organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2157-o2158

n-Butyl 2-(3-chloro-1,2-di­hydro­pyrazin-2-yl­­idene)-2-cyano­acetate

aFaculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, Gdańsk PL 80952, Poland, and bFaculty of Chemistry, Gdańsk University Of Techology, Narutowicza 11/12, Gdańsk PL 80233, Poland
*Correspondence e-mail: lukas_ponikiewski@vp.pl

(Received 13 July 2009; accepted 12 August 2009; online 15 August 2009)

The title compound, C11H12ClN3O2, is essentially planar except for the n-but­oxy group [r.m.s. deviation from the least-squares plane = 0.0131 (1) Å for 11 non-H atoms]. An intra­molecular N—H⋯O inter­action results in the formation of an S(6) ring. The n-butoxy chain in the molecule is disordered over two sets of sites of equal occupancy.

Related literature

For applications of this class of compounds, see: Matter et al. (2005); Kaliszan et al. (1985[Kaliszan, R., Pilarski, B., Osmialowski, K., Strzalkowska-Grad, H. & Hrac, E. (1985). Pharm. Weekbl. [Sci], 7, 141-145.]); Petrusewicz et al. (1992[Petrusewicz, J., Gami-Yilinkou, R., Pilarski, B. & Kaliszan, R. (1992). Pharmacol. Tonic. 70, 448-452.], 1993[Petrusewicz, J., Gami-Yilinkou, R., Kaliszan, R., Pilarski, B. & Foks, H. (1993). Gen. Pharmacol. 24, 17-22.], 1995[Petrusewicz, J., Turowski, M., Foks, H., Pilarski, B. & Kaliszan, R. (1995). Life Sci. 56, 667-677.]). For pyrazin­yl–pyrazyl­idene tautomerism, see: Pilarski et al. (1984[Pilarski, B., Foks, H., Osmialowski, K. & Kaliszan, R. (1984). Monatsh. Chem. 115, 179-185.]). For related structures, see: Vishweshwar et al. (2000[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2000). Acta Cryst. C56, 1512-1514.]); Wardell et al. (2006[Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o3765-o3767.]). For the synthesis, see: Pilarski & Foks (1981[Pilarski, B. & Foks, H. (1981). Polish Patent No. P-232409.], 1982[Pilarski, B. & Foks, H. (1982). Polish Patent No. P-234716.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClN3O2

  • Mr = 253.69

  • Monoclinic, C c

  • a = 4.918 (3) Å

  • b = 25.642 (7) Å

  • c = 10.573 (4) Å

  • β = 95.80 (3)°

  • V = 1326.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 120 K

  • 0.57 × 0.11 × 0.07 mm

Data collection
  • Oxford Diffraction KM-4/Xcalibur diffractometer with a Sapphire2 (large Be window) detector

  • Absorption correction: Gaussian (CrysAlis Pro; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.923, Tmax = 0.987

  • 4629 measured reflections

  • 1687 independent reflections

  • 1219 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.156

  • S = 1.04

  • 1687 reflections

  • 154 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 466 Friedel pairs

  • Flack parameter: 0.05 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1 0.87 (2) 1.96 (5) 2.632 (6) 133 (6)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Heterocyclic compounds with active methylene moiety are known to have antiinflamatory (Petrusewicz et al., 1995), analgesic (Kaliszan et al., 1985) and large number of other pharmacological activities (Petrusewicz et al., 1992). Numerous scientific publications confirm that pyrazine derivatives, obtained by nucleophilic substitution of chlorine atom in the pyrazine ring system with active methylene compound, posses above mentioned activity. Some of pyrazine C—H and N—H acids also demonstrated antithrombotic and antiplatelet activity (Petrusewicz et al., 1993).

Such pharmacological activity (in group CH– andNH– acids) is possibly the result of acid character of particle and their structure, as in case of well known inhibitors of cyclooxygenase (Petrusewicz et al., 1993). Structural analysis of pyrazine-acetonitrile derivatives shows pyrazinyl-pyrazylidene tautomerism (Pilarski et al., 1984) but crystal of 2-butyl 2-(3-chloropyrazin- (1H)-ylidene)-2-cyanoacetateappears as NH-acid.

In the molecule of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the pyrazines skeleton are typical for this group compounds (Vishweshwar et al. 2000; Wardell et al. 2006). The compound is essentially planar except for the n-butoxy group (r.m.s. deviation from the least-squares plane - 0.0131 (1) Å for 11 non-H atoms. An intramolecular N2—H2B···O1 contact generates a S(6) ring motif which stabilizes the molecular conformation. The n-butoxy chain in the molecule is disordered over two sets of sites in a 0.50 (1):0.50 (1) ratio.

Related literature top

For applications of this class of compounds, see: Matter et al. (2005); Kaliszan et al. (1985); Petrusewicz et al. (1992, 1993, 1995). For pyrazinyl–pyrazylidene tautomerism, see: Pilarski et al. (1984). For related structures, see: Vishweshwar et al. (2000); Wardell et al. (2006). For the synthesis, see: Pilarski & Foks (1981, 1982).

Experimental top

2-butyl 2-(3-chloropyrazin-2(1H)-ylidene)-2-cyanoacetate was obtained bygeneral method described in papers (Pilarski et al., 1981; Pilarski et al., 1982). Crystallization of this compound from methanol forms a crystal.

Refinement top

Atoms O2, C8 (H8A, H8B), C9 (H9A, H9B), C10 (H10A, H10B), C11 (H11A, H11B, H11C) were disordered over two positions. During the refinement process the disordered atoms were refined with occupancies of 0.50 and 0.50. H atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å Uiso(H) = 1.2 Ueq(C) for aromatic, C—H = 0.99 Å Uiso(H) = 1.2 Ueq(C) for methylene and C—H = 0.98 Å Uiso(H) = 1.5 Ueq(C) for methyl H atoms. The H2B atom was located from difference Fourier map and refined isotropically resulting in N—H abond length 0.87 (2) Å Uiso(H) = 0.10 (2) Å2. The carbon atoms C8, C9, C10, C11 and C8A, C9A, C10A, C11A were located from a difference map, fixed at 1.50 for C—C distance and refined with the DFIX restraint. The Flack (1983) parameter was refined explicity, with both TWIN and BASF parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The moleculare structure of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
n-Butyl 2-(3-chloro-1,2-dihydropyrazin-2-ylidene)-2-cyanoacetate top
Crystal data top
C11H12ClN3O2F(000) = 528
Mr = 253.69Dx = 1.27 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1500 reflections
a = 4.918 (3) Åθ = 2.5–32.3°
b = 25.642 (7) ŵ = 0.28 mm1
c = 10.573 (4) ÅT = 120 K
β = 95.80 (3)°Block, yellow
V = 1326.7 (9) Å30.57 × 0.11 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction KM-4/Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
1687 independent reflections
Graphite monochromator1219 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.034
0.75° wide ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: gaussian
(CrysAlis PRO; Oxford Diffraction, 2007)
h = 35
Tmin = 0.923, Tmax = 0.987k = 3131
4629 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.1833P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1687 reflectionsΔρmax = 0.24 e Å3
154 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 466 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (18)
Crystal data top
C11H12ClN3O2V = 1326.7 (9) Å3
Mr = 253.69Z = 4
Monoclinic, CcMo Kα radiation
a = 4.918 (3) ŵ = 0.28 mm1
b = 25.642 (7) ÅT = 120 K
c = 10.573 (4) Å0.57 × 0.11 × 0.07 mm
β = 95.80 (3)°
Data collection top
Oxford Diffraction KM-4/Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
1687 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Oxford Diffraction, 2007)
1219 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.987Rint = 0.034
4629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.23 e Å3
1687 reflectionsAbsolute structure: Flack (1983), 466 Friedel pairs
154 parametersAbsolute structure parameter: 0.05 (18)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.7083 (3)0.42260 (5)0.30244 (15)0.0753 (4)
O10.0928 (8)0.54438 (16)0.6099 (3)0.0731 (12)
N10.4291 (11)0.36488 (18)0.4525 (5)0.0827 (13)
N20.1819 (9)0.4445 (2)0.5738 (4)0.0612 (12)
N30.7225 (16)0.55178 (17)0.2917 (6)0.0874 (12)
C10.2496 (17)0.3549 (3)0.5468 (7)0.0905 (19)
H1A0.21020.31990.56810.109*
C20.1303 (11)0.3956 (3)0.6086 (5)0.0695 (16)
H2A0.01530.38890.67370.083*
C30.3572 (10)0.4596 (2)0.4816 (4)0.0548 (12)
C40.4796 (11)0.4144 (2)0.4225 (4)0.0649 (13)
C50.4002 (10)0.5136 (2)0.4565 (4)0.0569 (10)
C60.5828 (11)0.5330 (2)0.3632 (5)0.0617 (11)
C70.2549 (12)0.5528 (2)0.5259 (5)0.0626 (15)
O20.3471 (16)0.6051 (3)0.5012 (7)0.050 (2)*0.5
C80.202 (2)0.6474 (4)0.5635 (11)0.056 (3)*0.5
H8A0.25040.6470.65660.067*0.5
H8B0.00140.64340.54580.067*0.5
C90.296 (2)0.6977 (4)0.5064 (9)0.070 (3)*0.5
H9A0.49390.70170.53310.084*0.5
H9B0.20140.72690.54440.084*0.5
C100.253 (3)0.7037 (4)0.3607 (9)0.072 (3)*0.5
H10A0.36550.67690.32310.086*0.5
H10B0.05940.69550.33310.086*0.5
C110.316 (3)0.7546 (5)0.3052 (16)0.095 (4)*0.5
H11A0.15910.76640.2480.143*0.5
H11B0.47580.7510.25730.143*0.5
H11C0.35580.78020.37340.143*0.5
O2A0.268 (2)0.6013 (4)0.4705 (9)0.071 (3)*0.5
C8A0.111 (3)0.6434 (5)0.5272 (13)0.080 (4)*0.5
H8AA0.18280.64930.61690.095*0.5
H8AB0.08430.63360.52460.095*0.5
C9A0.142 (3)0.6924 (5)0.4496 (14)0.102 (4)*0.5
H9A10.01020.68920.37280.122*0.5
H9A20.07750.72170.49980.122*0.5
C10A0.402 (3)0.7092 (5)0.4057 (13)0.092 (3)*0.5
H10C0.46680.67980.35590.11*0.5
H10D0.53350.71240.48270.11*0.5
C11A0.433 (4)0.7571 (5)0.3292 (13)0.089 (4)*0.5
H11D0.62270.76910.34210.133*0.5
H11E0.31160.78430.35610.133*0.5
H11F0.38450.74930.2390.133*0.5
H2B0.150 (14)0.4691 (19)0.627 (5)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0730 (7)0.0881 (7)0.0692 (6)0.0104 (9)0.0279 (5)0.0026 (8)
O10.085 (3)0.067 (2)0.073 (2)0.003 (2)0.035 (2)0.0011 (18)
N10.098 (3)0.070 (3)0.085 (3)0.007 (2)0.036 (2)0.001 (2)
N20.063 (3)0.067 (3)0.055 (2)0.006 (2)0.013 (2)0.003 (2)
N30.087 (3)0.098 (3)0.082 (3)0.002 (3)0.034 (2)0.021 (3)
C10.119 (5)0.063 (3)0.097 (4)0.004 (3)0.049 (4)0.001 (3)
C20.075 (4)0.071 (4)0.067 (3)0.004 (3)0.028 (3)0.002 (3)
C30.049 (3)0.073 (3)0.042 (2)0.003 (2)0.0044 (19)0.007 (2)
C40.063 (3)0.080 (4)0.053 (2)0.009 (2)0.014 (2)0.002 (2)
C50.055 (2)0.065 (3)0.052 (2)0.002 (2)0.0109 (18)0.0014 (17)
C60.058 (2)0.073 (3)0.056 (2)0.002 (2)0.014 (2)0.002 (2)
C70.069 (3)0.060 (4)0.062 (3)0.007 (3)0.018 (3)0.004 (3)
Geometric parameters (Å, º) top
Cl1—C41.791 (5)C9—H9A0.99
O1—C71.271 (7)C9—H9B0.99
N1—C41.338 (7)C10—C111.478 (14)
N1—C11.421 (8)C10—H10A0.99
N2—C21.338 (9)C10—H10B0.99
N2—C31.419 (8)C11—H11A0.98
N2—H2B0.87 (2)C11—H11B0.98
N3—C61.175 (8)C11—H11C0.98
C1—C21.392 (10)O2A—C8A1.489 (17)
C1—H1A0.95C8A—C9A1.516 (14)
C2—H2A0.95C8A—H8AA0.99
C3—C51.428 (7)C8A—H8AB0.99
C3—C41.475 (7)C9A—C10A1.469 (14)
C5—C71.472 (8)C9A—H9A10.99
C5—C61.486 (7)C9A—H9A20.99
C7—O2A1.379 (11)C10A—C11A1.487 (14)
C7—O21.448 (10)C10A—H10C0.99
O2—C81.489 (13)C10A—H10D0.99
C8—C91.514 (12)C11A—H11D0.98
C8—H8A0.99C11A—H11E0.98
C8—H8B0.99C11A—H11F0.98
C9—C101.541 (12)
C4—N1—C1118.8 (5)C10—C9—H9A107.8
C2—N2—C3126.2 (5)C8—C9—H9B107.8
C2—N2—H2B117 (5)C10—C9—H9B107.8
C3—N2—H2B114 (5)H9A—C9—H9B107.2
C2—C1—N1121.0 (6)C11—C10—C9118.2 (10)
C2—C1—H1A119.5C11—C10—H10A107.8
N1—C1—H1A119.5C9—C10—H10A107.8
N2—C2—C1118.3 (5)C11—C10—H10B107.8
N2—C2—H2A120.9C9—C10—H10B107.8
C1—C2—H2A120.9H10A—C10—H10B107.1
N2—C3—C5120.3 (5)C7—O2A—C8A115.7 (8)
N2—C3—C4112.3 (5)O2A—C8A—C9A107.3 (11)
C5—C3—C4127.5 (5)O2A—C8A—H8AA110.2
N1—C4—C3123.5 (4)C9A—C8A—H8AA110.2
N1—C4—Cl1115.1 (4)O2A—C8A—H8AB110.2
C3—C4—Cl1121.4 (4)C9A—C8A—H8AB110.2
C3—C5—C7118.7 (4)H8AA—C8A—H8AB108.5
C3—C5—C6124.0 (4)C10A—C9A—C8A123.5 (13)
C7—C5—C6117.3 (5)C10A—C9A—H9A1106.5
N3—C6—C5175.5 (5)C8A—C9A—H9A1106.5
O1—C7—O2A120.7 (6)C10A—C9A—H9A2106.5
O1—C7—O2120.9 (5)C8A—C9A—H9A2106.5
O2A—C7—O219.8 (5)H9A1—C9A—H9A2106.5
O1—C7—C5127.1 (5)C9A—C10A—C11A123.6 (13)
O2A—C7—C5111.0 (6)C9A—C10A—H10C106.4
O2—C7—C5111.5 (5)C11A—C10A—H10C106.4
C7—O2—C8115.0 (7)C9A—C10A—H10D106.4
O2—C8—C9105.3 (8)C11A—C10A—H10D106.4
O2—C8—H8A110.7H10C—C10A—H10D106.5
C9—C8—H8A110.7C10A—C11A—H11D109.5
O2—C8—H8B110.7C10A—C11A—H11E109.5
C9—C8—H8B110.7H11D—C11A—H11E109.5
H8A—C8—H8B108.8C10A—C11A—H11F109.5
C8—C9—C10117.8 (9)H11D—C11A—H11F109.5
C8—C9—H9A107.8H11E—C11A—H11F109.5
C4—N1—C1—C20.9 (10)C6—C5—C7—O1179.2 (5)
C3—N2—C2—C12.4 (9)C3—C5—C7—O2A166.0 (6)
N1—C1—C2—N22.2 (11)C6—C5—C7—O2A13.6 (8)
C2—N2—C3—C5178.1 (5)C3—C5—C7—O2172.8 (5)
C2—N2—C3—C41.2 (7)C6—C5—C7—O27.6 (8)
C1—N1—C4—C30.4 (8)O1—C7—O2—C810.3 (11)
C1—N1—C4—Cl1179.9 (5)O2A—C7—O2—C885.0 (19)
N2—C3—C4—N10.3 (7)C5—C7—O2—C8177.5 (7)
C5—C3—C4—N1179.5 (5)C7—O2—C8—C9170.4 (8)
N2—C3—C4—Cl1179.8 (3)O2—C8—C9—C1056.8 (12)
C5—C3—C4—Cl11.0 (7)C8—C9—C10—C11173.4 (12)
N2—C3—C5—C71.4 (6)O1—C7—O2A—C8A7.6 (13)
C4—C3—C5—C7179.5 (5)O2—C7—O2A—C8A89.0 (19)
N2—C3—C5—C6179.1 (5)C5—C7—O2A—C8A175.8 (9)
C4—C3—C5—C60.1 (8)C7—O2A—C8A—C9A177.5 (10)
C3—C5—C6—N318E1 (10)O2A—C8A—C9A—C10A42.8 (19)
C7—C5—C6—N30 (8)C8A—C9A—C10A—C11A179.8 (14)
C3—C5—C7—O11.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O10.87 (2)1.96 (5)2.632 (6)133 (6)

Experimental details

Crystal data
Chemical formulaC11H12ClN3O2
Mr253.69
Crystal system, space groupMonoclinic, Cc
Temperature (K)120
a, b, c (Å)4.918 (3), 25.642 (7), 10.573 (4)
β (°) 95.80 (3)
V3)1326.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.57 × 0.11 × 0.07
Data collection
DiffractometerOxford Diffraction KM-4/Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
Absorption correctionGaussian
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.923, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4629, 1687, 1219
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.156, 1.04
No. of reflections1687
No. of parameters154
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.23
Absolute structureFlack (1983), 466 Friedel pairs
Absolute structure parameter0.05 (18)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O10.87 (2)1.96 (5)2.632 (6)133 (6)
 

Acknowledgements

The authors thank Drs Katarzyna Baranowska and Antoni Konitz for helpful discussions during the preparation of the manuscript. The work has been supported by the Fund for Science in the Year 2009 as a research project (DS/8410–4-0139–9).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaliszan, R., Pilarski, B., Osmialowski, K., Strzalkowska-Grad, H. & Hrac, E. (1985). Pharm. Weekbl. [Sci], 7, 141–145.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMatter, H., Kumar, H. S. A., Fedorov, R., Frey, A., Kotsonis, P., Hartmann, E., Frohlich, L. G., Reif, A., Pfleiderer, W., Scheurer, P., Ghosh, D. K., Schlichting, I. & Schmidt, H. H. W. (2005). J. Med. Chem. 48, 4783–4792.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetrusewicz, J., Gami-Yilinkou, R., Kaliszan, R., Pilarski, B. & Foks, H. (1993). Gen. Pharmacol. 24, 17–22.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPetrusewicz, J., Gami-Yilinkou, R., Pilarski, B. & Kaliszan, R. (1992). Pharmacol. Tonic. 70, 448–452.  CrossRef CAS Google Scholar
First citationPetrusewicz, J., Turowski, M., Foks, H., Pilarski, B. & Kaliszan, R. (1995). Life Sci. 56, 667–677.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPilarski, B. & Foks, H. (1981). Polish Patent No. P-232409.  Google Scholar
First citationPilarski, B. & Foks, H. (1982). Polish Patent No. P-234716.  Google Scholar
First citationPilarski, B., Foks, H., Osmialowski, K. & Kaliszan, R. (1984). Monatsh. Chem. 115, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2000). Acta Cryst. C56, 1512–1514.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o3765–o3767.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2157-o2158
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds