metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1132-m1133

catena-Poly[[[di­aqua­(nitrato-κ2O,O′)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)neodymium(III)]-μ-cyanido-κ2N:C-[dicyanidoplatinum(II)]-μ-cyanido-κ2C:N] aceto­nitrile solvate 2,2′:6′,2′′-terpyridine hemisolvate]

aDepartment of Chemistry, University of South Alabama, Mobile, AL 36688-0002, USA
*Correspondence e-mail: rsykora@jaguar1.usouthal.edu

(Received 24 July 2009; accepted 20 August 2009; online 26 August 2009)

The title compound, {[NdPt(CN)4(NO3)(C15H11N3)(H2O)2]·CH3CN·0.5C15H11N3}n, was isolated from solution as a one-dimensional coordination polymer. The Nd3+ site in the structure has a ninefold coordination with a distorted tricapped trigonal-prismatic geometry, while the PtII ion is coordinated by four cyanide groups in an almost regular square-planar geometry. Cis-bridging by the tetracyanidoplatinate anions links the Nd3+ cations, forming the one-dimensional chains. Additionally, each Nd3+ contains coordin­ation by two water mol­ecules, one tridentate 2,2′:6′,2′′-terpyridine mol­ecule, and one bidentate nitrate anion. 2,2′:6′,2′′-Terpyridine and acetonitrile solvent mol­ecules are incorporated between the chains, the former form π-stacking inter­actions (average inter­planar distance 3.33 Å) with terpyridine mol­ecules located in the chains. Relatively long Pt⋯Pt inter­actions [3.847 (1) Å] are observed in the structure. O—H⋯N and O—H⋯O hydrogen bonding interactions between the consituents consolidates the crystal packing.

Related literature

For related lanthanide tetracyanidoplatinate structures containing 2,2′:6′,2′′-terpyridine, see: Maynard et al. (2008[Maynard, B. A., Kalachnikova, K., Whitehead, K., Assefa, Z. & Sykora, R. E. (2008). Inorg. Chem. 47, 1895-1897.]); Maynard, Smith, Ladner et al. (2009[Maynard, B. A., Smith, P. A., Ladner, L., Jaleel, A., Beedoe, N., Crawford, C., Assefa, Z. & Sykora, R. E. (2009). Inorg. Chem. 48, 6425-6435.]); Maynard, Smith, Jaleel et al. (2009[Maynard, B. A., Smith, P. A., Jaleel, A., Ladner, L. & Sykora, R. E. (2009). J. Solid State Chem. Submitted.]). For structural and spectroscopic information on simpler lanthanide tetracyanidoplatinates, see: Gliemann & Yersin (1985[Gliemann, G. & Yersin, H. (1985). Struct. Bond. 62 87-153.]); Holzapfel et al. (1981[Holzapfel, W., Yersin, H. & Gliemann, G. (1981). Z. Kristallogr. 157, 47-67.]). For luminescence data on lanthanide terpyridine systems, see: Mukkala et al. (1995[Mukkala, V.-M., Takalo, H., Liitti, P. & Hemmilä, I. (1995). J. Alloys Compd, 225 507-510.]).

[Scheme 1]

Experimental

Crystal data
  • [NdPt(CN)4(NO3)(C15H11N3)(H2O)2]·C2H3N·0.5C15H11N3

  • Mr = 932.4

  • Monoclinic, C 2/c

  • a = 33.231 (6) Å

  • b = 14.3642 (17) Å

  • c = 13.823 (3) Å

  • β = 108.931 (16)°

  • V = 6241.5 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.18 mm−1

  • T = 290 K

  • 0.45 × 0.17 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: analytical (XPREP; Bruker, 1998[Bruker (1998). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.308, Tmax = 0.632

  • 5824 measured reflections

  • 5722 independent reflections

  • 4089 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.00

  • 5722 reflections

  • 420 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N4i 0.85 2.00 2.760 (9) 149.1
O4—H4B⋯N3ii 0.85 2.00 2.814 (10) 160.5
O5—H5B⋯N9iii 0.85 2.16 2.993 (9) 167.4
O5—H5C⋯O1iv 0.85 1.99 2.770 (8) 152.2
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) -x+1, -y+1, -z; (iv) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CAD-4-PC Software (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

One of our research goals is to prepare systems where the generally weak Ln3+ emissions are enhanced through the use of sensitizing ligands coordinated directly to Ln3+ cations. Recent efforts in our lab have focused on the novel lanthanide compounds that incorporate two ligand groups simultaneously to achieve this goal. The effort has focused on preparing lanthanide compounds that contain both tetracyanoplatinate(II) anions (TCP) and 2,2':6',2''-terpyridine (tpy) ligands, since each of these ligands have been shown to act as sensitizers for various Ln3+ cations (Gliemann & Yersin, 1985; Mukkala et al., 1995). We recently communicated some of our findings in this area (Maynard et al., 2008; Maynard, Smith, Ladner et al., 2009). Through our efforts we have prepared a number of novel compounds incorporating various Ln3+ cations, terpyridine, and TCP anions and have also recently reported on these structures (Maynard et al., 2008; Maynard, Smith, Ladner et al., 2009; Maynard, Smith, Jaleel, et al., 2009).

The title compound, (I), is similar to several previously reported compounds in that it contains one-dimensional [Nd(C15H11N3)(H2O)2(NO3)(Pt(CN)4)] chains reminiscent of those found in Ln(C15H11N3)(H2O)2(NO3)[Pt(CN)4].CH3CN (Ln = Eu (Maynard et al., 2008; Maynard, Smith, Ladner et al., 2009) or Ln = Ho (Maynard, Smith, Jaleel, et al., 2009)) and Yb(C15H11N3)(H2O)2(NO3)[Pt(CN)4].0.5CH3CN.1.5H2O (Maynard, Smith, Jaleel, et al., 2009). The major structural differences between these related structure types can be attributed in part to the crystallization of various solvent or guest molecules between the one-dimensional chains.

The neutral, one-dimensional [Nd(C15H11N3)(H2O)2(NO3)(Pt(CN)4)] chains in the structure of (I) are illustrated in Figure 1 and a thermal ellipsoid plot of the asymmetric unit is illustrated in Figure 2. The chains are formed by the linkage of the Nd3+ cations by cis-bridging tetracyanoplatinate anions. The coordination of the Nd site is ninefold and can be described as a distorted [NdO4N5] tri-capped trigonal prism. The five nitrogen atoms in the inner sphere of the Nd3+ cations result from the coordination of one tridentate terpyridine ligand and two N-bound TCP anions while the four oxygen atoms are a result of one bidentate nitrate anion and two coordinated water molecules. The two longest Nd—O bond distances for each compound are those to the nitrate anion. The Nd—N bonds to the cyano groups are shorter by an average of ~0.08 Å than the Nd—N bonds to the tpy molecule. The Pt—C distances have an average of 1.984 (8) Å.

The packing diagram of (I) viewed along the c axis is shown in Figure 3. The predominant inter-chain feature is the existence of Pt—Pt interactions. These interactions in (I) are quite long (3.847 (1) Å), but are otherwise reminiscent of those observed in earlier reported lanthanide TCP compounds in that they form dimeric groups (Maynard, Smith, Ladner et al., 2009; Maynard, Smith, Jaleel, et al., 2009). This is in contrast to many reported lanthanide TCP compounds where there exist pseudo-1-D columnar stacks (Gliemann & Yersin, 1985; Holzapfel et al., 1981) containing planar TCP anions parallel to one another. Additional features found in the packing diagram for (I) include porous channels along the c axis that contain acetonitrile solvate molecules, numerous inter-chain hydrogen bonding interactions, and also the presence of π-stacking interactions. These latter interactions (3.33 Å average distance between planes) are between the coordinated tpy and the guest tpy molecule that is co-crystallized between the one-dimensional chains. Also worth noting is the orientation of the coordinated tpy molecules in the one-dimensional chains; viewing along the c axis reveals that these molecules are located on either side of the chains. A similar situation also occurs in Eu(C15H11N3)(H2O)2(NO3)[Pt(CN)4].CH3CN (Maynard et al., 2008; Maynard, Smith, Ladner et al., 2009) while Yb(C15H11N3)(H2O)2(NO3)[Pt(CN)4].0.5CH3CN.1.5H2O (Maynard, Smith, Jaleel, et al., 2009) contains one-dimensional chains where all of the terpyridine molecules reside on a single side of the chain.

