organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­anilino)acetohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 August 2009; accepted 20 August 2009; online 26 August 2009)

In the title mol­ecule, C9H13N3O, the non-hydrogen atoms of the hydrazide group are essentially planar [maximum deviation = 0.028 (1) Å for one of the N atoms]. The mean plane of this group forms a dihedral angle of 83.34 (5)° with the plane of the benzene ring. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O, N—H⋯N and weak C—H⋯N hydrogen bonds into a two-dimensional network parallel to the ab plane. Additional stabilization is provided by a weak C—H⋯π inter­action.

Related literature

For the biological activity of hydrazide derivatives, see: Ozdemir et al. (2009[Ozdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enzyme Inhibit. Med. Chem. 24, 825-831.]); Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]). For synthetic applications, see: Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Holla & Udupa (1992[Holla, B. S. & Udupa, K. V. (1992). Farmaco, 47, 305-318.]). For a related structure, see: Zhang & Shi (2009[Zhang, Y.-X. & Shi, Z.-Q. (2009). Acta Cryst. E65, o1538.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C9H13N3O

  • Mr = 179.22

  • Triclinic, [P \overline 1]

  • a = 5.1481 (1) Å

  • b = 5.9262 (2) Å

  • c = 15.4756 (4) Å

  • α = 87.002 (2)°

  • β = 84.282 (2)°

  • γ = 82.849 (2)°

  • V = 465.76 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.52 × 0.15 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.994

  • 11697 measured reflections

  • 2703 independent reflections

  • 2301 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.03

  • 2703 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.875 (17) 2.162 (17) 3.0271 (11) 170.0 (13)
N2—H1N2⋯N3ii 0.887 (17) 2.287 (16) 3.0302 (12) 141.3 (13)
N3—H1N3⋯O1iii 0.901 (14) 2.252 (13) 3.0614 (11) 149.4 (13)
N3—H2N3⋯O1iv 0.914 (14) 2.281 (15) 3.0889 (12) 147.1 (12)
C7—H7B⋯N3v 0.991 (15) 2.545 (14) 3.4341 (14) 149.2 (11)
C9—H9BCgiv 0.96 (2) 2.94 (2) 3.7469 (16) 142.3 (14)
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1. Cg is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In organic chemistry, hydrazides are a class of organic compounds sharing a common functional group characterized by a nitrogen to nitrogen covalent bond with 4 substituents with at least one of them being an acyl group. They are also starting materials for many heterocycles including 1,2,4-triazoles (Isloor et al., 2009; Holla & Udupa, 1992). Many hydrazide derivatives have showed significant biological activities (Ozdemir et al., 2009; Khattab, 2005). In view of the biological and synthetic importance of hydrazides, we hereby report the crystal structure of the title compound (I).

The bond lengths and angles of the title compound (I), (Fig. 1) are comparable to its related structure (Zhang & Shi, 2009). A maximum deviation of 0.028 (1) Å for atom N2 from the mean plane of the hydrazide group form by atoms O1, N2, N3, C7 and C8 indicates that it is essentially coplanar. The mean plane of the hydrazide makes dihedral angle of 83.34 (5)° with C1–C6 benzene ring. In the crystal structure, the molecules are linked by intermolecular N1—H1N1···O1i, N2—H1N2···N3ii, N3—H1N3···O1iii, N3—H2N3···O1iv and C7—H7B···N3v (see Table 1 for symmetry codes) hydrogen bonds into two-dimensional network parallel to ab plane (Fig. 2, Table 1). The crystal structure is also stabilized by a C—H···π interaction (Table 1).

Related literature top

For the biological activity of hydrazide derivatives, see: Ozdemir et al. (2009); Khattab (2005). For synthetic applications, see: Isloor et al. (2009); Holla & Udupa (1992). For a related structure, see: Zhang & Shi (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg is the centroid of the C1–C6 benzene ring.

Experimental top

Ethyl [(4-methylphenyl)amino]acetate (19.3 g, 0.1 mol) and hydrazine hydrate (99%, 0.2 mol) in ethanol (200 ml) was heated on a water-bath for 6 h. Excess of ethanol was removed by distillation. On cooling, colourless block-shaped single crystals of 2-[(4-methylphenyl)amino]acetohydrazide begin to separate (Holla & Udupa, 1992). It was collected by filtration and recrystallized from ethanol. Yield: 13.2 g, 73.7%, M.p. 423–426 K.

Refinement top

All hydrogen atoms were located from the difference Fourier map and refined freely, with N—H = 0.876 (15)–0.912 (15) Å; C–H = 0.96 (2)–1.04 (2) Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of (I), viewed along the b axis, showing the two-dimensional network parallel to ab plane. Intermolecular hydrogen bonds are shown in as dashed lines.
2-(4-Methylanilino)acetohydrazide top
Crystal data top
C9H13N3OZ = 2
Mr = 179.22F(000) = 192
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1481 (1) ÅCell parameters from 6230 reflections
b = 5.9262 (2) Åθ = 2.7–31.2°
c = 15.4756 (4) ŵ = 0.09 mm1
α = 87.002 (2)°T = 100 K
β = 84.282 (2)°Block, colourless
γ = 82.849 (2)°0.52 × 0.15 × 0.07 mm
V = 465.76 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2703 independent reflections
Radiation source: fine-focus sealed tube2301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.956, Tmax = 0.994k = 88
11697 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1344P]
where P = (Fo2 + 2Fc2)/3
2703 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C9H13N3Oγ = 82.849 (2)°
Mr = 179.22V = 465.76 (2) Å3
Triclinic, P1Z = 2
a = 5.1481 (1) ÅMo Kα radiation
b = 5.9262 (2) ŵ = 0.09 mm1
c = 15.4756 (4) ÅT = 100 K
α = 87.002 (2)°0.52 × 0.15 × 0.07 mm
β = 84.282 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2703 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2301 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.994Rint = 0.026
11697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
2703 reflectionsΔρmin = 0.20 e Å3
170 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63005 (14)0.15409 (11)0.39934 (5)0.01915 (17)
N10.43188 (17)0.74133 (14)0.33320 (6)0.01783 (18)
N20.26039 (16)0.39523 (13)0.43209 (5)0.01650 (18)
N30.12716 (17)0.23345 (14)0.48445 (6)0.01765 (18)
C10.1124 (2)0.95874 (17)0.24809 (7)0.0231 (2)
C20.0573 (2)0.9751 (2)0.18340 (8)0.0282 (2)
C30.0748 (2)0.7920 (2)0.13190 (7)0.0280 (2)
C40.0857 (2)0.5915 (2)0.14806 (7)0.0257 (2)
C50.2577 (2)0.57064 (17)0.21309 (7)0.0208 (2)
C60.27314 (19)0.75502 (16)0.26432 (6)0.01770 (19)
C70.62171 (19)0.54434 (16)0.34553 (7)0.01795 (19)
C80.50373 (18)0.34635 (15)0.39460 (6)0.01517 (18)
C90.2624 (3)0.8132 (3)0.06212 (9)0.0405 (3)
H1A0.116 (3)1.091 (3)0.2848 (10)0.031 (4)*
H2A0.167 (3)1.117 (3)0.1751 (11)0.042 (4)*
H4A0.081 (3)0.457 (3)0.1131 (10)0.032 (4)*
H5A0.363 (3)0.424 (3)0.2235 (10)0.031 (4)*
H7A0.713 (3)0.484 (2)0.2916 (9)0.024 (3)*
H7B0.757 (3)0.592 (2)0.3797 (9)0.026 (3)*
H9A0.199 (4)0.895 (4)0.0098 (14)0.070 (6)*
H9B0.435 (4)0.878 (3)0.0840 (13)0.064 (6)*
H9C0.290 (4)0.655 (4)0.0400 (14)0.072 (6)*
H1N10.485 (3)0.869 (3)0.3461 (9)0.029 (4)*
H1N20.185 (3)0.538 (3)0.4343 (9)0.028 (3)*
H1N30.250 (3)0.125 (2)0.5030 (9)0.023 (3)*
H2N30.031 (3)0.167 (2)0.4485 (9)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (3)0.0139 (3)0.0257 (4)0.0010 (2)0.0024 (3)0.0012 (3)
N10.0208 (4)0.0112 (3)0.0219 (4)0.0032 (3)0.0028 (3)0.0005 (3)
N20.0155 (4)0.0110 (3)0.0223 (4)0.0013 (3)0.0001 (3)0.0014 (3)
N30.0159 (4)0.0135 (4)0.0233 (4)0.0029 (3)0.0015 (3)0.0035 (3)
C10.0247 (5)0.0183 (5)0.0246 (5)0.0002 (4)0.0004 (4)0.0021 (4)
C20.0246 (5)0.0294 (6)0.0277 (6)0.0031 (4)0.0008 (4)0.0081 (4)
C30.0224 (5)0.0410 (6)0.0209 (5)0.0083 (4)0.0023 (4)0.0072 (4)
C40.0274 (5)0.0303 (5)0.0210 (5)0.0109 (4)0.0013 (4)0.0011 (4)
C50.0225 (5)0.0183 (4)0.0216 (5)0.0041 (3)0.0006 (4)0.0007 (3)
C60.0178 (4)0.0160 (4)0.0189 (4)0.0033 (3)0.0006 (3)0.0015 (3)
C70.0156 (4)0.0158 (4)0.0222 (5)0.0027 (3)0.0004 (3)0.0010 (3)
C80.0156 (4)0.0140 (4)0.0165 (4)0.0020 (3)0.0032 (3)0.0019 (3)
C90.0291 (7)0.0679 (10)0.0258 (6)0.0130 (6)0.0079 (5)0.0127 (6)
Geometric parameters (Å, º) top
O1—C81.2421 (11)C2—H2A0.962 (17)
N1—C61.3995 (13)C3—C41.3867 (17)
N1—C71.4437 (12)C3—C91.5094 (17)
N1—H1N10.876 (15)C4—C51.3961 (15)
N2—C81.3313 (12)C4—H4A0.988 (15)
N2—N31.4205 (11)C5—C61.3978 (14)
N2—H1N20.886 (15)C5—H5A0.979 (15)
N3—H1N30.902 (14)C7—C81.5213 (13)
N3—H2N30.912 (15)C7—H7A0.978 (14)
C1—C21.3850 (16)C7—H7B0.989 (14)
C1—C61.4022 (13)C9—H9A0.97 (2)
C1—H1A0.993 (15)C9—H9B0.96 (2)
C2—C31.3963 (18)C9—H9C1.04 (2)
C6—N1—C7120.37 (8)C4—C5—C6120.25 (10)
C6—N1—H1N1115.9 (10)C4—C5—H5A119.3 (9)
C7—N1—H1N1113.7 (10)C6—C5—H5A120.4 (9)
C8—N2—N3122.60 (8)C5—C6—N1122.90 (9)
C8—N2—H1N2120.9 (10)C5—C6—C1118.06 (10)
N3—N2—H1N2115.5 (10)N1—C6—C1118.97 (9)
N2—N3—H1N3107.5 (9)N1—C7—C8113.36 (8)
N2—N3—H2N3106.4 (9)N1—C7—H7A114.3 (8)
H1N3—N3—H2N3107.4 (12)C8—C7—H7A106.5 (8)
C2—C1—C6120.65 (10)N1—C7—H7B107.1 (8)
C2—C1—H1A119.7 (9)C8—C7—H7B108.4 (8)
C6—C1—H1A119.6 (9)H7A—C7—H7B107.0 (12)
C1—C2—C3121.82 (10)O1—C8—N2123.22 (9)
C1—C2—H2A118.2 (10)O1—C8—C7121.37 (9)
C3—C2—H2A120.0 (10)N2—C8—C7115.40 (8)
C4—C3—C2117.19 (10)C3—C9—H9A113.1 (13)
C4—C3—C9121.88 (12)C3—C9—H9B111.3 (12)
C2—C3—C9120.92 (12)H9A—C9—H9B111.5 (17)
C3—C4—C5122.03 (10)C3—C9—H9C112.3 (12)
C3—C4—H4A120.2 (9)H9A—C9—H9C103.7 (17)
C5—C4—H4A117.8 (9)H9B—C9—H9C104.4 (17)
C6—C1—C2—C30.26 (17)C7—N1—C6—C1172.79 (9)
C1—C2—C3—C40.06 (17)C2—C1—C6—C50.35 (15)
C1—C2—C3—C9179.61 (11)C2—C1—C6—N1176.67 (9)
C2—C3—C4—C50.28 (16)C6—N1—C7—C883.08 (11)
C9—C3—C4—C5179.38 (11)N3—N2—C8—O12.92 (14)
C3—C4—C5—C60.19 (16)N3—N2—C8—C7176.34 (8)
C4—C5—C6—N1176.77 (9)N1—C7—C8—O1169.09 (8)
C4—C5—C6—C10.13 (15)N1—C7—C8—N211.63 (12)
C7—N1—C6—C510.34 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.875 (17)2.162 (17)3.0271 (11)170.0 (13)
N2—H1N2···N3ii0.887 (17)2.287 (16)3.0302 (12)141.3 (13)
N3—H1N3···O1iii0.901 (14)2.252 (13)3.0614 (11)149.4 (13)
N3—H2N3···O1iv0.914 (14)2.281 (15)3.0889 (12)147.1 (12)
C7—H7B···N3v0.991 (15)2.545 (14)3.4341 (14)149.2 (11)
C9—H9B···Cgiv0.96 (2)2.94 (2)3.7469 (16)142.3 (14)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H13N3O
Mr179.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.1481 (1), 5.9262 (2), 15.4756 (4)
α, β, γ (°)87.002 (2), 84.282 (2), 82.849 (2)
V3)465.76 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.52 × 0.15 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.956, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
11697, 2703, 2301
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.03
No. of reflections2703
No. of parameters170
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.875 (17)2.162 (17)3.0271 (11)170.0 (13)
N2—H1N2···N3ii0.887 (17)2.287 (16)3.0302 (12)141.3 (13)
N3—H1N3···O1iii0.901 (14)2.252 (13)3.0614 (11)149.4 (13)
N3—H2N3···O1iv0.914 (14)2.281 (15)3.0889 (12)147.1 (12)
C7—H7B···N3v0.991 (15)2.545 (14)3.4341 (14)149.2 (11)
C9—H9B···Cgiv0.96 (2)2.94 (2)3.7469 (16)142.3 (14)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x1, y, z; (v) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship. AMI is grateful to the Head of the Department of Chemistry and Director, NITK, Surathkal, India, for providing research facilities.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolla, B. S. & Udupa, K. V. (1992). Farmaco, 47, 305–318.  PubMed CAS Web of Science Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOzdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enzyme Inhibit. Med. Chem. 24, 825–831.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-X. & Shi, Z.-Q. (2009). Acta Cryst. E65, o1538.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds