organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-6-[(Z)-[(5-methyl-2-pyrid­yl)imino­meth­yl]phenol

aKey Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: fanyuhua301@163.com

(Received 29 July 2009; accepted 11 August 2009; online 15 August 2009)

The title compound, C14H14N2O2, was obtained by a condensation reaction between o-vanillin and 5-methyl­pyridin-2-amine. In the mol­ecule, the dihedral angle between the pyridine and benzene rings is 9.08 (13)°. An intra­molecular hydrogen bond involving the imine N atom and the hydroxyl group may influence the conformation of the mol­ecule. The crystal structure is stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For general background to the use of Schiff bases as ligands in coordination chemistry, see: Yamada, (1999[Yamada, S. (1999). Coord. Chem. Rev. 192, 537-555.]). For their biological activity, see: Yang et al. (2000[Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599-2604.]). For a related structure, see: Dal et al. (2007[Dal, H., Suzen, Y. & Sahin, E. (2007). Spectrochim. Acta Part A, 67, 808-814.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O2

  • Mr = 242.27

  • Monoclinic, P 21 /c

  • a = 11.5995 (6) Å

  • b = 4.9546 (2) Å

  • c = 23.9983 (12) Å

  • β = 117.6090 (4)°

  • V = 1222.15 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.42 × 0.10 × 0.10 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.991

  • 13275 measured reflections

  • 2806 independent reflections

  • 1822 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.198

  • S = 1.03

  • 2806 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.84 2.5587 (19) 146
C3—H3⋯O2i 0.93 2.64 3.567 (3) 175
C4—H4⋯O1i 0.93 2.66 3.282 (2) 125
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are used extensively as ligands in the field of coordination chemistry (Yamada, 1999), and thay have diverse biological activities, such as antibacterial and antitumor activities (Yang et al., 2000). An example of the crystal structure of one such compound, 2-[(1E)-2-aza-2-(5-methyl(2-pyridyl)ethenyl)]-4-bromobenzen-1-ol, is available in the literature (Dal et al., 2007). Herein, the crystal structure of the title compound is presented.

The molecular structure of the title compound is shown in Fig. 1. The molecule contains two aromatic rings linked through a imine group. the dihedral angle between the pyridine and the benzene ring is 9.08 (13)°. An intramolecular O—H···N hydrogen bond in the molecular structure is similar to that in the reported structure (Dal et al., 2007). The crystal structure is stabilized by very weak C-H···O hydrogen bonds (Fig. 2).

Related literature top

For general background to the use of Schiff bases as ligands in coordination chemistry, see: Yamada, (1999). For their biological activity, see: Yang et al. (2000). For a related structure, see: Dal et al. (2007).

Experimental top

All chemicals were analytical reagent grade and used directly without further purification. O-vanillin (1 mmol, 152.1 mg) was added with stirring to anhydrous ethanol (30 ml) and the mixture was slowly dropped into an anhydrous ethanol solution (15 ml) containing (1 mmol, 108.1 mg) 5-methylpyridin-2-amine at 339 K and was then stirred for 4 h, a red solid then separated out. The product was collected by filtration and washed several times with anhydrous ethanol and dried under vacuum. Red single crystals suitable for X-ray diffraction were obtained after 4 days by slow evaporation at room temperature of an anhydrous ethanol solution of the title compound.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å or 0.96 Å (methyl) and 0.82 Å (hydroxyl) and Uiso(H) =1.2Ueq(C) or 1.2Ueq(Cmethyl and O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
2-Methoxy-6-[(Z)-[(5-methyl-2-pyridyl)iminomethyl]phenol top
Crystal data top
C14H14N2O2F(000) = 512
Mr = 242.27Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2267 reflections
a = 11.5995 (6) Åθ = 3.3–24.6°
b = 4.9546 (2) ŵ = 0.09 mm1
c = 23.9983 (12) ÅT = 296 K
β = 117.6090°Neddle, red
V = 1222.15 (10) Å30.42 × 0.10 × 0.10 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2806 independent reflections
Radiation source: fine-focus sealed tube1822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.963, Tmax = 0.991k = 66
13275 measured reflectionsl = 3130
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1232P)2 + 0.0489P]
where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H14N2O2V = 1222.15 (10) Å3
Mr = 242.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5995 (6) ŵ = 0.09 mm1
b = 4.9546 (2) ÅT = 296 K
c = 23.9983 (12) Å0.42 × 0.10 × 0.10 mm
β = 117.6090°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2806 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1822 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.991Rint = 0.049
13275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
2806 reflectionsΔρmin = 0.22 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3545 (2)1.1391 (4)0.42144 (10)0.0552 (6)
H1A1.43611.05290.43170.083*
H1B1.36461.25600.45530.083*
H1C1.32751.24310.38370.083*
C21.25384 (18)0.9287 (4)0.41151 (9)0.0435 (5)
C31.2184 (2)0.8629 (4)0.45776 (9)0.0518 (5)
H31.25770.94870.49660.062*
C41.1247 (2)0.6699 (4)0.44540 (10)0.0521 (5)
H41.10000.62410.47590.063*
C51.06743 (18)0.5443 (4)0.38751 (9)0.0418 (5)
C61.18963 (19)0.7932 (4)0.35514 (9)0.0470 (5)
H61.21180.83710.32360.056*
C70.92176 (17)0.2020 (4)0.32757 (8)0.0411 (5)
H70.95090.22210.29760.049*
C80.82147 (17)0.0051 (4)0.31741 (8)0.0388 (4)
C90.77601 (18)0.0253 (4)0.36199 (9)0.0420 (5)
C100.67807 (19)0.2169 (4)0.35134 (9)0.0454 (5)
C110.62864 (19)0.3719 (4)0.29787 (9)0.0473 (5)
H110.56420.49860.29100.057*
C120.6744 (2)0.3404 (4)0.25398 (9)0.0477 (5)
H120.63960.44530.21770.057*
C130.76972 (19)0.1575 (4)0.26345 (9)0.0444 (5)
H130.80040.14070.23400.053*
C140.5556 (2)0.4409 (5)0.39416 (11)0.0647 (7)
H14A0.47310.41660.35760.097*
H14B0.54370.43960.43120.097*
H14C0.59260.61050.39130.097*
N11.09794 (16)0.6034 (3)0.34181 (7)0.0468 (4)
N20.97078 (15)0.3485 (3)0.37709 (7)0.0439 (4)
O10.82133 (16)0.1211 (3)0.41479 (7)0.0617 (5)
H10.87220.23520.41450.093*
O20.64070 (16)0.2284 (3)0.39775 (7)0.0662 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0492 (12)0.0508 (13)0.0651 (13)0.0111 (10)0.0261 (10)0.0039 (10)
C20.0383 (10)0.0425 (11)0.0525 (11)0.0024 (8)0.0235 (8)0.0047 (8)
C30.0529 (12)0.0577 (13)0.0463 (11)0.0142 (10)0.0241 (9)0.0060 (9)
C40.0572 (13)0.0622 (13)0.0474 (11)0.0159 (10)0.0330 (10)0.0029 (9)
C50.0396 (10)0.0420 (11)0.0496 (10)0.0038 (8)0.0255 (9)0.0022 (8)
C60.0483 (11)0.0510 (12)0.0521 (11)0.0084 (9)0.0320 (9)0.0024 (9)
C70.0359 (9)0.0466 (11)0.0447 (10)0.0008 (8)0.0220 (8)0.0051 (8)
C80.0368 (10)0.0375 (10)0.0445 (10)0.0010 (7)0.0209 (8)0.0034 (7)
C90.0426 (10)0.0428 (11)0.0457 (10)0.0078 (8)0.0248 (8)0.0038 (8)
C100.0443 (10)0.0465 (11)0.0553 (11)0.0076 (8)0.0314 (9)0.0038 (8)
C110.0422 (10)0.0428 (11)0.0562 (11)0.0065 (8)0.0222 (9)0.0024 (8)
C120.0497 (11)0.0462 (11)0.0452 (10)0.0023 (9)0.0203 (9)0.0047 (8)
C130.0465 (11)0.0476 (12)0.0445 (10)0.0003 (8)0.0255 (9)0.0004 (8)
C140.0669 (15)0.0673 (15)0.0784 (16)0.0255 (12)0.0493 (13)0.0062 (12)
N10.0469 (9)0.0522 (10)0.0478 (9)0.0090 (8)0.0274 (8)0.0010 (7)
N20.0397 (9)0.0464 (10)0.0512 (9)0.0083 (7)0.0257 (7)0.0000 (7)
O10.0707 (10)0.0734 (11)0.0594 (9)0.0352 (8)0.0457 (8)0.0245 (8)
O20.0782 (11)0.0697 (11)0.0738 (10)0.0374 (9)0.0548 (9)0.0209 (8)
Geometric parameters (Å, º) top
C1—C21.500 (3)C8—C131.402 (3)
C1—H1A0.9600C8—C91.403 (2)
C1—H1B0.9600C9—O11.338 (2)
C1—H1C0.9600C9—C101.410 (3)
C2—C61.379 (3)C10—O21.371 (2)
C2—C31.389 (3)C10—C111.372 (3)
C3—C41.373 (3)C11—C121.391 (3)
C3—H30.9300C11—H110.9300
C4—C51.380 (3)C12—C131.365 (3)
C4—H40.9300C12—H120.9300
C5—N11.332 (2)C13—H130.9300
C5—N21.414 (2)C14—O21.418 (2)
C6—N11.342 (2)C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—N21.279 (2)C14—H14C0.9600
C7—C81.450 (3)O1—H10.8200
C7—H70.9300
C2—C1—H1A109.5C9—C8—C7120.01 (16)
C2—C1—H1B109.5O1—C9—C8122.83 (17)
H1A—C1—H1B109.5O1—C9—C10117.82 (16)
C2—C1—H1C109.5C8—C9—C10119.36 (17)
H1A—C1—H1C109.5O2—C10—C11125.75 (17)
H1B—C1—H1C109.5O2—C10—C9114.34 (17)
C6—C2—C3116.38 (17)C11—C10—C9119.91 (18)
C6—C2—C1121.39 (17)C10—C11—C12120.31 (18)
C3—C2—C1122.22 (18)C10—C11—H11119.8
C4—C3—C2119.25 (18)C12—C11—H11119.8
C4—C3—H3120.4C13—C12—C11120.83 (18)
C2—C3—H3120.4C13—C12—H12119.6
C3—C4—C5119.68 (18)C11—C12—H12119.6
C3—C4—H4120.2C12—C13—C8120.16 (17)
C5—C4—H4120.2C12—C13—H13119.9
N1—C5—C4122.84 (17)C8—C13—H13119.9
N1—C5—N2119.77 (17)O2—C14—H14A109.5
C4—C5—N2117.37 (17)O2—C14—H14B109.5
N1—C6—C2125.65 (17)H14A—C14—H14B109.5
N1—C6—H6117.2O2—C14—H14C109.5
C2—C6—H6117.2H14A—C14—H14C109.5
N2—C7—C8120.97 (17)H14B—C14—H14C109.5
N2—C7—H7119.5C5—N1—C6116.19 (16)
C8—C7—H7119.5C7—N2—C5121.88 (16)
C13—C8—C9119.41 (17)C9—O1—H1109.5
C13—C8—C7120.57 (17)C10—O2—C14117.02 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.842.5587 (19)146
C3—H3···O2i0.932.643.567 (3)175
C4—H4···O1i0.932.663.282 (2)125
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N2O2
Mr242.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.5995 (6), 4.9546 (2), 23.9983 (12)
β (°) 117.6090
V3)1222.15 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.10 × 0.10
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
13275, 2806, 1822
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.198, 1.03
No. of reflections2806
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.842.5587 (19)146.0
C3—H3···O2i0.932.643.567 (3)175.3
C4—H4···O1i0.932.663.282 (2)124.7
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the National Basic Science Personnel Training Fund, administered by the Oceanographic Base of Ocean University of China, for its financial support for this project (grant No. J0730530).

References

First citationDal, H., Suzen, Y. & Sahin, E. (2007). Spectrochim. Acta Part A, 67, 808–814.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 192, 537–555.  CrossRef Google Scholar
First citationYang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds