organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,11-Di­aza-1,8-diazo­nia­cyclo­tetra­decane dichloride hemihydrate

aSchool of Applied Chemical Engineering, the Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea, and bInstitute of Basic Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 26 July 2009; accepted 6 August 2009; online 12 August 2009)

In the title compound, C10H26N42+·2Cl·0.5H2O, the cyclam (1,4,8,11-tetra­azacyclo­tetra­decane) dication adopts an endodentate conformation which my be inflenced by intra­molecular N—H⋯N hydrogen bonding. In the crystal structure, the components are linked by N—H⋯Cl and O—H⋯Cl hydrogen bonds into chains along [100]. The water molecule is disordered over two sites in a 50:50 ratio.

Related literature

For the crystal structure of [H2(cyclam)](ClO4)2, see: Nave & Truter (1974[Nave, C. & Truter, M. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2351-2354.]). For the crystal structures of [H4(cyclam)]X·nH2O [X = Cl4, Br4, (ClO4)4, (SCN)4, (SO4)2 or (p-CH3C6H4SO3)4], see: Robinson et al. (1989[Robinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287-294.]); Subramanian & Zaworotko (1995[Subramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem. 73, 414-424.]).

[Scheme 1]

Experimental

Crystal data
  • C10H26N42+·2Cl·0.5H2O

  • Mr = 282.25

  • Monoclinic, P 21 /c

  • a = 6.827 (7) Å

  • b = 14.071 (16) Å

  • c = 16.055 (16) Å

  • β = 97.84 (3)°

  • V = 1528 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.25 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.806, Tmax = 0.959

  • 8725 measured reflections

  • 3136 independent reflections

  • 1280 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.151

  • S = 0.98

  • 3136 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯Cl2 0.86 2.67 3.356 (5) 138
N2—H21⋯Cl1 0.86 2.29 3.077 (5) 153
N2—H22⋯N1 0.86 2.29 2.882 (6) 126
N2—H22⋯N3 0.86 2.37 2.890 (5) 119
N3—H31⋯Cl1i 0.86 2.61 3.340 (4) 143
N4—H41⋯N1 0.86 2.40 2.899 (5) 118
N4—H41⋯N3 0.86 2.28 2.882 (6) 127
N4—H42⋯Cl2i 0.86 2.38 3.122 (5) 144
O1—H1O⋯Cl2ii 0.83 2.35 3.175 (8) 175
O1—H2O⋯Cl2iii 0.83 2.34 3.160 (8) 175
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound, C10H26N42+.2Cl-.0.5H2O, consists of a doubly protonated 1,4,8,11-tetraazacyclotetradecane (cyclam) dication, two chloride anions and one half of a solvent water molecule (Fig. 1). The macrocyclic dication contains two protonated N atoms and two secondary amine N atoms, and is in an endodentate conformation with the N atoms oriented towards the centre of the macrocyclic cavity. The conformation of the dication may be influnced by intramolecular N—H···N hydrogen bonding (Table 1 and Fig. 2). The N2—C4—C5—N3 and N4—C9—C10—N1 torsion angles [-62.4 (5)° and 62.1 (5)°, respectively] display the gauche conformation for these two groups within the dication. A similar conformation is also observed in the structures cyclam (Robinson et al., 1989) and [H2(cyclam)](ClO4)2 (Nave & Truter, 1974). Unlike cyclam and the dication, the tetracation, [H4(cyclam)]4+, adopts an exodentate conformation, in which all four N atoms are oriented away from the ring cavity, occupying positions as far away as possible from each other on the ring periphery (Robinson et al., 1989; Subramanian & Zaworotko, 1995). The components of the crystal structure are linked by N—H···Cl and O—H···Cl hydrogen bonds into one-dimensional chains along [100] (Table 1 and Fig. 2).

Related literature top

For the crystal structure of [H2(cyclam)](ClO4)2, see: Nave & Truter (1974). For the crystal structures of [H4(cyclam)]X.nH2O [X = Cl4, Br4, (ClO4)4, (SCN)4, (SO4)2 or (p-CH3C6H4SO3)4], see: Robinson et al. (1989); Subramanian & Zaworotko (1995).

Experimental top

Single crystals of the title compound were unexpectedly obtained as a byproduct of an attempted preparation of a Pd(II) complex by reacting Na2PdCl4 (0.073 g, 0.25 mmol) and 1,4,8,11-tetraazacyclotetradecane (0.100 g, 0.50 mmol) in H2O (10 ml) under reflux for 2 h. Crystals suitable for X-ray analysis were obtained by slow evaporation of a CH2Cl2 solution of the white reaction product.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective carrier atoms [C—H = 0.97 Å, N—H = 0.86 Å, O—H = 0.83 Å and Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
4,11-Diaza-1,8-diazoniacyclotetradecane dichloride hemihydrate top
Crystal data top
C10H26N42+·2Cl·0.5H2OF(000) = 612
Mr = 282.25Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 418 reflections
a = 6.827 (7) Åθ = 2.6–16.2°
b = 14.071 (16) ŵ = 0.41 mm1
c = 16.055 (16) ÅT = 293 K
β = 97.84 (3)°Needle, colorless
V = 1528 (3) Å30.25 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3136 independent reflections
Radiation source: fine-focus sealed tube1280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
ϕ and ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 58
Tmin = 0.806, Tmax = 0.959k = 1717
8725 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0321P)2]
where P = (Fo2 + 2Fc2)/3
3136 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H26N42+·2Cl·0.5H2OV = 1528 (3) Å3
Mr = 282.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.827 (7) ŵ = 0.41 mm1
b = 14.071 (16) ÅT = 293 K
c = 16.055 (16) Å0.25 × 0.10 × 0.10 mm
β = 97.84 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3136 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1280 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.959Rint = 0.110
8725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 0.98Δρmax = 0.23 e Å3
3136 reflectionsΔρmin = 0.22 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7249 (6)0.4173 (2)0.2123 (2)0.0456 (11)
H110.62270.42900.23650.055*
N20.5366 (5)0.2363 (2)0.1733 (2)0.0418 (10)
H210.42330.23970.19090.050*
H220.62920.26110.20840.050*
N30.8016 (5)0.1650 (2)0.3153 (2)0.0414 (10)
H310.90710.16040.29180.050*
N40.9882 (5)0.3461 (3)0.3557 (2)0.0434 (10)
H410.90660.31870.31750.052*
H421.09600.34100.33390.052*
C10.6795 (8)0.4357 (3)0.1219 (3)0.0552 (15)
H1A0.79380.42010.09470.066*
H1B0.65150.50280.11290.066*
C20.5032 (7)0.3779 (4)0.0822 (3)0.0567 (15)
H2A0.39020.39280.11050.068*
H2B0.47090.39640.02380.068*
C30.5392 (7)0.2717 (4)0.0867 (3)0.0526 (14)
H3A0.43770.23950.04880.063*
H3B0.66620.25750.06890.063*
C40.5882 (7)0.1337 (3)0.1843 (3)0.0531 (14)
H4A0.70300.11960.15700.064*
H4B0.47890.09500.15850.064*
C50.6317 (7)0.1110 (3)0.2767 (3)0.0535 (14)
H5A0.51750.12630.30400.064*
H5B0.65820.04360.28400.064*
C60.8527 (8)0.1452 (4)0.4051 (3)0.0612 (15)
H6A0.88300.07820.41270.073*
H6B0.73950.15920.43350.073*
C71.0288 (8)0.2034 (4)0.4450 (3)0.0596 (15)
H7A1.06240.18390.50310.071*
H7B1.14140.18950.41610.071*
C80.9932 (8)0.3095 (4)0.4424 (3)0.0559 (14)
H8A0.86860.32340.46250.067*
H8B1.09770.34120.47920.067*
C90.9384 (7)0.4482 (3)0.3442 (3)0.0520 (14)
H9A1.04820.48670.36990.062*
H9B0.82370.46300.37140.062*
C100.8954 (7)0.4709 (3)0.2517 (3)0.0513 (14)
H10A0.86970.53840.24440.062*
H10B1.00990.45530.22460.062*
Cl10.08543 (19)0.22997 (10)0.17133 (7)0.0588 (4)
Cl20.4464 (2)0.35637 (10)0.36069 (8)0.0720 (5)
O10.6491 (12)0.0033 (6)0.0003 (5)0.105 (3)0.50
H1O0.63160.03550.03710.157*0.50
H2O0.60300.04080.03700.157*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.042 (2)0.049 (3)0.047 (3)0.002 (2)0.012 (2)0.002 (2)
N20.039 (2)0.047 (3)0.039 (2)0.004 (2)0.002 (2)0.0032 (19)
N30.039 (2)0.043 (3)0.044 (3)0.004 (2)0.011 (2)0.0023 (19)
N40.041 (2)0.054 (3)0.035 (2)0.005 (2)0.005 (2)0.0072 (19)
C10.065 (4)0.051 (4)0.050 (4)0.004 (3)0.012 (3)0.012 (3)
C20.053 (4)0.074 (4)0.041 (3)0.010 (3)0.002 (3)0.011 (3)
C30.049 (3)0.073 (4)0.036 (3)0.002 (3)0.004 (3)0.006 (3)
C40.059 (4)0.043 (4)0.057 (4)0.000 (3)0.006 (3)0.007 (3)
C50.051 (3)0.039 (3)0.073 (4)0.013 (3)0.016 (3)0.001 (3)
C60.064 (4)0.072 (4)0.049 (4)0.002 (3)0.012 (3)0.012 (3)
C70.061 (4)0.075 (4)0.041 (3)0.008 (3)0.003 (3)0.015 (3)
C80.055 (4)0.076 (4)0.034 (3)0.001 (3)0.001 (3)0.003 (3)
C90.047 (3)0.041 (3)0.066 (4)0.005 (3)0.004 (3)0.007 (3)
C100.049 (3)0.039 (3)0.067 (4)0.003 (3)0.012 (3)0.009 (3)
Cl10.0451 (8)0.0785 (10)0.0542 (9)0.0012 (7)0.0115 (7)0.0022 (7)
Cl20.0491 (9)0.0979 (12)0.0713 (10)0.0110 (8)0.0162 (8)0.0200 (8)
O10.111 (7)0.116 (7)0.088 (6)0.008 (6)0.020 (6)0.047 (5)
Geometric parameters (Å, º) top
N1—C101.457 (6)C3—H3B0.9700
N1—C11.466 (5)C4—C51.508 (6)
N1—H110.8600C4—H4A0.9700
N2—C31.479 (5)C4—H4B0.9700
N2—C41.491 (5)C5—H5A0.9700
N2—H210.8600C5—H5B0.9700
N2—H220.8600C6—C71.522 (6)
N3—C51.453 (5)C6—H6A0.9700
N3—C61.463 (5)C6—H6B0.9700
N3—H310.8601C7—C81.512 (6)
N4—C81.480 (5)C7—H7A0.9700
N4—C91.483 (5)C7—H7B0.9700
N4—H410.8600C8—H8A0.9700
N4—H420.8600C8—H8B0.9700
C1—C21.519 (6)C9—C101.507 (6)
C1—H1A0.9700C9—H9A0.9700
C1—H1B0.9700C9—H9B0.9700
C2—C31.515 (6)C10—H10A0.9700
C2—H2A0.9700C10—H10B0.9700
C2—H2B0.9700O1—H1O0.8253
C3—H3A0.9700O1—H2O0.8266
C10—N1—C1112.8 (4)C5—C4—H4B109.8
C10—N1—H11110.7H4A—C4—H4B108.2
C1—N1—H11109.8N3—C5—C4110.3 (4)
C3—N2—C4113.8 (3)N3—C5—H5A109.6
C3—N2—H21114.6C4—C5—H5A109.6
C4—N2—H21102.9N3—C5—H5B109.6
C3—N2—H22112.1C4—C5—H5B109.6
C4—N2—H22100.0H5A—C5—H5B108.1
H21—N2—H22112.2N3—C6—C7112.4 (4)
C5—N3—C6112.9 (4)N3—C6—H6A109.1
C5—N3—H31116.2C7—C6—H6A109.1
C6—N3—H31108.4N3—C6—H6B109.1
C8—N4—C9115.4 (3)C7—C6—H6B109.1
C8—N4—H41116.4H6A—C6—H6B107.9
C9—N4—H41103.3C8—C7—C6113.9 (4)
C8—N4—H42116.2C8—C7—H7A108.8
C9—N4—H42103.0C6—C7—H7A108.8
H41—N4—H42100.4C8—C7—H7B108.8
N1—C1—C2111.6 (4)C6—C7—H7B108.8
N1—C1—H1A109.3H7A—C7—H7B107.7
C2—C1—H1A109.3N4—C8—C7110.6 (4)
N1—C1—H1B109.3N4—C8—H8A109.5
C2—C1—H1B109.3C7—C8—H8A109.5
H1A—C1—H1B108.0N4—C8—H8B109.5
C3—C2—C1113.2 (4)C7—C8—H8B109.5
C3—C2—H2A108.9H8A—C8—H8B108.1
C1—C2—H2A108.9N4—C9—C10109.8 (4)
C3—C2—H2B108.9N4—C9—H9A109.7
C1—C2—H2B108.9C10—C9—H9A109.7
H2A—C2—H2B107.7N4—C9—H9B109.7
N2—C3—C2110.7 (4)C10—C9—H9B109.7
N2—C3—H3A109.5H9A—C9—H9B108.2
C2—C3—H3A109.5N1—C10—C9110.8 (4)
N2—C3—H3B109.5N1—C10—H10A109.5
C2—C3—H3B109.5C9—C10—H10A109.5
H3A—C3—H3B108.1N1—C10—H10B109.5
N2—C4—C5109.5 (4)C9—C10—H10B109.5
N2—C4—H4A109.8H10A—C10—H10B108.1
C5—C4—H4A109.8H1O—O1—H2O149.6
N2—C4—H4B109.8
C10—N1—C1—C2179.2 (4)C5—N3—C6—C7179.1 (4)
N1—C1—C2—C363.7 (5)N3—C6—C7—C862.9 (6)
C4—N2—C3—C2175.0 (4)C9—N4—C8—C7175.4 (4)
C1—C2—C3—N273.6 (5)C6—C7—C8—N471.8 (5)
C3—N2—C4—C5165.8 (4)C8—N4—C9—C10167.9 (4)
C6—N3—C5—C4179.4 (4)C1—N1—C10—C9179.0 (4)
N2—C4—C5—N362.4 (5)N4—C9—C10—N162.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl20.862.673.356 (5)138
N2—H21···Cl10.862.293.077 (5)153
N2—H22···N10.862.292.882 (6)126
N2—H22···N30.862.372.890 (5)119
N3—H31···Cl1i0.862.613.340 (4)143
N4—H41···N10.862.402.899 (5)118
N4—H41···N30.862.282.882 (6)127
N4—H42···Cl2i0.862.383.122 (5)144
O1—H1O···Cl2ii0.832.353.175 (8)175
O1—H2O···Cl2iii0.832.343.160 (8)175
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H26N42+·2Cl·0.5H2O
Mr282.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.827 (7), 14.071 (16), 16.055 (16)
β (°) 97.84 (3)
V3)1528 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.25 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.806, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
8725, 3136, 1280
Rint0.110
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.151, 0.98
No. of reflections3136
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl20.862.673.356 (5)137.8
N2—H21···Cl10.862.293.077 (5)152.5
N2—H22···N10.862.292.882 (6)126.0
N2—H22···N30.862.372.890 (5)119.4
N3—H31···Cl1i0.862.613.340 (4)143.1
N4—H41···N10.862.402.899 (5)117.7
N4—H41···N30.862.282.882 (6)127.4
N4—H42···Cl2i0.862.383.122 (5)144.4
O1—H1O···Cl2ii0.832.353.175 (8)175.2
O1—H2O···Cl2iii0.832.343.160 (8)175.2
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNave, C. & Truter, M. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2351–2354.  CSD CrossRef Web of Science Google Scholar
First citationRobinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287–294.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem. 73, 414–424.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds