organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Meth­­oxy-4-[3-(2-methyl-4-nitro-1H-imidazol-1-yl)prop­­oxy]benzaldehyde

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China, and bSchool of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 2 August 2009; accepted 12 August 2009; online 15 August 2009)

In the title mol­ecule, C15H17N3O5, the dihedral angle between the benzene and imidazole rings is 3.69 (2)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds and ππ stacking inter­actions with a centroid–centroid distance of 3.614 (1) Å.

Related literature

For general background to the biological activity of nitro­imidazole and its derivatives, see:Demirayak et al. (1999[Demirayak, S., Karaburun, A. C. & Kiraz, N. (1999). Eur. J. Med. Chem. 34, 275-278.]); Huang et al. (2007[Huang, J. & Zhou, C. H. (2007). Chin. Clin. J. Tradit. Chin. West. Med. 7, 538-542.]); Olender et al. (2009[Olender, D., Zwawiak, J., Lukianchuk, V., Lesyk, R., Kropacz, A., Fojutowski, A. & Zaprutko, L. (2009). Eur. J. Med. Chem. 44, 645-652.]). For the synthetic procedure, see: Khalafi-Nezhad et al. (2005[Khalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931-1938.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N3O5

  • Mr = 319.32

  • Monoclinic, P 21 /n

  • a = 9.4885 (14) Å

  • b = 13.048 (2) Å

  • c = 12.745 (2) Å

  • β = 101.120 (3)°

  • V = 1548.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.28 × 0.24 × 0.2 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.979

  • 7761 measured reflections

  • 3329 independent reflections

  • 2329 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.130

  • S = 1.03

  • 3329 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O4i 0.98 2.58 3.415 (3) 144
C8—H8⋯O4ii 0.95 2.51 3.229 (2) 133
C10—H10B⋯O2iii 0.99 2.56 3.312 (2) 133
C10—H10A⋯O1iv 0.99 2.58 3.461 (2) 148
C14—H14⋯O1iv 0.95 2.29 3.166 (2) 153
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x, -y+1, -z; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIADMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Nitroimidazole and its derivatives possess several biological activities such as radiosensitizer, anti-tuberculosis and antimicrobial (Demirayak et al., 1999; Huang et al., 2007; Olender et al., 2009). In view of the therapeutic potentials of nitroimidazole derivatives, we are interested in the research and development of nitroimidazole compounds as drugs. Herein we report the crystal structure of the title compound (I).

The stucture of the title compound (I) is shown in Fig 1. In the molecule the dihedral angle between the benzene and imidazole rings is 3.69 (2)°. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds and significant ππ stacking interactions with a centroid to centroid ditance of 3.614 (1)Å between benzene and imidazole rings related by the symmetry operator (1/2-x, 1/2+y, 1/2-z).

Related literature top

For general background to the biological activity of nitroimidazole and its derivatives, see:Demirayak et al. (1999); Huang et al. (2007); Olender et al. (2009). For the synthetic procedure, see: Khalafi-Nezhad et al. (2005).

Experimental top

Compound (I) was synthesized according to the procedure of Khalafi-Nezhad et al. (2005). Single crystals used in X-ray diffraction studies were grown by slow evaporation at room temperature of solutions of (I) in ethyl acetate and dichlormethane mixtures.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.95Å (aromatic), 0.99Å (methylene) and 0.98Å (methyl) with Uiso(H) = 1.2Ueq(C) (aromatic and methylene C) or 1.5Ueq(C) (methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
3-Methoxy-4-[3-(2-methyl-4-nitro-1H-imidazol-1-yl)propoxy]benzaldehyde top
Crystal data top
C15H17N3O5F(000) = 672
Mr = 319.32Dx = 1.370 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3149 reflections
a = 9.4885 (14) Åθ = 2.3–26.9°
b = 13.048 (2) ŵ = 0.10 mm1
c = 12.745 (2) ÅT = 173 K
β = 101.120 (3)°Block, colorless
V = 1548.3 (4) Å30.28 × 0.24 × 0.2 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3329 independent reflections
Radiation source: fine-focus sealed tube2329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 712
Tmin = 0.971, Tmax = 0.979k = 1516
7761 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.3992P]
where P = (Fo2 + 2Fc2)/3
3329 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H17N3O5V = 1548.3 (4) Å3
Mr = 319.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4885 (14) ŵ = 0.10 mm1
b = 13.048 (2) ÅT = 173 K
c = 12.745 (2) Å0.28 × 0.24 × 0.2 mm
β = 101.120 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3329 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2329 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.979Rint = 0.022
7761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
3329 reflectionsΔρmin = 0.19 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2645 (2)1.03088 (14)0.03024 (16)0.0502 (5)
H10.23441.09010.00280.060*
C20.21471 (17)0.93177 (12)0.00141 (13)0.0363 (4)
C30.25719 (18)0.84045 (12)0.04102 (14)0.0381 (4)
H30.31930.84210.09120.046*
C40.3482 (2)0.65169 (17)0.1102 (2)0.0691 (7)
H4A0.31070.68820.17690.104*
H4B0.36810.58030.12620.104*
H4C0.43700.68470.07370.104*
C50.20870 (17)0.74857 (12)0.00975 (13)0.0346 (4)
C60.11391 (16)0.74686 (11)0.06315 (12)0.0305 (3)
C70.07388 (17)0.83703 (11)0.10519 (13)0.0322 (4)
H70.01140.83590.15510.039*
C80.12529 (17)0.92983 (12)0.07433 (13)0.0347 (4)
H80.09850.99210.10380.042*
C90.01627 (18)0.64126 (12)0.16566 (14)0.0360 (4)
H9A0.10900.67750.14400.043*
H9B0.03440.66990.23460.043*
C100.04042 (17)0.52728 (12)0.17563 (14)0.0378 (4)
H10A0.11070.51520.22250.045*
H10B0.08000.49810.10430.045*
C110.0990 (2)0.47573 (13)0.2218 (2)0.0616 (6)
H11A0.17210.49660.18020.074*
H11B0.13160.49990.29620.074*
C120.16148 (17)0.29675 (13)0.16772 (13)0.0384 (4)
C130.2589 (2)0.33135 (16)0.09670 (16)0.0560 (5)
H13A0.29360.27170.06240.084*
H13B0.34070.36800.13900.084*
H13C0.20660.37720.04170.084*
C140.01304 (17)0.30668 (12)0.28026 (15)0.0403 (4)
H140.04750.33040.32640.048*
C150.04200 (16)0.20834 (11)0.25747 (13)0.0326 (4)
N10.09014 (14)0.36345 (10)0.22222 (12)0.0417 (4)
N20.13429 (14)0.20076 (10)0.18821 (11)0.0346 (3)
N30.01634 (15)0.11998 (11)0.29957 (12)0.0404 (4)
O10.34061 (19)1.04390 (12)0.09476 (13)0.0758 (5)
O20.24432 (13)0.65445 (9)0.04271 (11)0.0493 (4)
O30.06945 (12)0.65190 (8)0.08547 (10)0.0376 (3)
O40.02197 (15)0.03485 (9)0.27613 (12)0.0544 (4)
O50.10418 (15)0.13411 (11)0.35800 (12)0.0611 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0631 (12)0.0379 (10)0.0515 (11)0.0115 (8)0.0156 (10)0.0021 (8)
C20.0422 (9)0.0306 (8)0.0360 (9)0.0055 (7)0.0074 (7)0.0004 (7)
C30.0385 (9)0.0378 (9)0.0404 (9)0.0086 (7)0.0139 (7)0.0058 (7)
C40.0556 (12)0.0577 (13)0.1071 (19)0.0074 (10)0.0486 (13)0.0360 (13)
C50.0327 (8)0.0294 (8)0.0427 (9)0.0027 (6)0.0097 (7)0.0106 (7)
C60.0306 (8)0.0248 (7)0.0355 (8)0.0027 (6)0.0046 (6)0.0010 (6)
C70.0370 (8)0.0285 (8)0.0327 (8)0.0011 (6)0.0106 (7)0.0008 (6)
C80.0420 (9)0.0249 (8)0.0365 (9)0.0012 (6)0.0057 (7)0.0022 (6)
C90.0391 (9)0.0279 (8)0.0435 (9)0.0007 (7)0.0140 (7)0.0017 (7)
C100.0375 (9)0.0284 (8)0.0483 (10)0.0015 (7)0.0106 (7)0.0036 (7)
C110.0487 (11)0.0249 (9)0.0984 (17)0.0025 (8)0.0175 (11)0.0050 (9)
C120.0367 (8)0.0364 (9)0.0391 (9)0.0067 (7)0.0004 (7)0.0046 (7)
C130.0567 (12)0.0595 (12)0.0517 (12)0.0214 (10)0.0102 (10)0.0122 (10)
C140.0356 (8)0.0316 (9)0.0529 (11)0.0045 (7)0.0065 (8)0.0035 (8)
C150.0321 (8)0.0273 (8)0.0384 (9)0.0018 (6)0.0068 (7)0.0007 (6)
N10.0360 (8)0.0254 (7)0.0597 (10)0.0008 (6)0.0008 (7)0.0048 (6)
N20.0368 (7)0.0309 (7)0.0370 (7)0.0023 (6)0.0092 (6)0.0003 (6)
N30.0445 (8)0.0319 (7)0.0494 (9)0.0022 (6)0.0202 (7)0.0034 (6)
O10.1041 (12)0.0577 (9)0.0781 (11)0.0285 (9)0.0487 (10)0.0027 (8)
O20.0480 (7)0.0329 (7)0.0749 (9)0.0048 (5)0.0318 (7)0.0182 (6)
O30.0431 (6)0.0236 (6)0.0494 (7)0.0037 (5)0.0176 (5)0.0026 (5)
O40.0732 (9)0.0259 (6)0.0739 (9)0.0032 (6)0.0383 (7)0.0049 (6)
O50.0638 (9)0.0543 (8)0.0784 (10)0.0023 (7)0.0471 (8)0.0018 (7)
Geometric parameters (Å, º) top
C1—O11.207 (2)C9—H9B0.9900
C1—C21.460 (2)C10—C111.499 (2)
C1—H10.9500C10—H10A0.9900
C2—C81.374 (2)C10—H10B0.9900
C2—C31.400 (2)C11—N11.468 (2)
C3—C51.371 (2)C11—H11A0.9900
C3—H30.9500C11—H11B0.9900
C4—O21.428 (2)C12—N21.315 (2)
C4—H4A0.9800C12—N11.371 (2)
C4—H4B0.9800C12—C131.483 (2)
C4—H4C0.9800C13—H13A0.9800
C5—O21.3615 (18)C13—H13B0.9800
C5—C61.412 (2)C13—H13C0.9800
C6—O31.3567 (18)C14—C151.355 (2)
C6—C71.376 (2)C14—N11.356 (2)
C7—C81.390 (2)C14—H140.9500
C7—H70.9500C15—N21.362 (2)
C8—H80.9500C15—N31.428 (2)
C9—O31.4304 (19)N3—O41.2235 (17)
C9—C101.514 (2)N3—O51.2339 (18)
C9—H9A0.9900
O1—C1—C2125.53 (19)C9—C10—H10A109.7
O1—C1—H1117.2C11—C10—H10B109.7
C2—C1—H1117.2C9—C10—H10B109.7
C8—C2—C3120.47 (14)H10A—C10—H10B108.2
C8—C2—C1118.55 (15)N1—C11—C10113.74 (14)
C3—C2—C1120.98 (16)N1—C11—H11A108.8
C5—C3—C2119.63 (15)C10—C11—H11A108.8
C5—C3—H3120.2N1—C11—H11B108.8
C2—C3—H3120.2C10—C11—H11B108.8
O2—C4—H4A109.5H11A—C11—H11B107.7
O2—C4—H4B109.5N2—C12—N1111.65 (15)
H4A—C4—H4B109.5N2—C12—C13125.48 (17)
O2—C4—H4C109.5N1—C12—C13122.86 (16)
H4A—C4—H4C109.5C12—C13—H13A109.5
H4B—C4—H4C109.5C12—C13—H13B109.5
O2—C5—C3125.59 (15)H13A—C13—H13B109.5
O2—C5—C6114.59 (14)C12—C13—H13C109.5
C3—C5—C6119.82 (14)H13A—C13—H13C109.5
O3—C6—C7125.37 (14)H13B—C13—H13C109.5
O3—C6—C5114.55 (13)C15—C14—N1104.31 (15)
C7—C6—C5120.08 (14)C15—C14—H14127.8
C6—C7—C8119.74 (14)N1—C14—H14127.8
C6—C7—H7120.1C14—C15—N2112.96 (14)
C8—C7—H7120.1C14—C15—N3125.07 (15)
C2—C8—C7120.23 (14)N2—C15—N3121.97 (13)
C2—C8—H8119.9C14—N1—C12107.49 (13)
C7—C8—H8119.9C14—N1—C11125.74 (17)
O3—C9—C10105.75 (12)C12—N1—C11126.73 (16)
O3—C9—H9A110.6C12—N2—C15103.59 (13)
C10—C9—H9A110.6O4—N3—O5123.37 (14)
O3—C9—H9B110.6O4—N3—C15119.10 (13)
C10—C9—H9B110.6O5—N3—C15117.52 (13)
H9A—C9—H9B108.7C5—O2—C4116.73 (14)
C11—C10—C9109.72 (14)C6—O3—C9118.76 (12)
C11—C10—H10A109.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O4i0.982.583.415 (3)144
C8—H8···O4ii0.952.513.229 (2)133
C10—H10B···O2iii0.992.563.312 (2)133
C10—H10A···O1iv0.992.583.461 (2)148
C14—H14···O1iv0.952.293.166 (2)153
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17N3O5
Mr319.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.4885 (14), 13.048 (2), 12.745 (2)
β (°) 101.120 (3)
V3)1548.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.24 × 0.2
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
7761, 3329, 2329
Rint0.022
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.130, 1.03
No. of reflections3329
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O4i0.982.583.415 (3)144
C8—H8···O4ii0.952.513.229 (2)133
C10—H10B···O2iii0.992.563.312 (2)133
C10—H10A···O1iv0.992.583.461 (2)148
C14—H14···O1iv0.952.293.166 (2)153
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x1/2, y+3/2, z+1/2.
 

Acknowledgements

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

References

First citationBrandenburg, K. & Putz, H. (1999). DIADMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirayak, S., Karaburun, A. C. & Kiraz, N. (1999). Eur. J. Med. Chem. 34, 275–278.  Web of Science CrossRef CAS Google Scholar
First citationHuang, J. & Zhou, C. H. (2007). Chin. Clin. J. Tradit. Chin. West. Med. 7, 538–542.  Google Scholar
First citationKhalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931–1938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlender, D., Zwawiak, J., Lukianchuk, V., Lesyk, R., Kropacz, A., Fojutowski, A. & Zaprutko, L. (2009). Eur. J. Med. Chem. 44, 645–652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds