70.3701 (4)0.5149 (2)0.12433 (19)0.0473 (6)
N80.8578 (6)0.5997 (3)0.5468 (3)0.0829 (11)
O10.2840 (4)1.14121 (17)0.63867 (18)0.0630 (7)
O20.2138 (4)0.44400 (17)0.03838 (17)0.0601 (6)
O30.2518 (5)0.2337 (2)0.1519 (2)0.0957 (11)
O40.3698 (5)0.1775 (2)0.2890 (2)0.0950 (11)
C10.2540 (6)0.8390 (3)0.5037 (3)0.0623 (10)
H280.26290.76950.51110.075*
C20.3069 (5)0.8889 (3)0.5766 (3)0.0577 (9)
H290.35090.85470.63310.069*
C30.2955 (4)0.9898 (2)0.5673 (2)0.0413 (7)
C40.2324 (4)1.0347 (2)0.4829 (2)0.0480 (8)
H300.22401.10400.47330.058*
C50.1822 (4)0.9791 (3)0.4135 (2)0.0492 (8)
H310.13921.01150.35600.059*
C60.3404 (4)1.0549 (2)0.6427 (2)0.0470 (8)
C70.5898 (4)1.0245 (3)0.8475 (2)0.0488 (8)
H320.61730.95530.84950.059*
C80.6539 (4)1.0815 (2)0.9204 (2)0.0461 (7)
C90.6270 (5)1.1842 (3)0.9143 (3)0.0606 (10)
H330.56391.21710.86230.073*
C100.6902 (6)1.2380 (3)0.9820 (3)0.0748 (12)
H340.67091.30750.97680.090*
C110.7812 (6)1.1916 (3)1.0576 (3)0.0672 (11)
H350.82691.22891.10400.081*
C120.8062 (5)1.0904 (3)1.0659 (3)0.0545 (9)
C130.7428 (5)1.0354 (3)0.9974 (2)0.0481 (8)
H360.76060.96581.00370.058*
C140.9005 (5)1.0402 (3)1.1449 (3)0.0603 (9)
C150.1106 (6)0.7536 (3)0.1400 (3)0.0700 (11)
H220.12840.82310.13270.084*
C160.1786 (5)0.7013 (3)0.0732 (3)0.0590 (9)
H210.23890.73400.02030.071*
C170.1585 (4)0.6002 (2)0.0834 (2)0.0417 (7)
C180.0668 (5)0.5584 (2)0.1616 (2)0.0499 (8)
H200.04990.48900.17150.060*
C190.0005 (5)0.6156 (3)0.2244 (2)0.0530 (8)
H190.06270.58470.27720.064*
C200.2274 (4)0.5316 (2)0.0187 (2)0.0442 (7)
C210.4550 (5)0.5585 (3)0.1937 (2)0.0508 (8)
H230.47460.62800.19760.061*
C220.5228 (4)0.5035 (2)0.2675 (2)0.0461 (7)
C230.4960 (5)0.4015 (3)0.2652 (3)0.0542 (9)
H240.42790.36670.21610.065*
C240.5667 (6)0.3510 (3)0.3331 (3)0.0628 (10)
H250.54950.28130.32970.075*
C250.6625 (5)0.3998 (3)0.4062 (3)0.0591 (9)
H260.71090.36430.45320.071*
C260.6874 (5)0.5011 (3)0.4105 (2)0.0533 (8)
C270.6184 (5)0.5528 (3)0.3409 (2)0.0510 (8)
H270.63720.62240.34380.061*
C280.7845 (5)0.5554 (3)0.4867 (3)0.0626 (10)
C290.2595 (5)0.2239 (3)0.2380 (3)0.0611 (10)
C300.1058 (7)0.2780 (3)0.2934 (4)0.0814 (13)
F10.1449 (15)0.3562 (8)0.3268 (9)0.132 (5)0.593 (15)
F20.0334 (14)0.2268 (7)0.3564 (11)0.156 (6)0.593 (15)
F30.0247 (13)0.3127 (8)0.2334 (8)0.144 (5)0.593 (15)
F1'0.141 (3)0.2689 (11)0.3907 (7)0.145 (6)0.407 (15)
F2'0.0425 (19)0.2452 (15)0.2912 (13)0.153 (7)0.407 (15)
F3'0.093 (2)0.3702 (7)0.2843 (13)0.132 (7)0.407 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0812 (3)0.0767 (3)0.0630 (2)0.01527 (17)0.01994 (17)0.03412 (17)
N10.0622 (17)0.0518 (17)0.0435 (16)0.0139 (13)0.0157 (13)0.0136 (12)
N20.0567 (15)0.0441 (15)0.0412 (15)0.0050 (12)0.0149 (12)0.0128 (11)
N30.0594 (16)0.0477 (16)0.0452 (16)0.0078 (13)0.0152 (13)0.0137 (12)
N40.079 (2)0.103 (3)0.050 (2)0.011 (2)0.0193 (18)0.0021 (19)
N50.0699 (18)0.0492 (18)0.0460 (16)0.0064 (14)0.0174 (14)0.0158 (13)
N60.0672 (17)0.0418 (15)0.0435 (15)0.0091 (13)0.0175 (13)0.0097 (12)
N70.0606 (16)0.0450 (15)0.0390 (15)0.0093 (12)0.0137 (13)0.0115 (12)
N80.103 (3)0.089 (3)0.061 (2)0.019 (2)0.037 (2)0.003 (2)
O10.0821 (17)0.0408 (14)0.0686 (17)0.0027 (12)0.0307 (13)0.0155 (11)
O20.0886 (18)0.0389 (14)0.0550 (15)0.0067 (12)0.0241 (13)0.0092 (10)
O30.162 (3)0.074 (2)0.0531 (18)0.024 (2)0.0202 (19)0.0046 (15)
O40.110 (2)0.078 (2)0.093 (2)0.0287 (18)0.046 (2)0.0184 (17)
C10.085 (3)0.042 (2)0.064 (2)0.0097 (18)0.029 (2)0.0104 (17)
C20.084 (2)0.0413 (19)0.051 (2)0.0106 (17)0.0296 (18)0.0026 (15)
C30.0457 (16)0.0413 (17)0.0390 (16)0.0081 (13)0.0106 (13)0.0088 (13)
C40.0597 (19)0.0429 (18)0.0431 (18)0.0100 (15)0.0137 (15)0.0017 (14)
C50.0581 (19)0.054 (2)0.0377 (17)0.0124 (16)0.0144 (15)0.0001 (14)
C60.0553 (18)0.0424 (19)0.0459 (19)0.0102 (15)0.0130 (15)0.0101 (14)
C70.0591 (19)0.0445 (19)0.0445 (18)0.0062 (15)0.0095 (15)0.0106 (14)
C80.0538 (18)0.0478 (19)0.0389 (17)0.0095 (14)0.0117 (14)0.0084 (14)
C90.081 (3)0.045 (2)0.057 (2)0.0056 (17)0.0252 (19)0.0060 (16)
C100.099 (3)0.047 (2)0.082 (3)0.012 (2)0.032 (2)0.0144 (19)
C110.081 (3)0.061 (3)0.065 (3)0.016 (2)0.023 (2)0.0222 (19)
C120.058 (2)0.066 (2)0.0423 (19)0.0110 (17)0.0096 (16)0.0090 (16)
C130.0570 (19)0.0456 (19)0.0430 (18)0.0064 (15)0.0093 (15)0.0058 (14)
C140.062 (2)0.076 (3)0.046 (2)0.0118 (19)0.0089 (18)0.0125 (18)
C150.106 (3)0.041 (2)0.066 (2)0.008 (2)0.035 (2)0.0093 (17)
C160.087 (3)0.0405 (19)0.051 (2)0.0024 (17)0.0313 (19)0.0053 (15)
C170.0482 (17)0.0408 (17)0.0362 (16)0.0028 (13)0.0035 (13)0.0059 (13)
C180.068 (2)0.0406 (18)0.0413 (18)0.0011 (15)0.0147 (15)0.0067 (14)
C190.062 (2)0.056 (2)0.0422 (18)0.0019 (16)0.0168 (15)0.0095 (15)
C200.0528 (18)0.0416 (19)0.0394 (17)0.0034 (14)0.0096 (14)0.0105 (13)
C210.064 (2)0.0436 (19)0.047 (2)0.0095 (15)0.0115 (16)0.0071 (15)
C220.0551 (18)0.0457 (19)0.0403 (17)0.0137 (15)0.0080 (14)0.0072 (14)
C230.065 (2)0.046 (2)0.054 (2)0.0105 (16)0.0137 (17)0.0035 (15)
C240.077 (2)0.047 (2)0.068 (3)0.0150 (18)0.013 (2)0.0151 (17)
C250.071 (2)0.057 (2)0.054 (2)0.0169 (18)0.0123 (18)0.0179 (17)
C260.059 (2)0.061 (2)0.0434 (19)0.0170 (17)0.0117 (15)0.0073 (16)
C270.064 (2)0.0462 (19)0.0454 (19)0.0128 (16)0.0148 (16)0.0039 (14)
C280.077 (2)0.064 (2)0.052 (2)0.019 (2)0.0222 (19)0.0061 (18)
C290.086 (3)0.0379 (19)0.061 (2)0.0105 (18)0.021 (2)0.0021 (16)
C300.094 (3)0.052 (3)0.095 (4)0.002 (2)0.009 (3)0.010 (3)
F10.149 (7)0.122 (9)0.135 (8)0.021 (6)0.023 (6)0.076 (7)
F20.131 (7)0.126 (7)0.189 (11)0.019 (5)0.075 (7)0.075 (8)
F30.124 (6)0.121 (7)0.180 (8)0.056 (5)0.066 (6)0.036 (6)
F1'0.234 (14)0.121 (10)0.067 (5)0.047 (9)0.009 (7)0.023 (6)
F2'0.114 (8)0.184 (15)0.171 (13)0.061 (9)0.031 (8)0.029 (11)
F3'0.171 (12)0.037 (5)0.168 (13)0.038 (6)0.048 (9)0.032 (7)
Geometric parameters (Å, º) top
Ag1—N52.143 (3)C9—C101.369 (5)
Ag1—N12.147 (3)C9—H330.9500
N1—C51.327 (4)C10—C111.372 (6)
N1—C11.338 (5)C10—H340.9500
N2—C61.353 (4)C11—C121.381 (6)
N2—N31.372 (4)C11—H350.9500
N2—H400.8793C12—C131.388 (5)
N3—C71.275 (4)C12—C141.440 (6)
N4—C141.136 (5)C13—H360.9500
N5—C191.330 (5)C15—C161.363 (5)
N5—C151.338 (5)C15—H220.9500
N6—C201.364 (4)C16—C171.381 (5)
N6—N71.367 (4)C16—H210.9500
N6—H390.9025C17—C181.383 (4)
N7—C211.270 (4)C17—C201.493 (4)
N8—C281.135 (5)C18—C191.360 (5)
O1—C61.215 (4)C18—H200.9500
O2—C201.214 (4)C19—H190.9500
O3—C291.216 (4)C21—C221.458 (5)
O4—C291.218 (4)C21—H230.9500
C1—C21.363 (5)C22—C271.381 (5)
C1—H280.9500C22—C231.393 (5)
C2—C31.378 (5)C23—C241.369 (5)
C2—H290.9500C23—H240.9500
C3—C41.381 (4)C24—C251.376 (5)
C3—C61.500 (4)C24—H250.9500
C4—C51.365 (5)C25—C261.382 (5)
C4—H300.9500C25—H260.9500
C5—H310.9500C26—C271.391 (5)
C7—C81.454 (4)C26—C281.443 (5)
C7—H320.9500C27—H270.9500
C8—C131.380 (5)C29—C301.526 (7)
C8—C91.402 (5)
N5—Ag1—N1174.20 (11)C11—C12—C14120.6 (3)
C5—N1—C1116.6 (3)C13—C12—C14118.9 (3)
C5—N1—Ag1121.0 (2)C8—C13—C12120.1 (3)
C1—N1—Ag1121.8 (2)C8—C13—H36119.9
C6—N2—N3117.8 (3)C12—C13—H36119.9
C6—N2—H40128.2N4—C14—C12179.0 (5)
N3—N2—H40113.6N5—C15—C16123.9 (3)
C7—N3—N2116.5 (3)N5—C15—H22118.0
C19—N5—C15116.7 (3)C16—C15—H22118.0
C19—N5—Ag1121.9 (2)C15—C16—C17119.2 (3)
C15—N5—Ag1121.2 (2)C15—C16—H21120.4
C20—N6—N7118.7 (3)C17—C16—H21120.4
C20—N6—H39121.2C16—C17—C18116.8 (3)
N7—N6—H39120.1C16—C17—C20126.4 (3)
C21—N7—N6115.9 (3)C18—C17—C20116.8 (3)
N1—C1—C2123.9 (3)C19—C18—C17120.6 (3)
N1—C1—H28118.0C19—C18—H20119.7
C2—C1—H28118.0C17—C18—H20119.7
C1—C2—C3119.0 (3)N5—C19—C18122.8 (3)
C1—C2—H29120.5N5—C19—H19118.6
C3—C2—H29120.5C18—C19—H19118.6
C2—C3—C4117.5 (3)O2—C20—N6123.2 (3)
C2—C3—C6125.2 (3)O2—C20—C17120.8 (3)
C4—C3—C6117.3 (3)N6—C20—C17115.9 (3)
C5—C4—C3119.7 (3)N7—C21—C22121.1 (3)
C5—C4—H30120.1N7—C21—H23119.5
C3—C4—H30120.1C22—C21—H23119.5
N1—C5—C4123.3 (3)C27—C22—C23118.7 (3)
N1—C5—H31118.4C27—C22—C21119.8 (3)
C4—C5—H31118.4C23—C22—C21121.5 (3)
O1—C6—N2124.1 (3)C24—C23—C22120.7 (3)
O1—C6—C3120.2 (3)C24—C23—H24119.6
N2—C6—C3115.6 (3)C22—C23—H24119.6
N3—C7—C8119.3 (3)C23—C24—C25120.8 (3)
N3—C7—H32120.4C23—C24—H25119.6
C8—C7—H32120.4C25—C24—H25119.6
C13—C8—C9118.5 (3)C24—C25—C26119.3 (3)
C13—C8—C7120.5 (3)C24—C25—H26120.4
C9—C8—C7121.0 (3)C26—C25—H26120.4
C10—C9—C8121.0 (3)C25—C26—C27120.2 (3)
C10—C9—H33119.5C25—C26—C28121.2 (3)
C8—C9—H33119.5C27—C26—C28118.6 (3)
C9—C10—C11120.1 (4)C22—C27—C26120.3 (3)
C9—C10—H34119.9C22—C27—H27119.8
C11—C10—H34119.9C26—C27—H27119.8
C10—C11—C12119.8 (3)N8—C28—C26178.3 (4)
C10—C11—H35120.1O3—C29—O4131.0 (4)
C12—C11—H35120.1O3—C29—C30115.8 (4)
C11—C12—C13120.5 (3)O4—C29—C30113.3 (4)
N5—Ag1—N1—C5122.8 (10)C14—C12—C13—C8179.2 (3)
N5—Ag1—N1—C166.4 (11)C11—C12—C14—N4166 (27)
C6—N2—N3—C7177.3 (3)C13—C12—C14—N415 (28)
N1—Ag1—N5—C1956.5 (11)C19—N5—C15—C161.2 (7)
N1—Ag1—N5—C15127.5 (10)Ag1—N5—C15—C16177.4 (4)
C20—N6—N7—C21175.5 (3)N5—C15—C16—C171.6 (7)
C5—N1—C1—C21.0 (6)C15—C16—C17—C180.9 (6)
Ag1—N1—C1—C2170.2 (3)C15—C16—C17—C20178.6 (4)
N1—C1—C2—C30.1 (7)C16—C17—C18—C190.1 (5)
C1—C2—C3—C40.8 (6)C20—C17—C18—C19179.6 (3)
C1—C2—C3—C6177.1 (4)C15—N5—C19—C180.1 (5)
C2—C3—C4—C50.9 (5)Ag1—N5—C19—C18176.3 (3)
C6—C3—C4—C5177.2 (3)C17—C18—C19—N50.5 (6)
C1—N1—C5—C40.9 (5)N7—N6—C20—O23.4 (5)
Ag1—N1—C5—C4170.4 (3)N7—N6—C20—C17178.2 (3)
C3—C4—C5—N10.0 (5)C16—C17—C20—O2174.3 (4)
N3—N2—C6—O12.0 (5)C18—C17—C20—O25.1 (5)
N3—N2—C6—C3177.5 (3)C16—C17—C20—N64.1 (5)
C2—C3—C6—O1160.7 (4)C18—C17—C20—N6176.4 (3)
C4—C3—C6—O117.1 (5)N6—N7—C21—C22178.3 (3)
C2—C3—C6—N219.7 (5)N7—C21—C22—C27178.4 (3)
C4—C3—C6—N2162.4 (3)N7—C21—C22—C230.6 (5)
N2—N3—C7—C8177.6 (3)C27—C22—C23—C241.6 (5)
N3—C7—C8—C13174.7 (3)C21—C22—C23—C24177.4 (3)
N3—C7—C8—C95.2 (5)C22—C23—C24—C251.5 (6)
C13—C8—C9—C101.2 (6)C23—C24—C25—C260.2 (6)
C7—C8—C9—C10178.8 (4)C24—C25—C26—C270.9 (6)
C8—C9—C10—C110.1 (7)C24—C25—C26—C28179.1 (4)
C9—C10—C11—C121.1 (7)C23—C22—C27—C260.5 (5)
C10—C11—C12—C131.2 (6)C21—C22—C27—C26178.6 (3)
C10—C11—C12—C14179.6 (4)C25—C26—C27—C220.8 (5)
C9—C8—C13—C121.1 (5)C28—C26—C27—C22179.2 (3)
C7—C8—C13—C12178.9 (3)C25—C26—C28—N8134 (17)
C11—C12—C13—C80.1 (6)C27—C26—C28—N846 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H40···O4i0.881.932.805 (4)172
N6—H39···O3ii0.902.132.936 (4)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C14H10N4O)2]C2F3O2
Mr721.41
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.5345 (14), 13.744 (3), 14.098 (3)
α, β, γ (°)86.562 (3), 88.126 (3), 83.792 (3)
V3)1448.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.32 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.791, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
8015, 5306, 4046
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.03
No. of reflections5306
No. of parameters443
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.83

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Selected geometric parameters (Å, º) top
Ag1—N52.143 (3)Ag1—N12.147 (3)
N5—Ag1—N1174.20 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H40···O4i0.881.932.805 (4)172.3
N6—H39···O3ii0.902.132.936 (4)148.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

We are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis.

References

First citationAbu-Youssef, M. A. M., Dey, R., Gohar, Y., Massoud, A. A., Ohrstrom, L. & Langer, V. (2007). Inorg. Chem.. 46, 5893–5903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y.-B., Zhao, X. & Huang, R.-Q. (2004). Inorg. Chem. 43, 5603–5612.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNiu, C.-Y., Wu, B.-L., Zheng, X.-F., Wan, X.-S., Zhang, H.-Y., Niu, Y.-Y. & Meng, L.-Y. (2009). CrystEngComm, 11, 1373–1382.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305–m307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395–6399.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y., Du, M., Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509–1514.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds