metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1099-m1100

Bis(ethyl­enedi­amine-κ2N,N′)(nitrato-κ2O,O′)cobalt(III) hydroxide nitrate

aJilin Provincial Universities Engineering Research Center for Chemical Separation Technology, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China, and bDepartment of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
*Correspondence e-mail: xiaoshuqu@yahoo.com.cn

(Received 6 July 2009; accepted 13 August 2009; online 19 August 2009)

The Co ion in the title salt, [Co(NO3)(H2NCH2CH2NH2)2](OH)(NO3), has oxidation state + III and is coordinated by four N atoms from two ethyl­enediamine mol­ecules and two O atoms from a nitrate anion in a distorted octa­hedral geometry. The charge of the complex cation is balanced by a hydroxide anion and a nitrate anion. The cations and anions are connected by N—H⋯O and O—H⋯O hydrogen bonds, resulting in a three-dimensional supra­molecular framework. There are two independent ion pairs with similar configurations in the unit cell. Both uncoordinated nitrate counter-anions are disordered.

Related literature

For diethyl­enediamine-chelated Co(III) complexes with Cl or SO42− as the second ligand, see: Anderson et al. (1977[Anderson, B., Milburn, R. M., Harrowfield, J. M., Robertson, G. & Sargeson, A. M. (1977). J. Am. Chem. Soc. 99, 2652-2661.]); Niederhoffer et al. (1986[Niederhoffer, E. C., Peascoe, R., Rudolf, P. R., Clearfield, A. & Martell, A. E. (1986). Acta Cryst. C42, 568-570.]); Sharma et al. (2006a[Sharma, R. P., Sharma, R., Bala, R., Burrows, A. D., Mahon, M. F. & Cassar, K. (2006a). J. Mol. Struct. 794, 173-180.],b[Sharma, R. P., Sharma, R., Bala, R., Salas, J. M. & Quiros, M. (2006b). J. Mol. Struct. 794, 341-347.],c[Sharma, R. P., Sharma, R., Bala, R. & Venugopalan, P. (2006c). J. Mol. Struct. 789, 133-141.]). For comparison Co—N and Co—O distances, see: Bruggemann & Thewalt (1994[Bruggemann, R. C. Y. & Thewalt, U. (1994). Z. Naturforsch. Teil B 49, 1531-1538.]); Sharma et al. (2005[Sharma, R. P., Sharma, R., Bala, R., Quiros, M. & Salas, J. M. (2005). J. Coord. Chem. 58, 1099-1104.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NO3)(C2H8N2)2](OH)(NO3)

  • Mr = 320.17

  • Monoclinic, P 21 /c

  • a = 9.5212 (13) Å

  • b = 23.163 (3) Å

  • c = 12.6473 (13) Å

  • β = 118.491 (7)°

  • V = 2451.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 296 K

  • 0.38 × 0.34 × 0.28 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.585, Tmax = 0.660

  • 13327 measured reflections

  • 4801 independent reflections

  • 3864 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.00

  • 4801 reflections

  • 379 parameters

  • 156 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯O10 0.98 1.97 2.906 (8) 158
O14—H14⋯O8 0.87 2.04 2.78 (3) 143
N1—H1A⋯O4i 0.90 2.17 3.032 (3) 160
N1—H1B⋯O5ii 0.90 2.19 2.995 (3) 148
N2—H2A⋯O14iii 0.90 2.00 2.888 (4) 168
N2—H2B⋯O8iv 0.90 2.25 3.045 (19) 148
N3—H3A⋯O6ii 0.90 2.10 2.986 (3) 169
N3—H3B⋯O9i 0.90 2.33 3.14 (2) 150
N4—H4A⋯O3v 0.90 2.22 3.004 (3) 145
N4—H4B⋯O12 0.90 2.26 3.071 (14) 150
N6—H5A⋯O12i 0.90 2.10 2.973 (14) 163
N6—H5B⋯O13vi 0.90 2.53 3.258 (4) 138
N7—H6A⋯O2v 0.90 1.99 2.881 (3) 168
N7—H6B⋯O1 0.90 1.98 2.873 (3) 169
N8—H7A⋯O7 0.90 2.18 2.988 (7) 149
N8—H7B⋯O6vii 0.90 2.01 2.887 (3) 163
N9—H8A⋯O11viii 0.90 2.29 3.088 (9) 147
N9—H8A⋯O12i 0.90 2.58 3.08 (2) 115
N9—H8B⋯O3 0.90 2.19 3.065 (3) 163
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) -x+1, -y, -z+1; (viii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, a lot of diethylenediamine chelated Co(III) complexes which Cl- or SO42- appeared as the second ligands have been reported (Niederhoffer et al., 1986; Anderson et al., 1977; Sharma et al., 2006a,b,c). However, nitrite coordinated diethylenediamine chelated Co(III) complexes have not been reported. In this work, a new diethylenediamine chelated Co(III) complexes coordinated by a nitrite have been synthesized, and its structure is reported here.

The structure of the cation is given in Fig. 1. There are two crystallographically independent molecules in the asymmetric unit. The two molecules are almost identical. The cation consists of cobalt(III) coordinated by four nitrogen atoms from two ethylenediamine and two oxygen atoms from one nitrite. There is also a hydroxide and a nitrite appeared as the counter ions in the crystal. The Co—N and Co—O distances are normal (Sharma et al., 2005, Bruggemann et al., 1994).

In the crystal structure of title compound, there is strongly multipoint directional hydrogen bonds interactions among the [Co(en)2(NO3)] 2+ subunit, hydroxide and nitrite anions in the range of 0.278 (3) nm-0.3424 (12) nm. Thus, the complex cations and the hydroxide and nitrite anions are connected to result in a three-dimensional supramolecular framework through O–H···O and N–H···O hydrogen-bonding interactions.

Related literature top

For diethylenediamine-chelated Co(III) complexes with Cl- or SO42- as the second ligand, see: Anderson et al. (1977); Niederhoffer et al. (1986); Sharma et al. (2006a,b,c). For comparison Co—N and Co—O distances, see: Bruggemann et al. (1994); Sharma et al. (2005).

Experimental top

The K6 H2[Nb6O19](H2O)13 oxidant (0.15 g, 0.11 mmol), Co(NO3)2 (0.15 g, 0.8 mmol) and 0.5 ml en in water (15 ml) was stirred for a hour at 80 °C. The resulting solution was filtered. Purple single crystals were obtained by slow evaporation of the filtrate at room temperature (yield 56% based on Co).

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C). The imino H atoms were located in a difference Fourier map and refined isotropically with Uiso(H) = 1.2 Ueq(N). The hydroxy H atoms were also located in a difference Fourier map and refined isotropically with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoids are drawn at the 50% probability level.
Bis(ethylenediamine-κ2N,N')(nitrato- κ2O,O')cobalt(III) hydroxide nitrate top
Crystal data top
[Co(NO3)(C2H8N2)2](OH)(NO3)F(000) = 1328
Mr = 320.17Dx = 1.735 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4566 reflections
a = 9.5212 (13) Åθ = 1.8–27.5°
b = 23.163 (3) ŵ = 1.44 mm1
c = 12.6473 (13) ÅT = 296 K
β = 118.491 (7)°Block, purple
V = 2451.4 (5) Å30.38 × 0.34 × 0.28 mm
Z = 8
Data collection top
Bruker APEX CCD area-detector
diffractometer
4801 independent reflections
Radiation source: fine-focus sealed tube3864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 511
Tmin = 0.585, Tmax = 0.660k = 2828
13327 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0685P)2]
where P = (Fo2 + 2Fc2)/3
4801 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.72 e Å3
156 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Co(NO3)(C2H8N2)2](OH)(NO3)V = 2451.4 (5) Å3
Mr = 320.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.5212 (13) ŵ = 1.44 mm1
b = 23.163 (3) ÅT = 296 K
c = 12.6473 (13) Å0.38 × 0.34 × 0.28 mm
β = 118.491 (7)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4801 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3864 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.660Rint = 0.080
13327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043156 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.00Δρmax = 0.72 e Å3
4801 reflectionsΔρmin = 0.94 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.63400 (4)0.342196 (16)0.24054 (3)0.02089 (13)
Co20.63022 (5)0.091878 (15)0.34954 (3)0.02108 (13)
O10.6097 (3)0.26004 (9)0.23269 (19)0.0282 (5)
O20.6617 (3)0.31005 (8)0.11093 (19)0.0285 (5)
O30.6478 (3)0.21277 (9)0.0920 (2)0.0383 (6)
O40.7145 (2)0.05508 (8)0.50374 (18)0.0247 (4)
O50.5824 (2)0.01077 (8)0.33416 (18)0.0259 (5)
O60.6690 (3)0.04038 (9)0.5060 (2)0.0349 (5)
O70.3076 (11)0.2225 (4)0.3737 (11)0.078 (3)0.65
O80.083 (2)0.2623 (16)0.2871 (12)0.089 (9)0.30
O90.207 (3)0.2545 (12)0.4756 (10)0.080 (7)0.50
O100.7596 (13)0.5293 (3)0.6156 (7)0.068 (2)0.80
O110.6248 (9)0.4956 (4)0.4388 (4)0.0504 (18)0.75
O120.737 (2)0.4389 (3)0.5867 (12)0.057 (3)0.70
O7A0.265 (2)0.2069 (7)0.3600 (18)0.087 (7)0.35
O8A0.0835 (10)0.2683 (6)0.2866 (7)0.063 (3)0.70
O9A0.184 (2)0.2457 (11)0.4693 (9)0.061 (3)0.50
O10A0.795 (5)0.5268 (11)0.616 (2)0.078 (10)0.20
O11A0.674 (3)0.4977 (14)0.4408 (10)0.065 (7)0.25
O12A0.768 (6)0.4390 (7)0.582 (3)0.064 (10)0.30
N10.6761 (3)0.42325 (10)0.2250 (2)0.0261 (5)
H1A0.66110.43010.15020.031*
H1B0.60770.44560.23710.031*
N20.8638 (3)0.33570 (11)0.3456 (2)0.0311 (6)
H2A0.88520.33390.42290.037*
H2B0.90080.30330.32810.037*
N30.4046 (3)0.35017 (11)0.1353 (2)0.0292 (6)
H3A0.38230.38550.10170.035*
H3B0.37060.32370.07620.035*
N40.5871 (3)0.35552 (11)0.3722 (2)0.0292 (6)
H4A0.60750.32320.41680.035*
H4B0.65020.38390.41990.035*
N50.6397 (4)0.25792 (13)0.1409 (3)0.0435 (7)
N60.8303 (3)0.07897 (11)0.3447 (2)0.0293 (6)
H5A0.80870.06610.27140.035*
H5B0.88840.05190.39910.035*
N70.7121 (3)0.16859 (10)0.4071 (2)0.0289 (6)
H6A0.68700.17930.46440.035*
H6B0.66840.19410.34630.035*
N80.4281 (3)0.10719 (11)0.3472 (2)0.0308 (6)
H7A0.43030.14230.37830.037*
H7B0.41080.08070.39180.037*
N90.5185 (3)0.11287 (11)0.1795 (2)0.0302 (6)
H8A0.50630.08140.13430.036*
H8B0.57690.13880.16410.036*
N100.6554 (3)0.00506 (12)0.4507 (3)0.0394 (7)
N110.1917 (4)0.24459 (12)0.3766 (3)0.0401 (7)
N120.7160 (3)0.48825 (12)0.5470 (3)0.0370 (7)
C10.8423 (4)0.43773 (14)0.3142 (4)0.0423 (9)
H1C0.87930.47070.28710.051*
H1D0.84840.44720.39100.051*
C20.9419 (4)0.38679 (16)0.3266 (4)0.0518 (11)
H2C1.04780.39180.39450.062*
H2D0.95240.38190.25460.062*
C30.3235 (5)0.34185 (18)0.2100 (4)0.0482 (10)
H3C0.21590.35730.16860.058*
H3D0.31700.30100.22430.058*
C40.4164 (5)0.37191 (19)0.3238 (4)0.0502 (10)
H4C0.37920.36120.38030.060*
H4D0.40410.41330.31130.060*
C50.8883 (4)0.16771 (14)0.4572 (3)0.0376 (8)
H5C0.93850.14990.53620.045*
H5D0.92900.20670.46460.045*
C60.9235 (4)0.13326 (15)0.3715 (3)0.0400 (8)
H6C0.89280.15490.29810.048*
H6D1.03680.12480.40780.048*
C70.2979 (4)0.10441 (16)0.2198 (3)0.0405 (8)
H7C0.20100.12210.21180.049*
H7D0.27510.06470.19270.049*
C80.3603 (4)0.13742 (16)0.1477 (3)0.0409 (9)
H8C0.28850.13310.06220.049*
H8D0.36970.17820.16760.049*
O140.0621 (4)0.18855 (15)0.0907 (3)0.0656 (9)
H140.00710.21470.13420.079*
O130.9458 (4)0.54280 (13)0.8748 (3)0.0680 (9)
H130.90310.53010.79090.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0252 (2)0.0169 (2)0.0252 (2)0.00281 (15)0.01582 (18)0.00258 (15)
Co20.0280 (2)0.0156 (2)0.0247 (2)0.00050 (15)0.01659 (18)0.00059 (15)
O10.0430 (13)0.0187 (10)0.0342 (12)0.0029 (9)0.0277 (11)0.0043 (8)
O20.0451 (13)0.0188 (10)0.0326 (12)0.0001 (9)0.0274 (10)0.0018 (9)
O30.0585 (16)0.0190 (11)0.0524 (15)0.0003 (10)0.0387 (13)0.0096 (10)
O40.0348 (12)0.0168 (10)0.0254 (10)0.0026 (8)0.0166 (9)0.0009 (8)
O50.0329 (11)0.0188 (10)0.0247 (11)0.0028 (8)0.0125 (9)0.0012 (8)
O60.0497 (14)0.0169 (10)0.0436 (14)0.0006 (9)0.0267 (12)0.0101 (9)
O70.060 (4)0.051 (5)0.133 (6)0.026 (4)0.054 (4)0.009 (4)
O80.077 (14)0.085 (16)0.055 (9)0.031 (11)0.009 (10)0.023 (10)
O90.110 (13)0.074 (10)0.046 (5)0.012 (8)0.029 (6)0.019 (5)
O100.059 (5)0.063 (3)0.079 (4)0.009 (3)0.030 (3)0.038 (3)
O110.059 (4)0.055 (3)0.036 (2)0.010 (3)0.022 (2)0.010 (2)
O120.086 (6)0.041 (3)0.045 (4)0.004 (3)0.033 (4)0.009 (3)
O7A0.086 (12)0.039 (8)0.145 (13)0.027 (8)0.061 (10)0.010 (8)
O8A0.060 (5)0.074 (6)0.061 (5)0.034 (4)0.033 (4)0.024 (5)
O9A0.065 (6)0.063 (8)0.059 (6)0.011 (6)0.033 (5)0.009 (6)
O10A0.050 (17)0.061 (12)0.116 (16)0.045 (13)0.034 (13)0.030 (13)
O11A0.095 (17)0.076 (11)0.064 (8)0.025 (11)0.071 (9)0.035 (7)
O12A0.11 (2)0.044 (8)0.045 (10)0.027 (10)0.038 (11)0.009 (7)
N10.0287 (13)0.0211 (12)0.0323 (14)0.0023 (10)0.0176 (11)0.0031 (11)
N20.0299 (14)0.0304 (14)0.0348 (15)0.0058 (11)0.0168 (12)0.0069 (11)
N30.0283 (14)0.0258 (14)0.0339 (15)0.0003 (10)0.0152 (12)0.0012 (11)
N40.0378 (15)0.0238 (13)0.0329 (14)0.0016 (11)0.0225 (12)0.0004 (11)
N50.0473 (19)0.0405 (17)0.0500 (19)0.0032 (14)0.0293 (15)0.0046 (14)
N60.0341 (15)0.0282 (13)0.0320 (14)0.0008 (11)0.0209 (12)0.0016 (11)
N70.0461 (16)0.0170 (12)0.0296 (14)0.0001 (11)0.0229 (13)0.0023 (10)
N80.0387 (15)0.0260 (13)0.0386 (15)0.0060 (11)0.0273 (13)0.0061 (11)
N90.0389 (16)0.0279 (14)0.0262 (14)0.0041 (11)0.0175 (12)0.0014 (11)
N100.0416 (17)0.0329 (16)0.0528 (19)0.0020 (12)0.0298 (15)0.0047 (13)
N110.0412 (17)0.0253 (15)0.0535 (19)0.0038 (13)0.0224 (15)0.0017 (14)
N120.0438 (17)0.0335 (16)0.0456 (17)0.0023 (13)0.0310 (15)0.0034 (13)
C10.0336 (19)0.0314 (18)0.056 (2)0.0060 (14)0.0162 (17)0.0015 (16)
C20.0319 (19)0.044 (2)0.075 (3)0.0017 (16)0.0223 (19)0.011 (2)
C30.0321 (19)0.066 (3)0.054 (2)0.0009 (17)0.0268 (18)0.0038 (19)
C40.044 (2)0.065 (3)0.056 (2)0.0075 (19)0.036 (2)0.002 (2)
C50.042 (2)0.0274 (17)0.042 (2)0.0103 (14)0.0186 (16)0.0045 (15)
C60.0352 (19)0.0390 (19)0.052 (2)0.0078 (15)0.0256 (17)0.0018 (17)
C70.0306 (18)0.0392 (19)0.051 (2)0.0031 (15)0.0192 (16)0.0080 (17)
C80.038 (2)0.040 (2)0.038 (2)0.0047 (15)0.0129 (16)0.0072 (16)
O140.0562 (19)0.094 (2)0.0485 (17)0.0051 (16)0.0264 (15)0.0153 (16)
O130.062 (2)0.066 (2)0.072 (2)0.0089 (15)0.0289 (17)0.0057 (16)
Geometric parameters (Å, º) top
Co1—O11.914 (2)N3—H3A0.8998
Co1—O21.930 (2)N3—H3B0.8999
Co1—N41.944 (3)N4—C41.487 (4)
Co1—N11.949 (2)N4—H4A0.9000
Co1—N21.950 (3)N4—H4B0.9001
Co1—N31.950 (3)N6—C61.482 (4)
Co1—N52.338 (3)N6—H5A0.9000
Co2—O41.919 (2)N6—H5B0.9001
Co2—O51.921 (2)N7—C51.484 (4)
Co2—N71.937 (2)N7—H6A0.9002
Co2—N81.943 (3)N7—H6B0.9004
Co2—N91.952 (3)N8—C71.494 (4)
Co2—N61.958 (3)N8—H7A0.9000
Co2—N102.334 (3)N8—H7B0.9000
O1—N51.322 (4)N9—C81.475 (4)
O2—N51.312 (3)N9—H8A0.8999
O3—N51.236 (4)N9—H8B0.9001
O4—N101.323 (3)C1—C21.474 (5)
O5—N101.302 (3)C1—H1C0.9700
O6—N101.236 (4)C1—H1D0.9700
O7—N111.233 (6)C2—H2C0.9700
O8—N111.183 (8)C2—H2D0.9700
O9—N111.212 (8)C3—C41.458 (6)
O10—N121.219 (5)C3—H3C0.9700
O11—N121.233 (5)C3—H3D0.9700
O12—N121.227 (6)C4—H4C0.9700
O7A—N111.199 (8)C4—H4D0.9700
O8A—N111.241 (5)C5—C61.507 (5)
O9A—N111.210 (7)C5—H5C0.9700
O10A—N121.225 (9)C5—H5D0.9700
O11A—N121.226 (9)C6—H6C0.9700
O12A—N121.236 (10)C6—H6D0.9700
N1—C11.479 (4)C7—C81.512 (5)
N1—H1A0.9000C7—H7C0.9700
N1—H1B0.9000C7—H7D0.9700
N2—C21.476 (4)C8—H8C0.9700
N2—H2A0.8999C8—H8D0.9700
N2—H2B0.8996O14—H140.8708
N3—C31.489 (5)O13—H130.9823
O1—Co1—O268.55 (8)Co2—N8—H7B110.0
O1—Co1—N497.52 (10)H7A—N8—H7B108.3
O2—Co1—N4165.82 (10)C8—N9—Co2110.2 (2)
O1—Co1—N1167.98 (10)C8—N9—H8A109.5
O2—Co1—N199.67 (10)Co2—N9—H8A109.6
N4—Co1—N194.35 (11)C8—N9—H8B109.8
O1—Co1—N291.56 (10)Co2—N9—H8B109.6
O2—Co1—N289.15 (11)H8A—N9—H8B108.1
N4—Co1—N294.04 (12)O6—N10—O5125.6 (3)
N1—Co1—N285.71 (10)O6—N10—O4123.7 (3)
O1—Co1—N389.45 (10)O5—N10—O4110.7 (3)
O2—Co1—N391.12 (11)O6—N10—Co2178.9 (2)
N4—Co1—N385.94 (11)O5—N10—Co255.40 (14)
N1—Co1—N393.28 (10)O4—N10—Co255.30 (14)
N2—Co1—N3178.98 (11)O8—N11—O7A113.6 (18)
O1—Co1—N534.43 (10)O8—N11—O9A119.3 (15)
O2—Co1—N534.14 (9)O7A—N11—O9A119.8 (9)
N4—Co1—N5131.93 (11)O8—N11—O9122.8 (9)
N1—Co1—N5133.72 (11)O7A—N11—O9121.8 (17)
N2—Co1—N589.75 (11)O9A—N11—O913 (3)
N3—Co1—N591.02 (11)O8—N11—O7120.0 (9)
O4—Co2—O568.44 (8)O7A—N11—O724.0 (14)
O4—Co2—N797.30 (10)O9A—N11—O7120.6 (12)
O5—Co2—N7165.56 (10)O9—N11—O7116.3 (8)
O4—Co2—N891.59 (10)O8—N11—O8A6 (3)
O5—Co2—N889.52 (10)O7A—N11—O8A117.4 (9)
N7—Co2—N893.24 (11)O9A—N11—O8A118.1 (7)
O4—Co2—N9167.03 (10)O9—N11—O8A120.1 (12)
O5—Co2—N998.85 (10)O7—N11—O8A121.3 (8)
N7—Co2—N995.50 (11)O10—N12—O10A16 (3)
N8—Co2—N985.56 (11)O10—N12—O11A117.6 (18)
O4—Co2—N691.29 (10)O10A—N12—O11A115.0 (12)
O5—Co2—N692.00 (10)O10—N12—O12120.2 (6)
N7—Co2—N685.91 (11)O10A—N12—O12118 (2)
N8—Co2—N6177.08 (11)O11A—N12—O12121 (2)
N9—Co2—N691.74 (11)O10—N12—O11120.2 (5)
O4—Co2—N1034.52 (9)O10A—N12—O11124.0 (19)
O5—Co2—N1033.92 (9)O11A—N12—O1121.7 (13)
N7—Co2—N10131.79 (11)O12—N12—O11118.3 (6)
N8—Co2—N1090.43 (10)O10—N12—O12A121.6 (19)
N9—Co2—N10132.70 (11)O10A—N12—O12A114.5 (12)
N6—Co2—N1092.22 (11)O11A—N12—O12A114.9 (12)
N5—O1—Co190.63 (17)O12—N12—O12A15 (3)
N5—O2—Co190.25 (18)O11—N12—O12A118.1 (19)
N10—O4—Co290.18 (17)C2—C1—N1107.4 (3)
N10—O5—Co290.68 (17)C2—C1—H1C110.2
C1—N1—Co1109.76 (19)N1—C1—H1C110.2
C1—N1—H1A109.7C2—C1—H1D110.2
Co1—N1—H1A109.7N1—C1—H1D110.2
C1—N1—H1B109.7H1C—C1—H1D108.5
Co1—N1—H1B109.7C1—C2—N2108.1 (3)
H1A—N1—H1B108.2C1—C2—H2C110.1
C2—N2—Co1108.4 (2)N2—C2—H2C110.1
C2—N2—H2A110.1C1—C2—H2D110.1
Co1—N2—H2A110.0N2—C2—H2D110.1
C2—N2—H2B110.1H2C—C2—H2D108.4
Co1—N2—H2B109.9C4—C3—N3108.1 (3)
H2A—N2—H2B108.4C4—C3—H3C110.1
C3—N3—Co1107.8 (2)N3—C3—H3C110.1
C3—N3—H3A109.9C4—C3—H3D110.1
Co1—N3—H3A110.1N3—C3—H3D110.1
C3—N3—H3B110.4H3C—C3—H3D108.4
Co1—N3—H3B110.1C3—C4—N4108.3 (3)
H3A—N3—H3B108.4C3—C4—H4C110.0
C4—N4—Co1109.9 (2)N4—C4—H4C110.0
C4—N4—H4A109.7C3—C4—H4D110.0
Co1—N4—H4A109.6N4—C4—H4D110.0
C4—N4—H4B109.8H4C—C4—H4D108.4
Co1—N4—H4B109.7N7—C5—C6107.1 (3)
H4A—N4—H4B108.2N7—C5—H5C110.3
O3—N5—O2125.2 (3)C6—C5—H5C110.3
O3—N5—O1124.2 (3)N7—C5—H5D110.3
O2—N5—O1110.5 (3)C6—C5—H5D110.3
O3—N5—Co1177.6 (3)H5C—C5—H5D108.5
O2—N5—Co155.62 (15)N6—C6—C5107.4 (3)
O1—N5—Co154.94 (15)N6—C6—H6C110.2
C6—N6—Co2110.4 (2)C5—C6—H6C110.2
C6—N6—H5A109.6N6—C6—H6D110.2
Co2—N6—H5A109.6C5—C6—H6D110.2
C6—N6—H5B109.5H6C—C6—H6D108.5
Co2—N6—H5B109.6N8—C7—C8105.4 (3)
H5A—N6—H5B108.1N8—C7—H7C110.7
C5—N7—Co2108.56 (18)C8—C7—H7C110.7
C5—N7—H6A109.9N8—C7—H7D110.7
Co2—N7—H6A110.0C8—C7—H7D110.7
C5—N7—H6B109.9H7C—C7—H7D108.8
Co2—N7—H6B110.0N9—C8—C7106.5 (3)
H6A—N7—H6B108.3N9—C8—H8C110.4
C7—N8—Co2108.4 (2)C7—C8—H8C110.4
C7—N8—H7A110.2N9—C8—H8D110.4
Co2—N8—H7A110.0C7—C8—H8D110.4
C7—N8—H7B109.9H8C—C8—H8D108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O100.981.972.906 (8)158
O14—H14···O80.872.042.78 (3)143
N1—H1A···O4i0.902.173.032 (3)160
N1—H1B···O5ii0.902.192.995 (3)148
N2—H2A···O14iii0.902.002.888 (4)168
N2—H2B···O8iv0.902.253.045 (19)148
N3—H3A···O6ii0.902.102.986 (3)169
N3—H3B···O9i0.902.333.14 (2)150
N3—H3B···O7i0.902.573.424 (12)159
N4—H4A···O3v0.902.223.004 (3)145
N4—H4B···O110.902.623.328 (10)136
N4—H4B···O120.902.263.071 (14)150
N6—H5A···O12i0.902.102.973 (14)163
N6—H5B···O13i0.902.322.985 (4)131
N6—H5B···O13vi0.902.533.258 (4)138
N7—H6A···O2v0.901.992.881 (3)168
N7—H6B···O10.901.982.873 (3)169
N8—H7A···O70.902.182.988 (7)149
N8—H7B···O6vii0.902.012.887 (3)163
N9—H8A···O11viii0.902.293.088 (9)147
N9—H8A···O12i0.902.583.08 (2)115
N9—H8B···O30.902.193.065 (3)163
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y+1/2, z+1/2; (vi) x+2, y1/2, z+3/2; (vii) x+1, y, z+1; (viii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(NO3)(C2H8N2)2](OH)(NO3)
Mr320.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.5212 (13), 23.163 (3), 12.6473 (13)
β (°) 118.491 (7)
V3)2451.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.38 × 0.34 × 0.28
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.585, 0.660
No. of measured, independent and
observed [I > 2σ(I)] reflections
13327, 4801, 3864
Rint0.080
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.00
No. of reflections4801
No. of parameters379
No. of restraints156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.94

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O100.981.972.906 (8)157.6
O14—H14···O80.872.042.78 (3)142.9
N1—H1A···O4i0.902.173.032 (3)160.1
N1—H1B···O5ii0.902.192.995 (3)148.0
N2—H2A···O14iii0.902.002.888 (4)167.5
N2—H2B···O8iv0.902.253.045 (19)147.7
N3—H3A···O6ii0.902.102.986 (3)168.5
N3—H3B···O9i0.902.333.14 (2)149.9
N3—H3B···O7i0.902.573.424 (12)158.9
N4—H4A···O3v0.902.223.004 (3)145.0
N4—H4B···O110.902.623.328 (10)136.1
N4—H4B···O120.902.263.071 (14)150.2
N6—H5A···O12i0.902.102.973 (14)163.2
N6—H5B···O13i0.902.322.985 (4)131.0
N6—H5B···O13vi0.902.533.258 (4)138.3
N7—H6A···O2v0.901.992.881 (3)168.1
N7—H6B···O10.901.982.873 (3)168.6
N8—H7A···O70.902.182.988 (7)149.1
N8—H7B···O6vii0.902.012.887 (3)162.9
N9—H8A···O11viii0.902.293.088 (9)147.1
N9—H8A···O12i0.902.583.08 (2)115.3
N9—H8B···O30.902.193.065 (3)162.8
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y+1/2, z+1/2; (vi) x+2, y1/2, z+3/2; (vii) x+1, y, z+1; (viii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the Jilin Province Science and Technology Development Plan (200705 C18)

References

First citationAnderson, B., Milburn, R. M., Harrowfield, J. M., Robertson, G. & Sargeson, A. M. (1977). J. Am. Chem. Soc. 99, 2652–2661.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBruggemann, R. C. Y. & Thewalt, U. (1994). Z. Naturforsch. Teil B 49, 1531–1538.  Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNiederhoffer, E. C., Peascoe, R., Rudolf, P. R., Clearfield, A. & Martell, A. E. (1986). Acta Cryst. C42, 568–570.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSharma, R. P., Sharma, R., Bala, R., Burrows, A. D., Mahon, M. F. & Cassar, K. (2006a). J. Mol. Struct. 794, 173-180.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, R. P., Sharma, R., Bala, R., Quiros, M. & Salas, J. M. (2005). J. Coord. Chem. 58, 1099–1104.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, R. P., Sharma, R., Bala, R., Salas, J. M. & Quiros, M. (2006b). J. Mol. Struct. 794, 341–347.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, R. P., Sharma, R., Bala, R. & Venugopalan, P. (2006c). J. Mol. Struct. 789, 133–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1099-m1100
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds