organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,3,3,5,5,6,6-Octa-p-tolyl-1,4-dioxa-2,3,5,6-tetra­germa­cyclo­hexane di­chloro­methane disolvate

aDepartment of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA, and bDepartment of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92092-0303, USA
*Correspondence e-mail: weinert@chem.okstate.edu

(Received 31 July 2009; accepted 12 August 2009; online 19 August 2009)

The title compound, C56H56Ge4O2·2CH2Cl2 or Tol8Ge4O2·2CH2Cl2 (Tol = p-CH3C6H4), was obtained serendipitously during the attempted synthesis of a branched oligogermane from Tol3GeNMe2 and PhGeH3. The mol­ecule contains an inversion center in the middle of the Ge4O2 ring which is in a chair conformation. The Ge—Ge bond distance is 2.4418 (5) Å and the Ge—O bond distances are 1.790 (2) and 1.785 (2) Å. The torsion angles within the Ge4O2 ring are −56.7 (1) and 56.1 (1)° for the Ge—Ge—O—Ge angles and −43.9 (1)° for the O—Ge—Ge—O angle.

Related literature

The related phenyl-substituted derivative Ph8Ge4O2 (Dräger & Häberle, 1985[Dräger, M. & Häberle, K. (1985). J. Organomet. Chem. 280, 183-196.]) is essentially isostructural with the title compound.

[Scheme 1]

Experimental

Crystal data
  • C56H56Ge4O2·2CH2Cl2

  • Mr = 1221.22

  • Triclinic, [P \overline 1]

  • a = 10.781 (1) Å

  • b = 11.905 (1) Å

  • c = 12.295 (1) Å

  • α = 110.941 (1)°

  • β = 94.766 (1)°

  • γ = 109.069 (1)°

  • V = 1356.8 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.43 mm−1

  • T = 123 K

  • 0.33 × 0.33 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.471, Tmax = 0.558

  • 12912 measured reflections

  • 5003 independent reflections

  • 4484 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.128

  • S = 1.04

  • 5003 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The molecular structure of (1) is shown in Fig. 1. The molecule adopts approximate C2 h symmetry and has an inversion center located in the center of the Ge4O2 ring. The six- membered ring adopts a chair-like conformation analagous to that of its carbon-containing congener, 1,4-dioxane. The crystal structure of (1) can be compared to the essentially isostructural perphenyl-substituted derivative Ph8Ge4O2 (2) (Dräger et al., 1985). The Ge-O distances of 1.790 (2) and 1.785 (2) Å in (1), are the same within experimental error as those in (2) (1.786 (1) and 1.781 (2) Å). The Ge - Ge single bond distance in (1) is 2.4418 (5) Å and is slightly shorter than that in (2) (2.448 (1) Å). The Ge1-C21 bond distance of 1.953 (3) Å is elongated relative to the remaining three Ge - Cipso bonds, which are all the same within experimental error. The Ge - Cipso bonds are nearly identical to those in the phenyl-substituted derivative (2).

The Ge1-O1-Ge2i [symmetry code: (i) -x, -y, -z+1] angle of 126.7 (1) ° in (1) is the same, within experimental error, as that in (2) (126.9 (1) °), while the Ge1-Ge2-O1i angle of 106.20 (8) ° is slightly smaller than that in (2) (106.7 (1)°). However, the Ge2-Ge1-O1 angle in (1) of 104.82 (8) °, is significantly smaller than that in (2) (106.7 (1) °). The torsion angles within the Ge4O2 ring in (1) are significantly different than those in (2). The Ge1-Ge2-O1i-Ge1i, Ge2i-O1-Ge1-Ge2, and O1-Ge1-Ge2-O1i torsion angles are -56.7 (1), -56.1 (1), and 43.9 (1) ° (respectively), while the corresponding torsion angles in (2) are -53.1 (1), -53.1 (1), and 41.9 (1) °.

Part of the crystal structure is shown in Fig. 2. One germanium atom of two of the four symmetry related molecules shown lies within the selected unit cell, while a germanium atom and an oxygen atom in the remaining two molecules lie within this unit cell. The distances between the centroids of the Ge4O2 rings are 10.78 (1) Å parallel to the a axis and 111.91 (1) Å parallel to the b axis.

Related literature top

The related phenyl-substituted derivative Ph8Ge4O2 (Dräger et al., 1985) is essentially isostructural with the title compound.

Experimental top

The title compound (1) was unexpectedly obtained during the attempted preparation of (Tol3Ge)3GePh (Tol = pCH3C6H4) from Tol3GeNMe2 and PhGeH3. The crude reaction mixture was recrystallized from dichloromethane which yielded a three X-ray quality crystals, all of which were determined to be compound (1).

Refinement top

All hydrogen atoms were placed in calculated positions using a riding- model. Their positions were constrained realtive to their parent atom using the appropriate HFIX instruction in SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), with displacement ellipsoids drawn at the 50% probability level. Primed atoms are related by the symmetry operator (-x, -y, -z+1).
[Figure 2] Fig. 2. Part of the crystal structure of (1), viewed approximately along the c axis.
2,2,3,3,5,5,6,6-Octa-p-tolyl-1,4-dioxa-2,3,5,6- tetragermacyclohexane dichloromethane disolvate top
Crystal data top
C56H56Ge4O2·2CH2Cl2Z = 1
Mr = 1221.22F(000) = 620
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.781 (1) ÅCell parameters from 3385 reflections
b = 11.905 (1) Åθ = 2.4–25.5°
c = 12.295 (1) ŵ = 2.43 mm1
α = 110.941 (1)°T = 123 K
β = 94.766 (1)°Block, colorless
γ = 109.069 (1)°0.33 × 0.33 × 0.24 mm
V = 1356.8 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5003 independent reflections
Radiation source: fine-focus sealed tube4484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1213
Tmin = 0.471, Tmax = 0.558k = 1414
12912 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.085P)2 + 1.7P]
where P = (Fo2 + 2Fc2)/3
5003 reflections(Δ/σ)max = 0.010
307 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C56H56Ge4O2·2CH2Cl2γ = 109.069 (1)°
Mr = 1221.22V = 1356.8 (2) Å3
Triclinic, P1Z = 1
a = 10.781 (1) ÅMo Kα radiation
b = 11.905 (1) ŵ = 2.43 mm1
c = 12.295 (1) ÅT = 123 K
α = 110.941 (1)°0.33 × 0.33 × 0.24 mm
β = 94.766 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5003 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4484 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.558Rint = 0.026
12912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.04Δρmax = 0.69 e Å3
5003 reflectionsΔρmin = 0.69 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.13908 (3)0.12172 (3)0.54987 (3)0.01478 (13)
Ge20.05411 (3)0.15168 (3)0.47168 (3)0.01465 (13)
Cl10.42422 (12)0.66017 (13)0.12064 (10)0.0504 (3)
Cl20.34737 (13)0.62602 (13)0.36550 (12)0.0487 (3)
O10.0976 (2)0.0503 (2)0.6079 (2)0.0176 (5)
C110.3071 (3)0.2118 (3)0.4277 (3)0.0159 (7)
C120.4291 (4)0.2575 (3)0.4579 (3)0.0186 (7)
H12A0.43000.25330.53650.022*
C130.5499 (4)0.3096 (3)0.3745 (3)0.0202 (7)
H13A0.63250.33940.39730.024*
C140.5521 (4)0.3189 (3)0.2584 (3)0.0207 (7)
C150.4299 (4)0.2780 (3)0.2270 (3)0.0216 (8)
H15A0.42970.28600.14730.026*
C160.3080 (4)0.2255 (3)0.3089 (3)0.0179 (7)
H16A0.22550.19900.28500.022*
C170.6840 (4)0.3656 (4)0.1715 (4)0.0301 (9)
H17A0.66640.36620.09440.045*
H17B0.73090.30710.20290.045*
H17C0.74030.45390.16060.045*
C210.1694 (3)0.1603 (3)0.6886 (3)0.0171 (7)
C220.2246 (4)0.2883 (4)0.6779 (3)0.0227 (8)
H22A0.24910.35830.60140.027*
C230.2442 (4)0.3144 (4)0.7784 (3)0.0259 (8)
H23A0.28300.40210.76950.031*
C240.2076 (4)0.2135 (4)0.8919 (3)0.0240 (8)
C250.1539 (4)0.0865 (4)0.9010 (3)0.0238 (8)
H25A0.12940.01620.97730.029*
C260.1353 (4)0.0601 (4)0.8020 (3)0.0214 (7)
H26A0.09870.02780.81100.026*
C270.2218 (5)0.2411 (5)1.0016 (4)0.0352 (10)
H27A0.18590.15891.07290.053*
H27B0.17150.29511.00640.053*
H27C0.31710.28730.99670.053*
C310.2103 (3)0.1027 (3)0.5950 (3)0.0161 (7)
C320.3365 (4)0.0790 (3)0.5677 (3)0.0204 (7)
H32A0.34410.09100.48820.024*
C330.4503 (4)0.0386 (4)0.6537 (3)0.0215 (7)
H33A0.53530.02240.63270.026*
C340.4436 (4)0.0209 (3)0.7708 (3)0.0203 (7)
C350.3173 (4)0.0456 (4)0.7987 (3)0.0220 (8)
H35A0.31030.03560.87780.026*
C360.2015 (4)0.0846 (4)0.7134 (3)0.0215 (8)
H36A0.11680.09900.73480.026*
C370.5681 (4)0.0202 (4)0.8630 (4)0.0298 (9)
H37A0.54440.02780.93980.045*
H37B0.63270.10460.87150.045*
H37C0.60870.04490.83790.045*
C410.0141 (3)0.3236 (3)0.3480 (3)0.0168 (7)
C420.0299 (4)0.3508 (3)0.2284 (3)0.0192 (7)
H42A0.03630.28360.20660.023*
C430.0646 (4)0.4758 (4)0.1403 (3)0.0207 (7)
H43A0.09400.49260.05900.025*
C440.0568 (3)0.5761 (3)0.1697 (3)0.0223 (8)
C450.0114 (4)0.5482 (4)0.2895 (3)0.0234 (8)
H45A0.00490.61550.31110.028*
C460.0242 (4)0.4241 (3)0.3776 (3)0.0196 (7)
H46A0.05570.40700.45860.023*
C470.0987 (4)0.7119 (4)0.0750 (4)0.0312 (9)
H47A0.12810.71340.00320.047*
H47B0.17310.77160.09260.047*
H47C0.02220.73930.07410.047*
C510.3605 (4)0.5477 (4)0.2705 (4)0.0302 (9)
H51A0.27050.48330.27890.036*
H51B0.42070.50030.29440.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0139 (2)0.0158 (2)0.0129 (2)0.00301 (15)0.00181 (15)0.00655 (15)
Ge20.0143 (2)0.0151 (2)0.0125 (2)0.00354 (16)0.00122 (15)0.00574 (15)
Cl10.0304 (6)0.0638 (8)0.0307 (6)0.0060 (6)0.0030 (5)0.0020 (5)
Cl20.0510 (7)0.0538 (7)0.0555 (7)0.0164 (6)0.0221 (6)0.0391 (6)
O10.0207 (13)0.0147 (12)0.0147 (12)0.0039 (10)0.0037 (10)0.0058 (9)
C110.0143 (17)0.0165 (16)0.0146 (16)0.0039 (13)0.0026 (13)0.0058 (13)
C120.0185 (18)0.0235 (18)0.0146 (16)0.0067 (15)0.0077 (14)0.0089 (14)
C130.0158 (17)0.0209 (18)0.0232 (18)0.0033 (14)0.0070 (14)0.0111 (15)
C140.0187 (18)0.0153 (17)0.0240 (18)0.0022 (14)0.0007 (15)0.0085 (14)
C150.0235 (19)0.0221 (18)0.0168 (17)0.0052 (15)0.0025 (15)0.0090 (15)
C160.0161 (17)0.0196 (17)0.0170 (17)0.0037 (14)0.0051 (14)0.0090 (14)
C170.018 (2)0.036 (2)0.033 (2)0.0020 (17)0.0019 (17)0.0200 (18)
C210.0119 (16)0.0227 (18)0.0175 (17)0.0044 (14)0.0029 (13)0.0112 (14)
C220.026 (2)0.0223 (18)0.0194 (18)0.0079 (16)0.0033 (15)0.0092 (15)
C230.027 (2)0.025 (2)0.031 (2)0.0073 (16)0.0075 (17)0.0185 (17)
C240.0197 (19)0.036 (2)0.0212 (18)0.0120 (17)0.0053 (15)0.0158 (17)
C250.023 (2)0.030 (2)0.0165 (17)0.0112 (16)0.0039 (15)0.0070 (15)
C260.0202 (19)0.0221 (18)0.0193 (18)0.0043 (15)0.0043 (14)0.0091 (15)
C270.035 (2)0.052 (3)0.028 (2)0.018 (2)0.0097 (18)0.025 (2)
C310.0153 (17)0.0155 (16)0.0166 (17)0.0063 (14)0.0034 (13)0.0053 (13)
C320.0214 (19)0.0222 (18)0.0169 (17)0.0076 (15)0.0050 (14)0.0079 (14)
C330.0175 (18)0.0218 (18)0.0262 (19)0.0053 (15)0.0059 (15)0.0127 (15)
C340.0183 (18)0.0168 (17)0.0217 (18)0.0039 (14)0.0023 (14)0.0073 (14)
C350.0220 (19)0.0275 (19)0.0163 (17)0.0077 (16)0.0022 (14)0.0109 (15)
C360.0194 (19)0.0264 (19)0.0185 (18)0.0058 (15)0.0054 (15)0.0111 (15)
C370.021 (2)0.035 (2)0.028 (2)0.0066 (17)0.0039 (16)0.0133 (18)
C410.0137 (17)0.0174 (17)0.0168 (17)0.0045 (14)0.0044 (13)0.0053 (14)
C420.0178 (18)0.0204 (17)0.0186 (17)0.0042 (14)0.0004 (14)0.0107 (14)
C430.0148 (17)0.0275 (19)0.0150 (17)0.0065 (15)0.0020 (14)0.0052 (14)
C440.0112 (17)0.0187 (18)0.029 (2)0.0027 (14)0.0038 (15)0.0036 (15)
C450.024 (2)0.0192 (18)0.028 (2)0.0064 (15)0.0054 (16)0.0123 (16)
C460.0174 (18)0.0219 (18)0.0175 (17)0.0054 (15)0.0012 (14)0.0085 (14)
C470.025 (2)0.022 (2)0.035 (2)0.0076 (17)0.0021 (17)0.0014 (17)
C510.034 (2)0.022 (2)0.029 (2)0.0070 (17)0.0054 (18)0.0082 (16)
Geometric parameters (Å, º) top
Ge1—O11.790 (2)C26—H26A0.950
Ge1—C211.945 (3)C27—H27A0.979
Ge1—C111.953 (3)C27—H27B0.980
Ge1—Ge22.4418 (5)C27—H27C0.979
Ge2—O1i1.785 (2)C32—H32A0.951
Ge2—C411.944 (3)C33—H33A0.950
Ge2—C311.943 (3)C35—H35A0.949
Cl1—C511.756 (4)C36—H36A0.950
Cl2—C511.758 (4)C37—H37A0.979
O1—Ge2i1.785 (2)C37—H37B0.980
C11—C121.386 (5)C37—H37C0.980
C11—C161.410 (5)C42—H42A0.950
C12—C131.389 (5)C43—H43A0.950
C13—C141.389 (5)C45—H45A0.950
C14—C151.387 (5)C46—H46A0.950
C14—C171.510 (5)C47—H47A0.979
C15—C161.388 (5)C47—H47B0.981
C21—C261.393 (5)C47—H47C0.981
C21—C221.394 (5)C12—H12A0.951
C22—C231.394 (5)C13—H13A0.951
C23—C241.395 (6)C15—H15A0.950
C24—C251.390 (5)C16—H16A0.950
C24—C271.505 (5)C17—H17A0.980
C25—C261.376 (5)C17—H17B0.980
C31—C321.391 (5)C17—H17C0.980
C31—C361.410 (5)C22—H22A0.951
C32—C331.375 (5)C23—H23A0.950
C33—C341.390 (5)C25—H25A0.950
C34—C351.395 (5)C26—H26A0.950
C34—C371.500 (5)C27—H27A0.979
C35—C361.388 (5)C27—H27B0.980
C41—C421.391 (5)C27—H27C0.979
C41—C461.402 (5)C32—H32A0.951
C42—C431.394 (5)C33—H33A0.950
C43—C441.391 (5)C35—H35A0.949
C44—C451.395 (5)C36—H36A0.950
C44—C471.505 (5)C37—H37A0.979
C45—C461.386 (5)C37—H37B0.980
C12—H12A0.951C37—H37C0.980
C13—H13A0.951C42—H42A0.950
C15—H15A0.950C43—H43A0.950
C16—H16A0.950C45—H45A0.950
C17—H17A0.980C46—H46A0.950
C17—H17B0.980C47—H47A0.979
C17—H17C0.980C47—H47B0.981
C22—H22A0.951C47—H47C0.981
C23—H23A0.950C51—H51A0.990
C25—H25A0.950C51—H51B0.989
O1—Ge1—C21102.6 (1)H33A—C33—C34119.3
O1—Ge1—C11109.6 (1)C34—C35—H35A119.2
C21—Ge1—C11109.1 (1)H35A—C35—C36119.2
O1—Ge1—Ge2104.82 (8)C31—C36—H36A120.2
C21—Ge1—Ge2116.8 (1)C35—C36—H36A120.1
C11—Ge1—Ge2113.1 (1)C34—C37—H37A109.5
O1i—Ge2—C41102.3 (1)C34—C37—H37B109.5
O1i—Ge2—C31108.8 (1)C34—C37—H37C109.5
C41—Ge2—C31110.5 (1)H37A—C37—H37B109.5
O1i—Ge2—Ge1106.20 (8)H37A—C37—H37C109.5
C41—Ge2—Ge1114.5 (1)H37B—C37—H37C109.4
C31—Ge2—Ge1113.7 (1)C41—C42—H42A119.7
Ge2i—O1—Ge1126.7 (1)H42A—C42—C43119.8
C12—C11—C16118.6 (3)C42—C43—H43A119.5
C12—C11—Ge1120.3 (2)H43A—C43—C44119.6
C16—C11—Ge1121.0 (3)C44—C45—H45A119.4
C13—C12—C11120.7 (3)H45A—C45—C46119.4
C12—C13—C14121.1 (3)C41—C46—H46A119.8
C13—C14—C15118.1 (3)C45—C46—H46A119.8
C13—C14—C17120.6 (3)C44—C47—H47A109.5
C15—C14—C17121.2 (3)C44—C47—H47B109.4
C16—C15—C14121.7 (3)C44—C47—H47C109.5
C15—C16—C11119.6 (3)H47A—C47—H47B109.5
C26—C21—C22118.2 (3)H47A—C47—H47C109.5
C26—C21—Ge1120.6 (3)H47B—C47—H47C109.4
C22—C21—Ge1121.2 (3)C11—C12—H12A119.6
C21—C22—C23120.5 (3)H12A—C12—C13119.7
C22—C23—C24120.9 (4)C12—C13—H13A119.4
C25—C24—C23117.8 (3)H13A—C13—C14119.5
C25—C24—C27121.0 (4)C14—C15—H15A119.1
C23—C24—C27121.2 (4)H15A—C15—C16119.2
C26—C25—C24121.5 (3)C11—C16—H16A120.1
C25—C26—C21121.0 (3)C15—C16—H16A120.2
C32—C31—C36118.4 (3)C14—C17—H17A109.4
C32—C31—Ge2119.4 (2)C14—C17—H17B109.5
C36—C31—Ge2122.2 (3)C14—C17—H17C109.5
C33—C32—C31121.1 (3)H17A—C17—H17B109.5
C32—C33—C34121.3 (3)H17A—C17—H17C109.4
C33—C34—C35117.9 (3)H17B—C17—H17C109.5
C33—C34—C37120.8 (3)C21—C22—H22A119.7
C35—C34—C37121.3 (3)H22A—C22—C23119.8
C36—C35—C34121.6 (3)C22—C23—H23A119.5
C35—C36—C31119.7 (3)H23A—C23—C24119.5
C42—C41—C46118.6 (3)C24—C25—H25A119.3
C42—C41—Ge2120.6 (3)H25A—C25—C26119.2
C46—C41—Ge2120.8 (2)C21—C26—H26A119.4
C41—C42—C43120.6 (3)C25—C26—H26A119.6
C44—C43—C42120.9 (3)C24—C27—H27A109.4
C43—C44—C45118.3 (3)C24—C27—H27B109.4
C43—C44—C47120.9 (3)C24—C27—H27C109.5
C45—C44—C47120.7 (3)H27A—C27—H27B109.5
C46—C45—C44121.1 (3)H27A—C27—H27C109.5
C45—C46—C41120.5 (3)H27B—C27—H27C109.5
Cl2—C51—Cl1111.2 (2)C31—C32—H32A119.4
C11—C12—H12A119.6H32A—C32—C33119.5
H12A—C12—C13119.7C32—C33—H33A119.3
C12—C13—H13A119.4H33A—C33—C34119.3
H13A—C13—C14119.5C34—C35—H35A119.2
C14—C15—H15A119.1H35A—C35—C36119.2
C14—C15—C16121.7C31—C36—H36A120.2
H15A—C15—C16119.2C35—C36—H36A120.1
C11—C16—H16A120.1C34—C37—H37A109.5
C15—C16—H16A120.2C34—C37—H37B109.5
C14—C17—H17A109.4C34—C37—H37C109.5
C14—C17—H17B109.5H37A—C37—H37B109.5
C14—C17—H17C109.5H37A—C37—H37C109.5
H17A—C17—H17B109.5H37B—C37—H37C109.4
H17A—C17—H17C109.4C41—C42—H42A119.7
H17B—C17—H17C109.5H42A—C42—C43119.8
C21—C22—H22A119.7C42—C43—H43A119.5
H22A—C22—C23119.8H43A—C43—C44119.6
C22—C23—H23A119.5C44—C45—H45A119.4
H23A—C23—C24119.5H45A—C45—C46119.4
C24—C25—H25A119.3C41—C46—H46A119.8
H25A—C25—C26119.2C45—C46—H46A119.8
C21—C26—H26A119.4C44—C47—H47A109.5
C25—C26—H26A119.6C44—C47—H47B109.4
C24—C27—H27A109.4C44—C47—H47C109.5
C24—C27—H27B109.4H47A—C47—H47B109.5
C24—C27—H27C109.5H47A—C47—H47C109.5
H27A—C27—H27B109.5H47B—C47—H47C109.4
H27A—C27—H27C109.5Cl1—C51—H51A109.4
H27B—C27—H27C109.5Cl1—C51—H51B109.5
C31—C32—H32A119.4Cl2—C51—H51A109.4
H32A—C32—C33119.5Cl2—C51—H51B109.4
C32—C33—H33A119.3H51A—C51—H51B108.0
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC56H56Ge4O2·2CH2Cl2
Mr1221.22
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)10.781 (1), 11.905 (1), 12.295 (1)
α, β, γ (°)110.941 (1), 94.766 (1), 109.069 (1)
V3)1356.8 (2)
Z1
Radiation typeMo Kα
µ (mm1)2.43
Crystal size (mm)0.33 × 0.33 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.471, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
12912, 5003, 4484
Rint0.026
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.128, 1.04
No. of reflections5003
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.69

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Funding for this work by a CAREER grant from the US National Science Foundation (CHE-0844758) is gratefully acknowledged.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDräger, M. & Häberle, K. (1985). J. Organomet. Chem. 280, 183–196.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds