organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2-Hydr­­oxy-1-naphth­yl)(piperidin-1-yl)meth­yl]benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast UniVersity, Nanjing 211189, People's Republic of China
*Correspondence e-mail: liyh@seu.edu.cn

(Received 10 June 2009; accepted 24 August 2009; online 29 August 2009)

In the title compound, C23H22N2O, obtained from the condensation reaction of 4-formyl­benzonitrile, 2-naphthol and piperidine, the dihedral angle between the naphthalene ring system and the benzene ring is 75.31 (4)°. The piperidine ring adopts a chair conformation. The crystal structure is stabilized by inter­molecular C—H⋯N hydrogen bonds, which link the mol­ecules into centrosymmetric dimers. An intra­molecular O—H⋯N hydrogen bond is also present.

Related literature

For applications of Betti-type reactions, see: Zhao & Li et al. (2004[Zhao, H., Li, Y. H., Wang, X. S., Qu, Z. R., Wang, L. Z., Xiong, R. G., Abrahams, B. F. & Xue, Z. L. (2004). Chem. Eur. J. 10, 2386-2390.]); Lu et al. (2002[Lu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett. 43, 8367-8369.]); Xu et al. (2004[Xu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, 15, 475-479.]); Wang et al. (2005[Wang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. 70, 1897-1900.])

[Scheme 1]

Experimental

Crystal data
  • C23H22N2O

  • Mr = 342.43

  • Monoclinic, P 21 /c

  • a = 6.9989 (6) Å

  • b = 15.588 (1) Å

  • c = 17.211 (1) Å

  • β = 101.207 (2)°

  • V = 1841.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.2 × 0.1 × 0.1 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear, Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.98, Tmax = 0.98

  • 10945 measured reflections

  • 3245 independent reflections

  • 2661 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.05

  • 3245 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.99 1.70 2.614 151
C14—H14⋯N1i 0.93 2.55 3.395 (2) 151
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Over one hundred years ago, Betti developed a straightforward synthesis involving the condensation of 2-naphthol, ammonia and equivalents of benzaldehyde, followed by the addition of HCl and KOH to yield 1-(a-aminobenzyl)-2-naphthol. This product which possesses an asymmetric carbon center is known as a Betti base (Zhao & Li et al. 2004). Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural homochiral amino-phenol compounds have been obtained (Lu et al. 2002; Xu et al. 2004; Wang et al. 2005). Here we report the synthesis and crystal structure of the title compound, 4-[(2-hydroxy-1-naphthyl)(1-piperidinyl)methyl]benzonitrile (Fig. 1).

The naphthalene (A; C1-C10), benzene (B; C12-C17) and piperidine (C; N2/C19-C23) rings are planar and the dihedral angles between A/B, A/C, and B/C are 75.31 (4)°, 67.24 (5)°, and 88.80 (5)°, respectively. The crystal structure (Fig. 2) is stabilized by intermolecular C–H···N hydrogen bonds between an H atom of benzene ring and the N atom of the nitrile group, with a C14–H14···N1i (Table 1 and Fig. 2), which link the molecules into centrosymmetric dimers. In addition, the crystal structure exhibits an intramolecular O–H···N hydrogen bond, with a O1–H1···N2 (Table 1 and Fig. 2).

Related literature top

For applications of Betti-type reactions, see: Zhao & Li et al. (2004); Lu et al. (2002); Xu et al. (2004); Wang et al. (2005)

Experimental top

4-Formylbenzonitrile (1.97 g, 0.015 mol) and piperidine (1.275 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 10 h. The system was treated with 20 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (Petroleum ether: ethyl acetate-4:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

H atoms bonded to O atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93-0.97 Å and Uiso(H) = 1.3-1.6Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. C–H···N and O–H···N hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry code : (i) - x + 2, - y, - z + 2.]
4-[(2-Hydroxy-1-naphthyl)(piperidin-1-yl)methyl]benzonitrile top
Crystal data top
C23H22N2OF(000) = 728
Mr = 342.43Dx = 1.235 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3760 reflections
a = 6.9989 (6) Åθ = 2.1–26.0°
b = 15.588 (1) ŵ = 0.08 mm1
c = 17.211 (1) ÅT = 296 K
β = 101.207 (2)°Prism, colorless
V = 1841.9 (3) Å30.2 × 0.1 × 0.1 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3245 independent reflections
Radiation source: fine-focus sealed tube2661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
CCD_Profile_fitting scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(CrystalClear, Rigaku, 2005)
h = 68
Tmin = 0.98, Tmax = 0.98k = 1918
10945 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.2574P]
where P = (Fo2 + 2Fc2)/3
3245 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C23H22N2OV = 1841.9 (3) Å3
Mr = 342.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9989 (6) ŵ = 0.08 mm1
b = 15.588 (1) ÅT = 296 K
c = 17.211 (1) Å0.2 × 0.1 × 0.1 mm
β = 101.207 (2)°
Data collection top
Rigaku SCXmini
diffractometer
3245 independent reflections
Absorption correction: multi-scan
(CrystalClear, Rigaku, 2005)
2661 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.98Rint = 0.023
10945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
3245 reflectionsΔρmin = 0.13 e Å3
227 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4754 (2)0.29551 (10)0.68027 (8)0.0440 (4)
C20.3079 (2)0.33944 (11)0.68632 (9)0.0530 (4)
C30.1365 (2)0.32981 (13)0.62827 (11)0.0654 (5)
H30.02610.36120.63260.078*
C40.1307 (2)0.27582 (13)0.56662 (10)0.0646 (5)
H40.01630.27050.52900.078*
C50.2951 (2)0.22744 (11)0.55839 (9)0.0525 (4)
C60.2914 (3)0.16868 (12)0.49529 (10)0.0660 (5)
H60.17730.16270.45770.079*
C70.4480 (3)0.12125 (12)0.48807 (10)0.0699 (5)
H70.44130.08270.44640.084*
C80.6191 (3)0.13057 (12)0.54346 (10)0.0653 (5)
H80.72750.09800.53860.078*
C90.6308 (2)0.18670 (10)0.60497 (9)0.0539 (4)
H90.74790.19180.64100.065*
C100.4703 (2)0.23747 (10)0.61557 (8)0.0444 (4)
C110.6626 (2)0.30548 (9)0.74220 (8)0.0413 (3)
H110.77230.29840.71500.050*
C120.6784 (2)0.23582 (9)0.80461 (8)0.0420 (3)
C130.8360 (2)0.18047 (11)0.81721 (9)0.0552 (4)
H130.93150.18630.78680.066*
C140.8543 (3)0.11701 (11)0.87378 (10)0.0616 (5)
H140.96030.07990.88090.074*
C150.7144 (2)0.10873 (10)0.92003 (9)0.0508 (4)
C160.5568 (2)0.16398 (10)0.90883 (9)0.0524 (4)
H160.46340.15930.94040.063*
C170.5384 (2)0.22595 (10)0.85088 (9)0.0487 (4)
H170.43010.26180.84260.058*
C180.7349 (2)0.04403 (12)0.98061 (10)0.0602 (4)
C190.8407 (2)0.39901 (10)0.84592 (9)0.0522 (4)
H19A0.96090.38430.82900.063*
H19B0.82120.35790.88600.063*
C200.8583 (3)0.48792 (11)0.88137 (10)0.0648 (5)
H20A0.96860.48970.92530.078*
H20B0.74190.50100.90180.078*
C210.8851 (3)0.55474 (11)0.82047 (10)0.0667 (5)
H21A0.88420.61170.84310.080*
H21B1.00930.54630.80460.080*
C220.7218 (3)0.54656 (11)0.74953 (11)0.0644 (5)
H22A0.74400.58600.70860.077*
H22B0.59970.56210.76450.077*
C230.70745 (10)0.45642 (4)0.71727 (4)0.0536 (4)
H23A0.59970.45300.67240.064*
H23B0.82600.44250.69870.064*
O10.29677 (10)0.39454 (4)0.74661 (4)0.0697 (4)
H10.43350.40160.77490.094 (7)*
N10.75228 (10)0.00682 (4)1.02933 (4)0.0807 (5)
N20.67754 (10)0.39314 (4)0.77784 (4)0.0440 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (8)0.0496 (9)0.0387 (8)0.0036 (7)0.0065 (6)0.0061 (7)
C20.0494 (9)0.0591 (10)0.0518 (9)0.0081 (7)0.0131 (7)0.0037 (8)
C30.0420 (9)0.0822 (13)0.0717 (12)0.0114 (8)0.0105 (8)0.0137 (10)
C40.0477 (10)0.0830 (13)0.0578 (10)0.0052 (9)0.0029 (8)0.0136 (10)
C50.0512 (9)0.0594 (11)0.0440 (8)0.0103 (8)0.0023 (7)0.0102 (8)
C60.0754 (12)0.0720 (12)0.0439 (9)0.0245 (10)0.0050 (8)0.0024 (9)
C70.0973 (15)0.0600 (12)0.0518 (10)0.0129 (11)0.0128 (10)0.0106 (9)
C80.0822 (13)0.0589 (11)0.0544 (10)0.0052 (9)0.0123 (9)0.0108 (9)
C90.0580 (10)0.0560 (10)0.0459 (9)0.0041 (8)0.0055 (7)0.0043 (8)
C100.0487 (8)0.0459 (9)0.0378 (8)0.0035 (7)0.0062 (6)0.0065 (7)
C110.0429 (8)0.0429 (8)0.0385 (7)0.0048 (6)0.0086 (6)0.0007 (6)
C120.0470 (8)0.0397 (8)0.0369 (7)0.0018 (6)0.0023 (6)0.0046 (6)
C130.0564 (10)0.0612 (11)0.0494 (9)0.0161 (8)0.0139 (7)0.0094 (8)
C140.0642 (11)0.0632 (11)0.0571 (10)0.0230 (9)0.0108 (9)0.0128 (9)
C150.0601 (10)0.0470 (9)0.0418 (8)0.0005 (7)0.0015 (7)0.0024 (7)
C160.0587 (10)0.0518 (10)0.0476 (9)0.0017 (8)0.0122 (7)0.0020 (7)
C170.0518 (9)0.0440 (9)0.0504 (9)0.0058 (7)0.0099 (7)0.0015 (7)
C180.0642 (11)0.0609 (11)0.0526 (10)0.0036 (8)0.0042 (8)0.0089 (9)
C190.0622 (10)0.0503 (9)0.0417 (8)0.0038 (8)0.0040 (7)0.0016 (7)
C200.0842 (13)0.0561 (11)0.0537 (10)0.0122 (9)0.0126 (9)0.0089 (8)
C210.0853 (13)0.0460 (10)0.0701 (11)0.0093 (9)0.0186 (10)0.0056 (9)
C220.0784 (12)0.0445 (10)0.0725 (11)0.0058 (8)0.0204 (10)0.0086 (9)
C230.0667 (10)0.0486 (9)0.0453 (9)0.0064 (8)0.0101 (7)0.0076 (7)
O10.0583 (8)0.0808 (9)0.0726 (8)0.0192 (6)0.0193 (6)0.0094 (7)
N10.0778 (11)0.0886 (12)0.0752 (10)0.0136 (9)0.0138 (9)0.0347 (10)
N20.0529 (7)0.0407 (7)0.0382 (6)0.0048 (5)0.0081 (6)0.0009 (5)
Geometric parameters (Å, º) top
C1—C21.379 (2)C14—C151.383 (2)
C1—C101.430 (2)C14—H140.9300
C1—C111.528 (2)C15—C161.384 (2)
C2—O11.3609 (2)C15—C181.438 (2)
C2—C31.412 (2)C16—C171.377 (2)
C3—C41.348 (2)C16—H160.9300
C3—H30.9300C17—H170.9300
C4—C51.406 (2)C18—N11.1430 (18)
C4—H40.9300C19—N21.4713 (16)
C5—C61.417 (2)C19—C201.510 (2)
C5—C101.424 (2)C19—H19A0.9700
C6—C71.348 (3)C19—H19B0.9700
C6—H60.9300C20—C211.515 (2)
C7—C81.386 (3)C20—H20A0.9700
C7—H70.9300C20—H20B0.9700
C8—C91.363 (2)C21—C221.507 (2)
C8—H80.9300C21—H21A0.9700
C9—C101.415 (2)C21—H21B0.9700
C9—H90.9300C22—C231.5069 (18)
C11—N21.4931 (2)C22—H22A0.9700
C11—C121.5163 (19)C22—H22B0.9700
C11—H110.9800C23—N21.4793
C12—C131.384 (2)C23—H23A0.9700
C12—C171.386 (2)C23—H23B0.9700
C13—C141.376 (2)O1—H10.9916
C13—H130.9300
C2—C1—C10118.69 (13)C14—C15—C16119.78 (14)
C2—C1—C11121.54 (13)C14—C15—C18120.07 (15)
C10—C1—C11119.74 (12)C16—C15—C18120.15 (15)
O1—C2—C1123.11 (14)C17—C16—C15119.83 (15)
O1—C2—C3116.13 (14)C17—C16—H16120.1
C1—C2—C3120.75 (15)C15—C16—H16120.1
C4—C3—C2121.00 (16)C16—C17—C12121.15 (14)
C4—C3—H3119.5C16—C17—H17119.4
C2—C3—H3119.5C12—C17—H17119.4
C3—C4—C5120.90 (16)N1—C18—C15179.28 (18)
C3—C4—H4119.6N2—C19—C20111.64 (13)
C5—C4—H4119.6N2—C19—H19A109.3
C4—C5—C6122.03 (16)C20—C19—H19A109.3
C4—C5—C10118.90 (15)N2—C19—H19B109.3
C6—C5—C10119.07 (16)C20—C19—H19B109.3
C7—C6—C5122.08 (17)H19A—C19—H19B108.0
C7—C6—H6119.0C19—C20—C21111.28 (14)
C5—C6—H6119.0C19—C20—H20A109.4
C6—C7—C8119.25 (17)C21—C20—H20A109.4
C6—C7—H7120.4C19—C20—H20B109.4
C8—C7—H7120.4C21—C20—H20B109.4
C9—C8—C7121.01 (18)H20A—C20—H20B108.0
C9—C8—H8119.5C22—C21—C20109.03 (15)
C7—C8—H8119.5C22—C21—H21A109.9
C8—C9—C10121.97 (16)C20—C21—H21A109.9
C8—C9—H9119.0C22—C21—H21B109.9
C10—C9—H9119.0C20—C21—H21B109.9
C9—C10—C5116.63 (14)H21A—C21—H21B108.3
C9—C10—C1123.65 (13)C21—C22—C23111.30 (13)
C5—C10—C1119.71 (14)C21—C22—H22A109.4
N2—C11—C12112.00 (10)C23—C22—H22A109.4
N2—C11—C1111.23 (10)C21—C22—H22B109.4
C12—C11—C1110.86 (11)C23—C22—H22B109.4
N2—C11—H11107.5H22A—C22—H22B108.0
C12—C11—H11107.5N2—C23—C22111.75 (7)
C1—C11—H11107.5N2—C23—H23A109.3
C13—C12—C17118.14 (14)C22—C23—H23A109.3
C13—C12—C11120.24 (13)N2—C23—H23B109.3
C17—C12—C11121.61 (13)C22—C23—H23B109.3
C14—C13—C12121.40 (15)H23A—C23—H23B107.9
C14—C13—H13119.3C2—O1—H1104.6
C12—C13—H13119.3C19—N2—C23109.00 (7)
C13—C14—C15119.67 (15)C19—N2—C11111.46 (9)
C13—C14—H14120.2C23—N2—C11109.20 (6)
C15—C14—H14120.2
C10—C1—C2—O1178.47 (12)N2—C11—C12—C13114.13 (14)
C11—C1—C2—O10.41 (2)C1—C11—C12—C13121.01 (15)
C10—C1—C2—C32.3 (2)N2—C11—C12—C1765.30 (16)
C11—C1—C2—C3179.62 (14)C1—C11—C12—C1759.56 (17)
O1—C2—C3—C4178.99 (15)C17—C12—C13—C140.2 (2)
C1—C2—C3—C41.8 (3)C11—C12—C13—C14179.64 (15)
C2—C3—C4—C50.0 (3)C12—C13—C14—C151.0 (3)
C3—C4—C5—C6178.39 (16)C13—C14—C15—C160.3 (3)
C3—C4—C5—C101.2 (2)C13—C14—C15—C18178.43 (16)
C4—C5—C6—C7178.88 (17)C14—C15—C16—C171.1 (2)
C10—C5—C6—C70.7 (2)C18—C15—C16—C17179.81 (14)
C5—C6—C7—C80.7 (3)C15—C16—C17—C121.8 (2)
C6—C7—C8—C90.1 (3)C13—C12—C17—C161.2 (2)
C7—C8—C9—C100.4 (3)C11—C12—C17—C16178.23 (13)
C8—C9—C10—C50.3 (2)C14—C15—C18—N190 (16)
C8—C9—C10—C1178.46 (15)C16—C15—C18—N189 (16)
C4—C5—C10—C9179.41 (14)N2—C19—C20—C2157.87 (19)
C6—C5—C10—C90.2 (2)C19—C20—C21—C2254.4 (2)
C4—C5—C10—C10.6 (2)C20—C21—C22—C2354.38 (19)
C6—C5—C10—C1179.01 (14)C21—C22—C23—N257.88 (14)
C2—C1—C10—C9177.59 (15)C20—C19—N2—C2358.52 (13)
C11—C1—C10—C90.5 (2)C20—C19—N2—C11179.12 (12)
C2—C1—C10—C51.2 (2)C22—C23—N2—C1958.58 (11)
C11—C1—C10—C5179.26 (13)C22—C23—N2—C11179.46 (11)
C2—C1—C11—N230.85 (18)C12—C11—N2—C1946.39 (14)
C10—C1—C11—N2151.10 (12)C1—C11—N2—C19171.07 (11)
C2—C1—C11—C1294.46 (16)C12—C11—N2—C23166.88 (8)
C10—C1—C11—C1283.59 (16)C1—C11—N2—C2368.46 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.991.702.614151
C14—H14···N1i0.932.553.395 (2)151
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC23H22N2O
Mr342.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.9989 (6), 15.588 (1), 17.211 (1)
β (°) 101.207 (2)
V3)1841.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear, Rigaku, 2005)
Tmin, Tmax0.98, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
10945, 3245, 2661
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.05
No. of reflections3245
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.991.702.614150.7
C14—H14···N1i0.932.553.395 (2)150.6
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

This work was supported by a start-up grant (4007041028) and a science technology grant (KJ2009375) from Southeast University to Professor Yong-Hua Li.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett. 43, 8367–8369.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. 70, 1897–1900.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, 15, 475–479.  Web of Science CrossRef CSD CAS Google Scholar
First citationZhao, H., Li, Y. H., Wang, X. S., Qu, Z. R., Wang, L. Z., Xiong, R. G., Abrahams, B. F. & Xue, Z. L. (2004). Chem. Eur. J. 10, 2386–2390.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds