organic compounds
n-Butyl 2-(3-chloro-1,2-dihydropyrazin-2-ylidene)-2-cyanoacetate
aFaculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, Gdańsk PL 80952, Poland, and bFaculty of Chemistry, Gdańsk University Of Techology, Narutowicza 11/12, Gdańsk PL 80233, Poland
*Correspondence e-mail: lukas_ponikiewski@vp.pl
The title compound, C11H12ClN3O2, is essentially planar except for the n-butoxy group [r.m.s. deviation from the least-squares plane = 0.0131 (1) Å for 11 non-H atoms]. An intramolecular N—H⋯O interaction results in the formation of an S(6) ring. The n-butoxy chain in the molecule is disordered over two sets of sites of equal occupancy.
Related literature
For applications of this class of compounds, see: Matter et al. (2005); Kaliszan et al. (1985); Petrusewicz et al. (1992, 1993, 1995). For pyrazinyl–pyrazylidene see: Pilarski et al. (1984). For related structures, see: Vishweshwar et al. (2000); Wardell et al. (2006). For the synthesis, see: Pilarski & Foks (1981, 1982).
Experimental
Crystal data
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809031870/ng2612sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809031870/ng2612Isup2.hkl
2-butyl 2-(3-chloropyrazin-2(1H)-ylidene)-2-cyanoacetate was obtained bygeneral method described in papers (Pilarski et al., 1981; Pilarski et al., 1982). Crystallization of this compound from methanol forms a crystal.
Atoms O2, C8 (H8A, H8B), C9 (H9A, H9B), C10 (H10A, H10B), C11 (H11A, H11B, H11C) were disordered over two positions. During the
process the disordered atoms were refined with occupancies of 0.50 and 0.50. H atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å Uiso(H) = 1.2 Ueq(C) for aromatic, C—H = 0.99 Å Uiso(H) = 1.2 Ueq(C) for methylene and C—H = 0.98 Å Uiso(H) = 1.5 Ueq(C) for methyl H atoms. The H2B atom was located from difference Fourier map and refined isotropically resulting in N—H abond length 0.87 (2) Å Uiso(H) = 0.10 (2) Å2. The carbon atoms C8, C9, C10, C11 and C8A, C9A, C10A, C11A were located from a difference map, fixed at 1.50 for C—C distance and refined with the DFIX restraint. The Flack (1983) parameter was refined explicity, with both TWIN and BASF parameters.Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The moleculare structure of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. |
C11H12ClN3O2 | F(000) = 528 |
Mr = 253.69 | Dx = 1.27 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1500 reflections |
a = 4.918 (3) Å | θ = 2.5–32.3° |
b = 25.642 (7) Å | µ = 0.28 mm−1 |
c = 10.573 (4) Å | T = 120 K |
β = 95.80 (3)° | Block, yellow |
V = 1326.7 (9) Å3 | 0.57 × 0.11 × 0.07 mm |
Z = 4 |
Oxford Diffraction KM-4/Xcalibur diffractometer with a Sapphire2 (large Be window) detector | 1687 independent reflections |
Graphite monochromator | 1219 reflections with I > 2σ(I) |
Detector resolution: 8.1883 pixels mm-1 | Rint = 0.034 |
0.75° wide ω scans | θmax = 25.5°, θmin = 2.5° |
Absorption correction: gaussian (CrysAlis PRO; Oxford Diffraction, 2007) | h = −3→5 |
Tmin = 0.923, Tmax = 0.987 | k = −31→31 |
4629 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.156 | w = 1/[σ2(Fo2) + (0.1833P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1687 reflections | Δρmax = 0.24 e Å−3 |
154 parameters | Δρmin = −0.23 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 466 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.05 (18) |
C11H12ClN3O2 | V = 1326.7 (9) Å3 |
Mr = 253.69 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 4.918 (3) Å | µ = 0.28 mm−1 |
b = 25.642 (7) Å | T = 120 K |
c = 10.573 (4) Å | 0.57 × 0.11 × 0.07 mm |
β = 95.80 (3)° |
Oxford Diffraction KM-4/Xcalibur diffractometer with a Sapphire2 (large Be window) detector | 1687 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Oxford Diffraction, 2007) | 1219 reflections with I > 2σ(I) |
Tmin = 0.923, Tmax = 0.987 | Rint = 0.034 |
4629 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.156 | Δρmax = 0.24 e Å−3 |
S = 1.04 | Δρmin = −0.23 e Å−3 |
1687 reflections | Absolute structure: Flack (1983), 466 Friedel pairs |
154 parameters | Absolute structure parameter: 0.05 (18) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.7083 (3) | 0.42260 (5) | 0.30244 (15) | 0.0753 (4) | |
O1 | 0.0928 (8) | 0.54438 (16) | 0.6099 (3) | 0.0731 (12) | |
N1 | 0.4291 (11) | 0.36488 (18) | 0.4525 (5) | 0.0827 (13) | |
N2 | 0.1819 (9) | 0.4445 (2) | 0.5738 (4) | 0.0612 (12) | |
N3 | 0.7225 (16) | 0.55178 (17) | 0.2917 (6) | 0.0874 (12) | |
C1 | 0.2496 (17) | 0.3549 (3) | 0.5468 (7) | 0.0905 (19) | |
H1A | 0.2102 | 0.3199 | 0.5681 | 0.109* | |
C2 | 0.1303 (11) | 0.3956 (3) | 0.6086 (5) | 0.0695 (16) | |
H2A | 0.0153 | 0.3889 | 0.6737 | 0.083* | |
C3 | 0.3572 (10) | 0.4596 (2) | 0.4816 (4) | 0.0548 (12) | |
C4 | 0.4796 (11) | 0.4144 (2) | 0.4225 (4) | 0.0649 (13) | |
C5 | 0.4002 (10) | 0.5136 (2) | 0.4565 (4) | 0.0569 (10) | |
C6 | 0.5828 (11) | 0.5330 (2) | 0.3632 (5) | 0.0617 (11) | |
C7 | 0.2549 (12) | 0.5528 (2) | 0.5259 (5) | 0.0626 (15) | |
O2 | 0.3471 (16) | 0.6051 (3) | 0.5012 (7) | 0.050 (2)* | 0.5 |
C8 | 0.202 (2) | 0.6474 (4) | 0.5635 (11) | 0.056 (3)* | 0.5 |
H8A | 0.2504 | 0.647 | 0.6566 | 0.067* | 0.5 |
H8B | 0.0014 | 0.6434 | 0.5458 | 0.067* | 0.5 |
C9 | 0.296 (2) | 0.6977 (4) | 0.5064 (9) | 0.070 (3)* | 0.5 |
H9A | 0.4939 | 0.7017 | 0.5331 | 0.084* | 0.5 |
H9B | 0.2014 | 0.7269 | 0.5444 | 0.084* | 0.5 |
C10 | 0.253 (3) | 0.7037 (4) | 0.3607 (9) | 0.072 (3)* | 0.5 |
H10A | 0.3655 | 0.6769 | 0.3231 | 0.086* | 0.5 |
H10B | 0.0594 | 0.6955 | 0.3331 | 0.086* | 0.5 |
C11 | 0.316 (3) | 0.7546 (5) | 0.3052 (16) | 0.095 (4)* | 0.5 |
H11A | 0.1591 | 0.7664 | 0.248 | 0.143* | 0.5 |
H11B | 0.4758 | 0.751 | 0.2573 | 0.143* | 0.5 |
H11C | 0.3558 | 0.7802 | 0.3734 | 0.143* | 0.5 |
O2A | 0.268 (2) | 0.6013 (4) | 0.4705 (9) | 0.071 (3)* | 0.5 |
C8A | 0.111 (3) | 0.6434 (5) | 0.5272 (13) | 0.080 (4)* | 0.5 |
H8AA | 0.1828 | 0.6493 | 0.6169 | 0.095* | 0.5 |
H8AB | −0.0843 | 0.6336 | 0.5246 | 0.095* | 0.5 |
C9A | 0.142 (3) | 0.6924 (5) | 0.4496 (14) | 0.102 (4)* | 0.5 |
H9A1 | 0.0102 | 0.6892 | 0.3728 | 0.122* | 0.5 |
H9A2 | 0.0775 | 0.7217 | 0.4998 | 0.122* | 0.5 |
C10A | 0.402 (3) | 0.7092 (5) | 0.4057 (13) | 0.092 (3)* | 0.5 |
H10C | 0.4668 | 0.6798 | 0.3559 | 0.11* | 0.5 |
H10D | 0.5335 | 0.7124 | 0.4827 | 0.11* | 0.5 |
C11A | 0.433 (4) | 0.7571 (5) | 0.3292 (13) | 0.089 (4)* | 0.5 |
H11D | 0.6227 | 0.7691 | 0.3421 | 0.133* | 0.5 |
H11E | 0.3116 | 0.7843 | 0.3561 | 0.133* | 0.5 |
H11F | 0.3845 | 0.7493 | 0.239 | 0.133* | 0.5 |
H2B | 0.150 (14) | 0.4691 (19) | 0.627 (5) | 0.10 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0730 (7) | 0.0881 (7) | 0.0692 (6) | 0.0104 (9) | 0.0279 (5) | −0.0026 (8) |
O1 | 0.085 (3) | 0.067 (2) | 0.073 (2) | 0.003 (2) | 0.035 (2) | 0.0011 (18) |
N1 | 0.098 (3) | 0.070 (3) | 0.085 (3) | 0.007 (2) | 0.036 (2) | 0.001 (2) |
N2 | 0.063 (3) | 0.067 (3) | 0.055 (2) | 0.006 (2) | 0.013 (2) | −0.003 (2) |
N3 | 0.087 (3) | 0.098 (3) | 0.082 (3) | −0.002 (3) | 0.034 (2) | 0.021 (3) |
C1 | 0.119 (5) | 0.063 (3) | 0.097 (4) | 0.004 (3) | 0.049 (4) | −0.001 (3) |
C2 | 0.075 (4) | 0.071 (4) | 0.067 (3) | −0.004 (3) | 0.028 (3) | 0.002 (3) |
C3 | 0.049 (3) | 0.073 (3) | 0.042 (2) | 0.003 (2) | 0.0044 (19) | −0.007 (2) |
C4 | 0.063 (3) | 0.080 (4) | 0.053 (2) | 0.009 (2) | 0.014 (2) | −0.002 (2) |
C5 | 0.055 (2) | 0.065 (3) | 0.052 (2) | −0.002 (2) | 0.0109 (18) | 0.0014 (17) |
C6 | 0.058 (2) | 0.073 (3) | 0.056 (2) | 0.002 (2) | 0.014 (2) | 0.002 (2) |
C7 | 0.069 (3) | 0.060 (4) | 0.062 (3) | −0.007 (3) | 0.018 (3) | 0.004 (3) |
Cl1—C4 | 1.791 (5) | C9—H9A | 0.99 |
O1—C7 | 1.271 (7) | C9—H9B | 0.99 |
N1—C4 | 1.338 (7) | C10—C11 | 1.478 (14) |
N1—C1 | 1.421 (8) | C10—H10A | 0.99 |
N2—C2 | 1.338 (9) | C10—H10B | 0.99 |
N2—C3 | 1.419 (8) | C11—H11A | 0.98 |
N2—H2B | 0.87 (2) | C11—H11B | 0.98 |
N3—C6 | 1.175 (8) | C11—H11C | 0.98 |
C1—C2 | 1.392 (10) | O2A—C8A | 1.489 (17) |
C1—H1A | 0.95 | C8A—C9A | 1.516 (14) |
C2—H2A | 0.95 | C8A—H8AA | 0.99 |
C3—C5 | 1.428 (7) | C8A—H8AB | 0.99 |
C3—C4 | 1.475 (7) | C9A—C10A | 1.469 (14) |
C5—C7 | 1.472 (8) | C9A—H9A1 | 0.99 |
C5—C6 | 1.486 (7) | C9A—H9A2 | 0.99 |
C7—O2A | 1.379 (11) | C10A—C11A | 1.487 (14) |
C7—O2 | 1.448 (10) | C10A—H10C | 0.99 |
O2—C8 | 1.489 (13) | C10A—H10D | 0.99 |
C8—C9 | 1.514 (12) | C11A—H11D | 0.98 |
C8—H8A | 0.99 | C11A—H11E | 0.98 |
C8—H8B | 0.99 | C11A—H11F | 0.98 |
C9—C10 | 1.541 (12) | ||
C4—N1—C1 | 118.8 (5) | C10—C9—H9A | 107.8 |
C2—N2—C3 | 126.2 (5) | C8—C9—H9B | 107.8 |
C2—N2—H2B | 117 (5) | C10—C9—H9B | 107.8 |
C3—N2—H2B | 114 (5) | H9A—C9—H9B | 107.2 |
C2—C1—N1 | 121.0 (6) | C11—C10—C9 | 118.2 (10) |
C2—C1—H1A | 119.5 | C11—C10—H10A | 107.8 |
N1—C1—H1A | 119.5 | C9—C10—H10A | 107.8 |
N2—C2—C1 | 118.3 (5) | C11—C10—H10B | 107.8 |
N2—C2—H2A | 120.9 | C9—C10—H10B | 107.8 |
C1—C2—H2A | 120.9 | H10A—C10—H10B | 107.1 |
N2—C3—C5 | 120.3 (5) | C7—O2A—C8A | 115.7 (8) |
N2—C3—C4 | 112.3 (5) | O2A—C8A—C9A | 107.3 (11) |
C5—C3—C4 | 127.5 (5) | O2A—C8A—H8AA | 110.2 |
N1—C4—C3 | 123.5 (4) | C9A—C8A—H8AA | 110.2 |
N1—C4—Cl1 | 115.1 (4) | O2A—C8A—H8AB | 110.2 |
C3—C4—Cl1 | 121.4 (4) | C9A—C8A—H8AB | 110.2 |
C3—C5—C7 | 118.7 (4) | H8AA—C8A—H8AB | 108.5 |
C3—C5—C6 | 124.0 (4) | C10A—C9A—C8A | 123.5 (13) |
C7—C5—C6 | 117.3 (5) | C10A—C9A—H9A1 | 106.5 |
N3—C6—C5 | 175.5 (5) | C8A—C9A—H9A1 | 106.5 |
O1—C7—O2A | 120.7 (6) | C10A—C9A—H9A2 | 106.5 |
O1—C7—O2 | 120.9 (5) | C8A—C9A—H9A2 | 106.5 |
O2A—C7—O2 | 19.8 (5) | H9A1—C9A—H9A2 | 106.5 |
O1—C7—C5 | 127.1 (5) | C9A—C10A—C11A | 123.6 (13) |
O2A—C7—C5 | 111.0 (6) | C9A—C10A—H10C | 106.4 |
O2—C7—C5 | 111.5 (5) | C11A—C10A—H10C | 106.4 |
C7—O2—C8 | 115.0 (7) | C9A—C10A—H10D | 106.4 |
O2—C8—C9 | 105.3 (8) | C11A—C10A—H10D | 106.4 |
O2—C8—H8A | 110.7 | H10C—C10A—H10D | 106.5 |
C9—C8—H8A | 110.7 | C10A—C11A—H11D | 109.5 |
O2—C8—H8B | 110.7 | C10A—C11A—H11E | 109.5 |
C9—C8—H8B | 110.7 | H11D—C11A—H11E | 109.5 |
H8A—C8—H8B | 108.8 | C10A—C11A—H11F | 109.5 |
C8—C9—C10 | 117.8 (9) | H11D—C11A—H11F | 109.5 |
C8—C9—H9A | 107.8 | H11E—C11A—H11F | 109.5 |
C4—N1—C1—C2 | −0.9 (10) | C6—C5—C7—O1 | −179.2 (5) |
C3—N2—C2—C1 | −2.4 (9) | C3—C5—C7—O2A | −166.0 (6) |
N1—C1—C2—N2 | 2.2 (11) | C6—C5—C7—O2A | 13.6 (8) |
C2—N2—C3—C5 | −178.1 (5) | C3—C5—C7—O2 | 172.8 (5) |
C2—N2—C3—C4 | 1.2 (7) | C6—C5—C7—O2 | −7.6 (8) |
C1—N1—C4—C3 | −0.4 (8) | O1—C7—O2—C8 | −10.3 (11) |
C1—N1—C4—Cl1 | −179.9 (5) | O2A—C7—O2—C8 | 85.0 (19) |
N2—C3—C4—N1 | 0.3 (7) | C5—C7—O2—C8 | 177.5 (7) |
C5—C3—C4—N1 | 179.5 (5) | C7—O2—C8—C9 | −170.4 (8) |
N2—C3—C4—Cl1 | 179.8 (3) | O2—C8—C9—C10 | 56.8 (12) |
C5—C3—C4—Cl1 | −1.0 (7) | C8—C9—C10—C11 | 173.4 (12) |
N2—C3—C5—C7 | −1.4 (6) | O1—C7—O2A—C8A | 7.6 (13) |
C4—C3—C5—C7 | 179.5 (5) | O2—C7—O2A—C8A | −89.0 (19) |
N2—C3—C5—C6 | 179.1 (5) | C5—C7—O2A—C8A | 175.8 (9) |
C4—C3—C5—C6 | −0.1 (8) | C7—O2A—C8A—C9A | −177.5 (10) |
C3—C5—C6—N3 | 18E1 (10) | O2A—C8A—C9A—C10A | −42.8 (19) |
C7—C5—C6—N3 | 0 (8) | C8A—C9A—C10A—C11A | 179.8 (14) |
C3—C5—C7—O1 | 1.2 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O1 | 0.87 (2) | 1.96 (5) | 2.632 (6) | 133 (6) |
Experimental details
Crystal data | |
Chemical formula | C11H12ClN3O2 |
Mr | 253.69 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 120 |
a, b, c (Å) | 4.918 (3), 25.642 (7), 10.573 (4) |
β (°) | 95.80 (3) |
V (Å3) | 1326.7 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.57 × 0.11 × 0.07 |
Data collection | |
Diffractometer | Oxford Diffraction KM-4/Xcalibur diffractometer with a Sapphire2 (large Be window) detector |
Absorption correction | Gaussian (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.923, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4629, 1687, 1219 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.156, 1.04 |
No. of reflections | 1687 |
No. of parameters | 154 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.23 |
Absolute structure | Flack (1983), 466 Friedel pairs |
Absolute structure parameter | 0.05 (18) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O1 | 0.87 (2) | 1.96 (5) | 2.632 (6) | 133 (6) |
Acknowledgements
The authors thank Drs Katarzyna Baranowska and Antoni Konitz for helpful discussions during the preparation of the manuscript. The work has been supported by the Fund for Science in the Year 2009 as a research project (DS/8410–4-0139–9).
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaliszan, R., Pilarski, B., Osmialowski, K., Strzalkowska-Grad, H. & Hrac, E. (1985). Pharm. Weekbl. [Sci], 7, 141–145. CrossRef CAS PubMed Web of Science Google Scholar
Matter, H., Kumar, H. S. A., Fedorov, R., Frey, A., Kotsonis, P., Hartmann, E., Frohlich, L. G., Reif, A., Pfleiderer, W., Scheurer, P., Ghosh, D. K., Schlichting, I. & Schmidt, H. H. W. (2005). J. Med. Chem. 48, 4783–4792. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Oxford Diffraction (2007). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Petrusewicz, J., Gami-Yilinkou, R., Kaliszan, R., Pilarski, B. & Foks, H. (1993). Gen. Pharmacol. 24, 17–22. CrossRef CAS PubMed Web of Science Google Scholar
Petrusewicz, J., Gami-Yilinkou, R., Pilarski, B. & Kaliszan, R. (1992). Pharmacol. Tonic. 70, 448–452. CrossRef CAS Google Scholar
Petrusewicz, J., Turowski, M., Foks, H., Pilarski, B. & Kaliszan, R. (1995). Life Sci. 56, 667–677. CrossRef CAS PubMed Web of Science Google Scholar
Pilarski, B. & Foks, H. (1981). Polish Patent No. P-232409. Google Scholar
Pilarski, B. & Foks, H. (1982). Polish Patent No. P-234716. Google Scholar
Pilarski, B., Foks, H., Osmialowski, K. & Kaliszan, R. (1984). Monatsh. Chem. 115, 179–185. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vishweshwar, P., Nangia, A. & Lynch, V. M. (2000). Acta Cryst. C56, 1512–1514. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o3765–o3767. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic compounds with active methylene moiety are known to have antiinflamatory (Petrusewicz et al., 1995), analgesic (Kaliszan et al., 1985) and large number of other pharmacological activities (Petrusewicz et al., 1992). Numerous scientific publications confirm that pyrazine derivatives, obtained by nucleophilic substitution of chlorine atom in the pyrazine ring system with active methylene compound, posses above mentioned activity. Some of pyrazine C—H and N—H acids also demonstrated antithrombotic and antiplatelet activity (Petrusewicz et al., 1993).
Such pharmacological activity (in group CH– andNH– acids) is possibly the result of acid character of particle and their structure, as in case of well known inhibitors of cyclooxygenase (Petrusewicz et al., 1993). Structural analysis of pyrazine-acetonitrile derivatives shows pyrazinyl-pyrazylidene tautomerism (Pilarski et al., 1984) but crystal of 2-butyl 2-(3-chloropyrazin- (1H)-ylidene)-2-cyanoacetateappears as NH-acid.
In the molecule of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the pyrazines skeleton are typical for this group compounds (Vishweshwar et al. 2000; Wardell et al. 2006). The compound is essentially planar except for the n-butoxy group (r.m.s. deviation from the least-squares plane - 0.0131 (1) Å for 11 non-H atoms. An intramolecular N2—H2B···O1 contact generates a S(6) ring motif which stabilizes the molecular conformation. The n-butoxy chain in the molecule is disordered over two sets of sites in a 0.50 (1):0.50 (1) ratio.