Related literature top

For related lanthanide tetracyanoplatinate structures containing 2,2':6',2''-terpyridine see: Maynard et al. (2008); Maynard, Smith, Ladner et al. (2009); Maynard, Smith, Jaleel et al. (2009). For structural and spectroscopic information on simpler lanthanide tetracyanoplatinates, see: Gliemann & Yersin, (1985); Holzapfel et al. (1981). For luminescence data on lanthanide terpyridine systems, see: Mukkala et al. (1995).

Experimental top

The title compound was synthesized by reacting Nd(NO3).6H2O (Strem, 99.9%), K2Pt(CN)4.3H2O (Alfa Aesar, 99.9%), and 2,2':6',2''-terpyridine (Aldrich, 98%) in a 1:1:1 molar ratio. The reaction proceeded by adding 1 ml of a 0.10 M solution of potassium tetracyanoplatinate in 20%:80% water:acetonitrile mixture to 1 ml of a 0.10 M solution of neodymium nitrate in acetonitrile. Next, 1 ml of a 0.10 M solution of 2,2':6',2''-terpyridine in acetonitrile was layered on the former mixture. Purple crystals were harvested from the reaction tube after several days.

Refinement top

Hydrogen atoms on the terpyridine rings and acetonitrile molecule were placed in calculated positions (the acetonitrile H atoms were allowed to rotate but not to tip) and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for the former and Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å for the latter. H-atoms contained in the water molecules were initially located in the difference map and then constrained to have O—H distances of 0.85 Å and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1993); cell refinement: CAD-4-PC Software (Enraf–Nonius, 1993); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. A representation of the one-dimensional chains that extend along the c axis in (I).
[Figure 2] Fig. 2. A thermal ellipsoid plot of (I) with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level. H-atoms are shown as spheres of arbitrary size. Symmetry codes: (i) x, -y + 1, z - 1/2; (ii) -x + 1, y, -z + 1/2.
[Figure 3] Fig. 3. A packing diagram for (I) viewed along the c axis, the direction parallel to the 1-D chains. Pt—Pt and hydrogen-bonding interactions are shown by the dashed lines and one of the 1-D chains is circled for clarity.
catena-Poly[[[diaqua(nitrato-κ2O,O')(2,2':6',2''- terpyridine-κ3N,N',N'')neodymium(III)]-µ-cyanido- κ2N:C-[dicyanidoplatinum(II)]-µ-cyanido- κ2C:N] acetonitrile solvate 2,2':6',2''-terpyridine hemisolvate] top
Crystal data top
[NdPt(CN)4(NO3)(C15H11N3)(H2O)2]·C2H3N·0.5C15H11N3F(000) = 3568
Mr = 932.4Dx = 1.985 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 33.231 (6) Åθ = 8.5–15.4°
b = 14.3642 (17) ŵ = 6.18 mm1
c = 13.823 (3) ÅT = 290 K
β = 108.931 (16)°Plate, purple
V = 6241.5 (19) Å30.45 × 0.17 × 0.08 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
4089 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.4°, θmin = 2.1°
θ/2θ scansh = 040
Absorption correction: analytical
(SADABS; Bruker, 1998)
k = 017
Tmin = 0.308, Tmax = 0.632l = 1615
5824 measured reflections3 standard reflections every 120 min
5722 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.087H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0283P)2]
where P = (Fo2 + 2Fc2)/3
5722 reflections(Δ/σ)max = 0.001
420 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.84 e Å3
44 constraints
Crystal data top
[NdPt(CN)4(NO3)(C15H11N3)(H2O)2]·C2H3N·0.5C15H11N3V = 6241.5 (19) Å3
Mr = 932.4Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.231 (6) ŵ = 6.18 mm1
b = 14.3642 (17) ÅT = 290 K
c = 13.823 (3) Å0.45 × 0.17 × 0.08 mm
β = 108.931 (16)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4089 reflections with I > 2σ(I)
Absorption correction: analytical
(SADABS; Bruker, 1998)
Rint = 0.031
Tmin = 0.308, Tmax = 0.6323 standard reflections every 120 min
5824 measured reflections intensity decay: none
5722 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.00Δρmax = 0.86 e Å3
5722 reflectionsΔρmin = 0.84 e Å3
420 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.349783 (14)0.43585 (3)0.06095 (3)0.02261 (11)
Pt10.308541 (10)0.775186 (19)0.07657 (2)0.02355 (9)
C10.3149 (3)0.6590 (6)0.0072 (6)0.0287 (18)
C20.3302 (3)0.7125 (5)0.2122 (6)0.0277 (17)
C30.3023 (3)0.8936 (6)0.1443 (6)0.0330 (19)
C40.2851 (3)0.8356 (5)0.0596 (6)0.0302 (18)
C50.2743 (3)0.4274 (6)0.0670 (7)0.039 (2)
H5A0.27040.48770.04100.046*
C60.2505 (3)0.3991 (6)0.1269 (7)0.044 (2)
H6A0.23070.43910.13910.053*
C70.2562 (3)0.3117 (7)0.1679 (7)0.052 (3)
H7A0.24110.29180.21020.062*
C80.2849 (3)0.2537 (7)0.1451 (7)0.042 (2)
H8A0.28910.19340.17090.051*
C90.3075 (3)0.2860 (5)0.0832 (6)0.0329 (19)
C100.3394 (3)0.2280 (6)0.0592 (6)0.035 (2)
C110.3405 (3)0.1306 (7)0.0718 (7)0.050 (3)
H11A0.32020.10030.09360.060*
C120.3719 (4)0.0820 (7)0.0512 (9)0.068 (3)
H12A0.37290.01760.05820.082*
C130.4015 (4)0.1255 (7)0.0211 (8)0.057 (3)
H13A0.42310.09140.00870.069*
C140.4000 (3)0.2214 (6)0.0084 (7)0.039 (2)
C150.4318 (3)0.2724 (6)0.0214 (6)0.035 (2)
C160.4697 (3)0.2336 (8)0.0204 (8)0.056 (3)
H16A0.47500.17110.00360.067*
C170.4999 (3)0.2866 (10)0.0443 (9)0.069 (4)
H17A0.52550.26040.04420.083*
C180.4915 (3)0.3766 (9)0.0677 (7)0.058 (3)
H18A0.51120.41400.08410.069*
C190.4530 (3)0.4133 (7)0.0669 (7)0.045 (2)
H19A0.44720.47570.08370.054*
C200.5895 (4)0.0801 (8)0.1679 (10)0.073 (4)
H20A0.58830.01540.16530.088*
C210.6217 (3)0.1261 (8)0.1448 (8)0.060 (3)
H21A0.64230.09370.12650.072*
C220.6220 (3)0.2221 (8)0.1500 (8)0.055 (3)
H22A0.64350.25360.13400.066*
C230.5593 (3)0.1288 (7)0.1946 (8)0.056 (3)
H23A0.53730.09840.20940.068*
C240.5627 (3)0.2254 (6)0.1988 (6)0.039 (2)
C250.5303 (3)0.2810 (6)0.2270 (6)0.038 (2)
C260.5314 (3)0.3784 (7)0.2262 (7)0.048 (2)
H26A0.55270.41020.21000.058*
C270.50000.4252 (10)0.25000.053 (4)
H27A0.50000.48990.25000.063*
C280.4505 (6)0.8941 (11)0.1457 (17)0.109 (7)
C290.4263 (8)0.8338 (13)0.1910 (18)0.134 (7)
H29A0.39670.84990.16440.4 (2)*
H29B0.43620.84160.26390.12 (7)*
H29C0.43000.77010.17450.09 (4)*
N10.3189 (2)0.5906 (5)0.0313 (5)0.0376 (17)
N20.3413 (2)0.6737 (5)0.2886 (5)0.0378 (18)
N30.2968 (3)0.9628 (5)0.1791 (7)0.055 (2)
N40.2716 (3)0.8690 (5)0.1384 (6)0.046 (2)
N50.4061 (2)0.5440 (5)0.1161 (5)0.0326 (16)
N60.3027 (2)0.3734 (5)0.0445 (5)0.0327 (16)
N70.3677 (2)0.2706 (4)0.0232 (5)0.0304 (15)
N80.4242 (2)0.3633 (5)0.0434 (5)0.0358 (17)
N90.5936 (2)0.2724 (5)0.1765 (6)0.0447 (19)
N100.50000.2344 (7)0.25000.039 (2)
N110.4708 (5)0.9406 (10)0.1179 (14)0.130 (6)
O10.38212 (18)0.4789 (4)0.1277 (4)0.0366 (14)
O20.40884 (19)0.5548 (4)0.0286 (4)0.0418 (15)
O30.4259 (2)0.5928 (5)0.1889 (5)0.058 (2)
O40.27728 (18)0.4401 (4)0.1750 (4)0.0374 (14)
H4A0.27160.41450.23330.045*
H4B0.25560.47530.18900.045*
O50.3686 (2)0.5374 (4)0.1855 (4)0.0402 (15)
H5B0.37690.59370.17730.048*
H5C0.37650.51520.23340.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0283 (2)0.0236 (2)0.0168 (2)0.00194 (17)0.00833 (17)0.00252 (16)
Pt10.03025 (17)0.02168 (15)0.02051 (15)0.00316 (14)0.01069 (12)0.00322 (12)
C10.032 (5)0.031 (4)0.027 (4)0.000 (4)0.015 (4)0.007 (4)
C20.037 (5)0.024 (4)0.025 (4)0.001 (4)0.015 (4)0.001 (3)
C30.048 (5)0.027 (4)0.027 (4)0.005 (4)0.017 (4)0.005 (4)
C40.036 (5)0.030 (4)0.027 (4)0.005 (4)0.013 (4)0.004 (4)
C50.037 (5)0.033 (5)0.047 (5)0.003 (4)0.016 (4)0.001 (4)
C60.045 (6)0.048 (5)0.047 (5)0.017 (5)0.026 (5)0.010 (5)
C70.055 (7)0.071 (7)0.035 (5)0.016 (6)0.021 (5)0.010 (5)
C80.036 (5)0.051 (5)0.050 (6)0.006 (4)0.027 (5)0.020 (5)
C90.039 (5)0.034 (4)0.025 (4)0.006 (4)0.009 (4)0.005 (4)
C100.043 (5)0.038 (5)0.019 (4)0.005 (4)0.004 (4)0.010 (4)
C110.058 (7)0.043 (6)0.052 (6)0.001 (5)0.021 (5)0.013 (5)
C120.081 (9)0.029 (5)0.090 (9)0.016 (6)0.021 (7)0.015 (5)
C130.063 (7)0.045 (6)0.067 (7)0.019 (5)0.025 (6)0.009 (5)
C140.039 (5)0.041 (5)0.037 (5)0.013 (4)0.012 (4)0.003 (4)
C150.036 (5)0.048 (5)0.020 (4)0.007 (4)0.007 (4)0.004 (4)
C160.050 (6)0.065 (7)0.053 (6)0.024 (6)0.019 (5)0.010 (5)
C170.032 (6)0.116 (11)0.062 (7)0.017 (7)0.018 (5)0.004 (8)
C180.044 (6)0.095 (9)0.032 (5)0.015 (6)0.012 (5)0.008 (6)
C190.034 (5)0.064 (6)0.038 (5)0.001 (5)0.015 (4)0.002 (5)
C200.076 (9)0.050 (6)0.105 (10)0.005 (6)0.047 (8)0.004 (7)
C210.060 (7)0.068 (7)0.069 (7)0.007 (6)0.045 (6)0.008 (6)
C220.055 (7)0.071 (7)0.047 (6)0.004 (6)0.026 (5)0.004 (6)
C230.067 (7)0.041 (5)0.077 (8)0.007 (5)0.046 (6)0.004 (5)
C240.038 (5)0.050 (5)0.031 (5)0.005 (5)0.014 (4)0.001 (4)
C250.036 (5)0.057 (6)0.024 (4)0.002 (5)0.014 (4)0.000 (4)
C260.046 (6)0.050 (6)0.050 (6)0.016 (5)0.018 (5)0.000 (5)
C270.039 (8)0.042 (8)0.074 (11)0.0000.016 (8)0.000
C280.080 (12)0.061 (10)0.17 (2)0.003 (8)0.019 (12)0.024 (11)
C290.14 (2)0.103 (15)0.16 (2)0.002 (13)0.052 (16)0.022 (13)
N10.048 (5)0.030 (4)0.038 (4)0.002 (3)0.018 (4)0.003 (3)
N20.040 (5)0.040 (4)0.031 (4)0.003 (3)0.009 (3)0.008 (3)
N30.070 (6)0.036 (4)0.070 (6)0.008 (4)0.039 (5)0.004 (4)
N40.052 (5)0.048 (5)0.036 (4)0.008 (4)0.011 (4)0.007 (4)
N50.031 (4)0.038 (4)0.028 (4)0.002 (3)0.009 (3)0.004 (3)
N60.036 (4)0.032 (4)0.029 (4)0.005 (3)0.008 (3)0.001 (3)
N70.039 (4)0.028 (3)0.022 (3)0.001 (3)0.008 (3)0.008 (3)
N80.036 (4)0.049 (4)0.024 (4)0.001 (4)0.012 (3)0.001 (3)
N90.041 (5)0.056 (5)0.043 (4)0.008 (4)0.020 (4)0.008 (4)
N100.040 (6)0.047 (6)0.031 (5)0.0000.012 (5)0.000
N110.122 (14)0.102 (12)0.173 (16)0.015 (10)0.060 (12)0.002 (11)
O10.043 (4)0.041 (3)0.024 (3)0.005 (3)0.010 (3)0.002 (3)
O20.046 (4)0.051 (4)0.033 (3)0.018 (3)0.020 (3)0.007 (3)
O30.055 (5)0.070 (5)0.040 (4)0.015 (4)0.001 (3)0.026 (4)
O40.032 (3)0.048 (3)0.027 (3)0.007 (3)0.002 (3)0.012 (3)
O50.063 (4)0.033 (3)0.032 (3)0.006 (3)0.026 (3)0.002 (3)
Geometric parameters (Å, º) top
Nd1—O42.414 (5)C15—C161.374 (12)
Nd1—O52.486 (5)C16—C171.383 (15)
Nd1—N12.536 (7)C16—H16A0.9300
Nd1—N2i2.550 (7)C17—C181.339 (16)
Nd1—O12.554 (5)C17—H17A0.9300
Nd1—O22.594 (6)C18—C191.389 (14)
Nd1—N62.619 (7)C18—H18A0.9300
Nd1—N82.623 (7)C19—N81.317 (11)
Nd1—N72.625 (6)C19—H19A0.9300
Nd1—N52.989 (7)C20—C231.367 (14)
Pt1—C11.970 (8)C20—C211.380 (14)
Pt1—C31.985 (8)C20—H20A0.9300
Pt1—C41.988 (8)C21—C221.380 (14)
Pt1—C21.992 (8)C21—H21A0.9300
C1—N11.146 (10)C22—N91.331 (12)
C2—N21.144 (9)C22—H22A0.9300
C3—N31.144 (10)C23—C241.392 (12)
C4—N41.140 (10)C23—H23A0.9300
C5—N61.334 (11)C24—N91.347 (11)
C5—C61.379 (12)C24—C251.491 (12)
C5—H5A0.9300C25—N101.329 (10)
C6—C71.365 (13)C25—C261.400 (12)
C6—H6A0.9300C26—C271.367 (11)
C7—C81.378 (14)C26—H26A0.9300
C7—H7A0.9300C27—C26ii1.367 (11)
C8—C91.388 (11)C27—H27A0.9300
C8—H8A0.9300C28—N111.10 (2)
C9—N61.355 (10)C28—C291.46 (2)
C9—C101.469 (12)C29—H29A0.9600
C10—N71.344 (10)C29—H29B0.9600
C10—C111.410 (12)C29—H29C0.9600
C11—C121.360 (14)N2—Nd1iii2.550 (7)
C11—H11A0.9300N5—O31.227 (8)
C12—C131.340 (15)N5—O21.252 (8)
C12—H12A0.9300N5—O11.273 (8)
C13—C141.387 (13)N10—C25ii1.329 (10)
C13—H13A0.9300O4—H4A0.8500
C14—N71.356 (10)O4—H4B0.8499
C14—C151.449 (12)O5—H5B0.8500
C15—N81.344 (11)O5—H5C0.8499
O4—Nd1—O587.4 (2)C12—C13—C14120.2 (10)
O4—Nd1—N173.3 (2)C12—C13—H13A119.9
O5—Nd1—N178.7 (2)C14—C13—H13A119.9
O4—Nd1—N2i70.1 (2)N7—C14—C13119.7 (9)
O5—Nd1—N2i77.5 (2)N7—C14—C15117.7 (7)
N1—Nd1—N2i136.8 (2)C13—C14—C15122.6 (9)
O4—Nd1—O1131.37 (19)N8—C15—C16119.9 (9)
O5—Nd1—O1116.64 (18)N8—C15—C14117.1 (8)
N1—Nd1—O171.4 (2)C16—C15—C14122.8 (9)
N2i—Nd1—O1151.8 (2)C15—C16—C17120.6 (10)
O4—Nd1—O2137.3 (2)C15—C16—H16A119.7
O5—Nd1—O267.83 (18)C17—C16—H16A119.7
N1—Nd1—O268.2 (2)C18—C17—C16118.6 (10)
N2i—Nd1—O2131.5 (2)C18—C17—H17A120.7
O1—Nd1—O249.51 (17)C16—C17—H17A120.7
O4—Nd1—N673.9 (2)C17—C18—C19119.0 (10)
O5—Nd1—N6156.4 (2)C17—C18—H18A120.5
N1—Nd1—N682.2 (2)C19—C18—H18A120.5
N2i—Nd1—N6108.3 (2)N8—C19—C18122.6 (10)
O1—Nd1—N669.15 (19)N8—C19—H19A118.7
O2—Nd1—N6117.16 (19)C18—C19—H19A118.7
O4—Nd1—N8141.46 (19)C23—C20—C21120.5 (10)
O5—Nd1—N881.7 (2)C23—C20—H20A119.7
N1—Nd1—N8138.8 (2)C21—C20—H20A119.7
N2i—Nd1—N871.4 (2)C20—C21—C22117.4 (10)
O1—Nd1—N885.98 (19)C20—C21—H21A121.3
O2—Nd1—N870.9 (2)C22—C21—H21A121.3
N6—Nd1—N8121.9 (2)N9—C22—C21124.2 (10)
O4—Nd1—N7110.3 (2)N9—C22—H22A117.9
O5—Nd1—N7140.0 (2)C21—C22—H22A117.9
N1—Nd1—N7140.0 (2)C20—C23—C24117.8 (10)
N2i—Nd1—N775.7 (2)C20—C23—H23A121.1
O1—Nd1—N778.85 (18)C24—C23—H23A121.1
O2—Nd1—N7110.9 (2)N9—C24—C23123.1 (9)
N6—Nd1—N762.3 (2)N9—C24—C25117.5 (8)
N8—Nd1—N761.8 (2)C23—C24—C25119.4 (9)
O4—Nd1—N5138.48 (18)N10—C25—C26121.9 (9)
O5—Nd1—N591.78 (19)N10—C25—C24117.4 (8)
N1—Nd1—N565.9 (2)C26—C25—C24120.7 (8)
N2i—Nd1—N5149.6 (2)C27—C26—C25117.7 (10)
O1—Nd1—N524.99 (17)C27—C26—H26A121.2
O2—Nd1—N524.64 (17)C25—C26—H26A121.2
N6—Nd1—N592.92 (19)C26—C27—C26ii121.2 (13)
N8—Nd1—N579.0 (2)C26—C27—H27A119.4
N7—Nd1—N596.63 (19)C26ii—C27—H27A119.4
C1—Pt1—C3178.9 (3)N11—C28—C29175 (3)
C1—Pt1—C488.8 (3)C28—C29—H29A109.5
C3—Pt1—C490.2 (3)C28—C29—H29B109.5
C1—Pt1—C290.7 (3)H29A—C29—H29B109.5
C3—Pt1—C290.3 (3)C28—C29—H29C109.5
C4—Pt1—C2178.1 (3)H29A—C29—H29C109.5
N1—C1—Pt1178.6 (8)H29B—C29—H29C109.5
N2—C2—Pt1177.1 (8)C1—N1—Nd1160.2 (7)
N3—C3—Pt1176.4 (9)C2—N2—Nd1iii166.1 (7)
N4—C4—Pt1179.0 (7)O3—N5—O2122.3 (7)
N6—C5—C6123.8 (8)O3—N5—O1120.4 (7)
N6—C5—H5A118.1O2—N5—O1117.3 (6)
C6—C5—H5A118.1O3—N5—Nd1173.9 (6)
C7—C6—C5119.4 (10)O2—N5—Nd159.7 (4)
C7—C6—H6A120.3O1—N5—Nd158.0 (3)
C5—C6—H6A120.3C5—N6—C9116.7 (8)
C6—C7—C8118.4 (9)C5—N6—Nd1121.8 (5)
C6—C7—H7A120.8C9—N6—Nd1121.5 (6)
C8—C7—H7A120.8C10—N7—C14120.1 (7)
C7—C8—C9119.4 (9)C10—N7—Nd1119.4 (5)
C7—C8—H8A120.3C14—N7—Nd1118.8 (5)
C9—C8—H8A120.3C19—N8—C15119.3 (8)
N6—C9—C8122.4 (8)C19—N8—Nd1119.8 (6)
N6—C9—C10116.0 (7)C15—N8—Nd1120.5 (6)
C8—C9—C10121.6 (8)C22—N9—C24116.9 (8)
N7—C10—C11120.4 (9)C25—N10—C25ii119.6 (11)
N7—C10—C9117.9 (7)N5—O1—Nd197.0 (4)
C11—C10—C9121.7 (8)N5—O2—Nd195.6 (4)
C12—C11—C10118.3 (10)Nd1—O4—H4A118.3
C12—C11—H11A120.9Nd1—O4—H4B139.2
C10—C11—H11A120.9H4A—O4—H4B97.6
C13—C12—C11121.0 (9)Nd1—O5—H5B127.5
C13—C12—H12A119.5Nd1—O5—H5C122.0
C11—C12—H12A119.5H5B—O5—H5C107.0
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y, z+1/2; (iii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N4iv0.852.002.760 (9)149.1
O4—H4B···N3v0.852.002.814 (10)160.5
O5—H5B···N9vi0.852.162.993 (9)167.4
O5—H5C···O1i0.851.992.770 (8)152.2
Symmetry codes: (i) x, y+1, z1/2; (iv) x+1/2, y1/2, z1/2; (v) x+1/2, y+3/2, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[NdPt(CN)4(NO3)(C15H11N3)(H2O)2]·C2H3N·0.5C15H11N3
Mr932.4
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)33.231 (6), 14.3642 (17), 13.823 (3)
β (°) 108.931 (16)
V3)6241.5 (19)
Z8
Radiation typeMo Kα
µ (mm1)6.18
Crystal size (mm)0.45 × 0.17 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionAnalytical
(SADABS; Bruker, 1998)
Tmin, Tmax0.308, 0.632
No. of measured, independent and
observed [I > 2σ(I)] reflections
5824, 5722, 4089
Rint0.031
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.00
No. of reflections5722
No. of parameters420
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.84

Computer programs: CAD-4-PC Software (Enraf–Nonius, 1993), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N4i0.852.002.760 (9)149.1
O4—H4B···N3ii0.852.002.814 (10)160.5
O5—H5B···N9iii0.852.162.993 (9)167.4
O5—H5C···O1iv0.851.992.770 (8)152.2
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x+1/2, y+3/2, z; (iii) x+1, y+1, z; (iv) x, y+1, z1/2.
 

Acknowledgements

The authors gratefully acknowledge the National Science Foundation for their generous support (NSF-CAREER grant to RES, CHE-0846680).

References

First citationBruker (1998). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnraf–Nonius (1993). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGliemann, G. & Yersin, H. (1985). Struct. Bond. 62 87–153.  CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHolzapfel, W., Yersin, H. & Gliemann, G. (1981). Z. Kristallogr. 157, 47–67.  CrossRef CAS Web of Science Google Scholar
First citationMaynard, B. A., Kalachnikova, K., Whitehead, K., Assefa, Z. & Sykora, R. E. (2008). Inorg. Chem. 47, 1895–1897.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaynard, B. A., Smith, P. A., Jaleel, A., Ladner, L. & Sykora, R. E. (2009). J. Solid State Chem. Submitted.  Google Scholar
First citationMaynard, B. A., Smith, P. A., Ladner, L., Jaleel, A., Beedoe, N., Crawford, C., Assefa, Z. & Sykora, R. E. (2009). Inorg. Chem. 48, 6425–6435.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMukkala, V.-M., Takalo, H., Liitti, P. & Hemmilä, I. (1995). J. Alloys Compd, 225 507–510.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1132-m1133
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds