organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bi­pyridine-5,5′-di­carboxylic acid

aSchool of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, 100044 Beijing, People's Republic of China
*Correspondence e-mail: chongchenwang@126.com

(Received 15 July 2009; accepted 29 July 2009; online 8 August 2009)

The title mol­ecule, C12H8N2O4, lies on an inversion center. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds connect mol­ecules into one-dimensional chains along [1[\overline{1}]1].

Related literature

For synthetic applications of the title compound, see: Schokecht & Kempe (2004[Schokecht, B. & Kempe, R. (2004). Z. Anorg. Allg. Chem. 630, 1377-1379.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8N2O4

  • Mr = 244.20

  • Triclinic, [P \overline 1]

  • a = 3.7384 (5) Å

  • b = 6.3934 (8) Å

  • c = 10.7786 (13) Å

  • α = 98.774 (2)°

  • β = 92.567 (1)°

  • γ = 90.000 (1)°

  • V = 254.34 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.15 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.990

  • 1343 measured reflections

  • 893 independent reflections

  • 657 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.214

  • S = 1.14

  • 893 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.625 (3) 168
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2'-bipyridine-5,5'-dicarboxylate acid is a potential multi-dentate ligand with a versatile coordination mode, which has been used in self-assembled porous coordination synthesis (Schokecht & Kempe, 2004). The crystals of the title compound were obtained unintentionally as the harvested product of the hydrothermal reaction of 2,2'-bipyridine-5,5'-dicarboxylate acid, Eu2O3 and 1,10-phenanthroline.

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, intermolecular O—H···O hydrogen bonds connect molecules into one-dimensional chains along [1 -1 1] (Fig. 2).

Related literature top

For synthetic applications of the title compound, see: Schokecht & Kempe (2004).

Experimental top

Yellow needle-like crystals of the title compound were obtained by hydrothermal reaction of 2,2'-bipyridine-5,5'-dicarboxylate acid (0.04884 g), 1,10-phenanthroline (0.0360 g), Eu2O3 (0.0702 g) and deionized water (15 ml) in a 23 ml teflon-lined reaction vesset at 433 K for 120 h, followed by slow cooling to room temperature.

Refinement top

All H atoms were placed in calculated positions and included in a riding-model approximation, with C—H = 0.93 Å, O-H = 0.82Å and Uiso(H)= 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound shown with 30% probabilty ellipsoids [symmetry code: (a) -x, -y+1, -z+1].
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines. The one-dimensional hydrogen-bonded chains propagate along [1-11].
2,2'-Bipyridine-5,5'-dicarboxylic acid top
Crystal data top
C12H8N2O4Z = 1
Mr = 244.20F(000) = 126
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.7384 (5) ÅCell parameters from 528 reflections
b = 6.3934 (8) Åθ = 3.2–27.6°
c = 10.7786 (13) ŵ = 0.12 mm1
α = 98.774 (2)°T = 298 K
β = 92.567 (1)°Needle, yellow
γ = 90.000 (1)°0.15 × 0.11 × 0.08 mm
V = 254.34 (6) Å3
Data collection top
Bruker SMART CCD
diffractometer
893 independent reflections
Radiation source: fine-focus sealed tube657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.982, Tmax = 0.990k = 77
1343 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1116P)2 + 0.1159P]
where P = (Fo2 + 2Fc2)/3
893 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C12H8N2O4γ = 90.000 (1)°
Mr = 244.20V = 254.34 (6) Å3
Triclinic, P1Z = 1
a = 3.7384 (5) ÅMo Kα radiation
b = 6.3934 (8) ŵ = 0.12 mm1
c = 10.7786 (13) ÅT = 298 K
α = 98.774 (2)°0.15 × 0.11 × 0.08 mm
β = 92.567 (1)°
Data collection top
Bruker SMART CCD
diffractometer
893 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
657 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.990Rint = 0.023
1343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.14Δρmax = 0.33 e Å3
893 reflectionsΔρmin = 0.36 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1979 (7)0.2556 (4)0.5341 (2)0.0351 (8)
O10.5129 (7)0.0316 (4)0.8383 (2)0.0492 (8)
H10.56140.07880.90360.074*
O20.2843 (7)0.2274 (4)0.9736 (2)0.0536 (9)
C10.3541 (8)0.1439 (5)0.8636 (3)0.0334 (8)
C20.2905 (8)0.1631 (5)0.6337 (3)0.0347 (9)
H20.39220.02930.61970.042*
C30.2438 (7)0.2552 (5)0.7571 (3)0.0307 (9)
C40.0964 (8)0.4566 (5)0.7784 (3)0.0353 (9)
H40.06400.52380.85980.042*
C50.0008 (8)0.5548 (5)0.6768 (3)0.0332 (8)
H50.10090.68920.68900.040*
C60.0520 (8)0.4512 (5)0.5562 (3)0.0295 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0443 (16)0.0333 (15)0.0284 (15)0.0064 (12)0.0011 (12)0.0079 (12)
O10.0724 (18)0.0463 (16)0.0308 (14)0.0208 (13)0.0006 (12)0.0129 (11)
O20.083 (2)0.0525 (17)0.0267 (14)0.0231 (14)0.0056 (12)0.0108 (11)
C10.0347 (17)0.0366 (18)0.0297 (17)0.0043 (14)0.0014 (13)0.0088 (14)
C20.0390 (18)0.0339 (18)0.0329 (18)0.0076 (14)0.0009 (13)0.0108 (14)
C30.0309 (16)0.0350 (19)0.0271 (18)0.0003 (14)0.0020 (13)0.0083 (14)
C40.0446 (19)0.0375 (19)0.0240 (16)0.0068 (15)0.0024 (13)0.0047 (13)
C50.0393 (18)0.0321 (17)0.0296 (17)0.0078 (14)0.0009 (13)0.0092 (14)
C60.0288 (15)0.0318 (18)0.0289 (17)0.0009 (13)0.0021 (12)0.0088 (14)
Geometric parameters (Å, º) top
N1—C21.335 (4)C2—H20.9300
N1—C61.357 (4)C3—C41.391 (4)
O1—C11.267 (4)C4—C51.378 (4)
O1—H10.8200C4—H40.9300
O2—C11.263 (4)C5—C61.388 (4)
C1—C31.484 (4)C5—H50.9300
C2—C31.388 (4)C6—C6i1.482 (6)
C2—N1—C6117.4 (3)C4—C3—C1120.8 (3)
C1—O1—H1109.5C5—C4—C3118.9 (3)
O2—C1—O1123.7 (3)C5—C4—H4120.5
O2—C1—C3118.7 (3)C3—C4—H4120.5
O1—C1—C3117.6 (3)C4—C5—C6119.3 (3)
N1—C2—C3123.8 (3)C4—C5—H5120.3
N1—C2—H2118.1C6—C5—H5120.3
C3—C2—H2118.1N1—C6—C5122.4 (3)
C2—C3—C4118.2 (3)N1—C6—C6i116.1 (3)
C2—C3—C1121.0 (3)C5—C6—C6i121.5 (4)
C6—N1—C2—C30.4 (5)C2—C3—C4—C50.8 (5)
N1—C2—C3—C40.9 (5)C1—C3—C4—C5179.7 (3)
N1—C2—C3—C1179.8 (3)C3—C4—C5—C60.3 (5)
O2—C1—C3—C2175.3 (3)C2—N1—C6—C50.2 (5)
O1—C1—C3—C24.4 (5)C2—N1—C6—C6i179.3 (3)
O2—C1—C3—C45.9 (5)C4—C5—C6—N10.2 (5)
O1—C1—C3—C4174.4 (3)C4—C5—C6—C6i179.2 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.821.822.625 (3)168
Symmetry code: (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC12H8N2O4
Mr244.20
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)3.7384 (5), 6.3934 (8), 10.7786 (13)
α, β, γ (°)98.774 (2), 92.567 (1), 90.000 (1)
V3)254.34 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.15 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
1343, 893, 657
Rint0.023
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.214, 1.14
No. of reflections893
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.36

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.625 (3)167.9
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality and the Research Fund of Beijing University of Civil Engineering and Architecture..

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSchokecht, B. & Kempe, R. (2004). Z. Anorg. Allg. Chem. 630, 1377-1379.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds