organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis(5-bromo-2-thien­yl)thio­phene

aDepartment of Chemistry, Pennsylvania State University at Hazleton, 76 University Drive, Hazleton, PA 18202, USA
*Correspondence e-mail: mmb11@psu.edu

(Received 25 July 2009; accepted 4 August 2009; online 8 August 2009)

In the crystal structure of the title compound, C12H6Br2S3, the mol­ecules are planar (r.m.s. deviation = 0.06 Å). Consecutive mol­ecules do not stack in a planar fashion. There is an angle of 81.7 (12)° between the planes of the closest mol­ecules.

Related literature

For related structures, see: Pyrka et al. (1988[Pyrka, G. J., Fernando, Q., Inoue, M. B., Inoue, M. & Velazquez, E. F. (1988). Acta Cryst. C44, 562-564.]). For literature related to synthesis, see: Hoffmann & Carlsen (1999[Hoffmann, K. J. & Carlsen, H. J. (1999). Synth. Commun. 29, 1607-1610.]); Mei et al. (2009[Mei, J., Heston, N. C., Vasilyeva, S. V. & Reynolds, J. R. (2009). Macromolecules, 42, 1482-1487.]). For a recent review of oligothio­phenes, see: Mishra et al. (2009[Mishra, A., Ma, C. & Buerle, P. (2009). Chem. Rev. 109, 1141-1276.]).

[Scheme 1]

Experimental

Crystal data
  • C12H6Br2S3

  • Mr = 406.17

  • Orthorhombic, P c c 2

  • a = 7.6216 (16) Å

  • b = 30.003 (6) Å

  • c = 5.8841 (13) Å

  • V = 1345.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.46 mm−1

  • T = 173 K

  • 0.37 × 0.24 × 0.10 mm

Data collection
  • Siemens SMART Platform CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS.. University of Göttingen, Germany.]) Tmin = 0.184, Tmax = 0.524

  • 9565 measured reflections

  • 3045 independent reflections

  • 2818 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.114

  • S = 1.25

  • 3045 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1341 Friedel pairs

  • Flack parameter: 0.00 (7)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dibromothiophenes are important building blocks in materials chemistry. They are mainly used in the prepartaion of various thiophene oligomers and polymers utilizing coupling reactions such as Stille and Suzuki couplings.

For literature related to the synthesis see: Hoffman & Carlsen (1999) and Mei (2009). For a recent review on synthesis and applications of oligothiophenes,see: Mishra (2009).

Related literature top

For related structures, see: Pyrka et al. (1988). For literature related to synthesis, see: Hoffmann & Carlsen (1999); Mei et al. (2009). For a recent review of oligothiophenes,see: Mishra et al. (2009).

Experimental top

Synthesis was carried out following literature procedures (Hoffman) as follows: to a a solution of terthiophene dissolved in chloroform was added 2 equivalents of N-bromosuccinimde and the reaction mixture was stirred at room temperature for 2 h. The reaction mixture was then extracted with water and product obtained by evaporation of chloroform and recrystallized twice from hexanes. The crystals were very thin, hence the large number in the second weighting scheme.

Refinement top

The structure was solved using SHELXS97 and refined using SHELXL97 (Sheldrick, 2008). The space group Pcc2 was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0527 and wR2 = 0.1169 (F2, all data).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. 2,5-bis(5-bromothiophen-2-yl)thiophene.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis.
2,5-Bis(5-bromo-2-thienyl)thiophene top
Crystal data top
C12H6Br2S3F(000) = 784
Mr = 406.17Dx = 2.005 Mg m3
Orthorhombic, Pcc2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 -2cCell parameters from 903 reflections
a = 7.6216 (16) Åθ = 2.7–27.5°
b = 30.003 (6) ŵ = 6.46 mm1
c = 5.8841 (13) ÅT = 173 K
V = 1345.5 (5) Å3Plate, pale yellow
Z = 40.37 × 0.24 × 0.10 mm
Data collection top
Siemens SMART Platform CCD
diffractometer
3045 independent reflections
Radiation source: fine-focus sealed tube2818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.184, Tmax = 0.524k = 3838
9565 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0403P)2 + 2.9087P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max = 0.001
3045 reflectionsΔρmax = 1.24 e Å3
155 parametersΔρmin = 0.62 e Å3
1 restraintAbsolute structure: Flack (1983), 1341 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
C12H6Br2S3V = 1345.5 (5) Å3
Mr = 406.17Z = 4
Orthorhombic, Pcc2Mo Kα radiation
a = 7.6216 (16) ŵ = 6.46 mm1
b = 30.003 (6) ÅT = 173 K
c = 5.8841 (13) Å0.37 × 0.24 × 0.10 mm
Data collection top
Siemens SMART Platform CCD
diffractometer
3045 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2818 reflections with I > 2σ(I)
Tmin = 0.184, Tmax = 0.524Rint = 0.035
9565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.114Δρmax = 1.24 e Å3
S = 1.25Δρmin = 0.62 e Å3
3045 reflectionsAbsolute structure: Flack (1983), 1341 Friedel pairs
155 parametersAbsolute structure parameter: 0.00 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The structure refined as a merohedral inversion twin, whose mass ratio converged to 61:39.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69877 (9)0.96042 (2)1.02236 (11)0.0374 (2)
Br20.71126 (13)0.54014 (2)0.07093 (13)0.0532 (3)
S10.6713 (2)0.86007 (5)0.9031 (3)0.0271 (3)
S20.81817 (19)0.76622 (5)0.3646 (3)0.0232 (3)
S30.6749 (2)0.62433 (5)0.3757 (3)0.0279 (3)
C10.7418 (8)0.9124 (2)0.8288 (11)0.0253 (13)
C20.8278 (8)0.9124 (2)0.6263 (12)0.0287 (14)
H20.87610.93840.55840.034*
C30.8376 (7)0.86976 (19)0.5284 (11)0.0238 (12)
H30.89330.86420.38680.029*
C40.7597 (7)0.8370 (2)0.6553 (10)0.0215 (12)
C50.7360 (7)0.7908 (2)0.6122 (10)0.0172 (12)
C60.6539 (7)0.75937 (18)0.7416 (10)0.0197 (12)
H60.60090.76600.88380.024*
C70.6546 (7)0.71661 (19)0.6471 (10)0.0201 (12)
H70.60160.69160.71820.024*
C80.7397 (8)0.71439 (19)0.4407 (12)0.0190 (12)
C90.7621 (7)0.67576 (19)0.2972 (10)0.0175 (11)
C100.8467 (8)0.6726 (2)0.0932 (10)0.0233 (12)
H100.90360.69720.02310.028*
C110.8421 (8)0.62914 (19)0.0055 (11)0.0249 (12)
H110.89270.62160.14790.030*
C120.7553 (9)0.5999 (2)0.1323 (12)0.0269 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0447 (4)0.0317 (4)0.0359 (4)0.0053 (3)0.0051 (4)0.0089 (3)
Br20.0814 (7)0.0272 (4)0.0512 (7)0.0077 (4)0.0045 (5)0.0099 (4)
S10.0315 (8)0.0282 (7)0.0217 (8)0.0025 (6)0.0079 (6)0.0021 (6)
S20.0252 (7)0.0259 (7)0.0185 (7)0.0031 (6)0.0045 (6)0.0006 (6)
S30.0338 (8)0.0234 (7)0.0263 (8)0.0046 (6)0.0066 (7)0.0012 (7)
C10.028 (3)0.025 (3)0.023 (3)0.002 (2)0.005 (3)0.003 (3)
C20.023 (3)0.029 (3)0.035 (3)0.002 (2)0.003 (3)0.009 (3)
C30.026 (3)0.024 (3)0.021 (3)0.000 (2)0.006 (3)0.004 (3)
C40.018 (3)0.030 (3)0.017 (3)0.003 (2)0.000 (2)0.000 (2)
C50.012 (3)0.026 (3)0.013 (3)0.001 (2)0.003 (2)0.004 (2)
C60.019 (3)0.023 (3)0.017 (3)0.001 (2)0.001 (2)0.001 (2)
C70.012 (3)0.026 (3)0.022 (3)0.000 (2)0.001 (2)0.005 (2)
C80.014 (2)0.017 (3)0.026 (3)0.002 (2)0.004 (2)0.010 (2)
C90.016 (3)0.015 (3)0.021 (3)0.002 (2)0.001 (2)0.000 (2)
C100.020 (3)0.029 (3)0.021 (3)0.002 (2)0.001 (2)0.003 (2)
C110.028 (3)0.023 (3)0.024 (3)0.005 (2)0.004 (3)0.006 (2)
C120.035 (3)0.022 (3)0.024 (3)0.004 (3)0.000 (3)0.006 (3)
Geometric parameters (Å, º) top
Br1—C11.864 (6)C4—C51.419 (8)
Br2—C121.858 (6)C5—C61.365 (8)
S1—C11.717 (7)C6—C71.398 (8)
S1—C41.749 (6)C6—H60.9500
S2—C81.725 (6)C7—C81.379 (9)
S2—C51.750 (6)C7—H70.9500
S3—C121.722 (7)C8—C91.444 (8)
S3—C91.742 (6)C9—C101.366 (8)
C1—C21.360 (10)C10—C111.428 (8)
C2—C31.404 (9)C10—H100.9500
C2—H20.9500C11—C121.367 (9)
C3—C41.370 (8)C11—H110.9500
C3—H30.9500
C1—S1—C491.7 (3)C7—C6—H6122.9
C8—S2—C592.3 (3)C8—C7—C6113.4 (5)
C12—S3—C991.2 (3)C8—C7—H7123.3
C2—C1—S1111.9 (5)C6—C7—H7123.3
C2—C1—Br1128.4 (5)C7—C8—C9127.6 (5)
S1—C1—Br1119.8 (4)C7—C8—S2110.4 (5)
C1—C2—C3112.7 (6)C9—C8—S2122.1 (5)
C1—C2—H2123.6C10—C9—C8128.7 (5)
C3—C2—H2123.6C10—C9—S3110.6 (4)
C4—C3—C2114.0 (6)C8—C9—S3120.7 (4)
C4—C3—H3123.0C9—C10—C11114.2 (6)
C2—C3—H3123.0C9—C10—H10122.9
C3—C4—C5131.2 (5)C11—C10—H10122.9
C3—C4—S1109.7 (5)C12—C11—C10110.9 (5)
C5—C4—S1119.1 (4)C12—C11—H11124.5
C6—C5—C4129.3 (5)C10—C11—H11124.5
C6—C5—S2109.7 (4)C11—C12—S3113.0 (5)
C4—C5—S2121.0 (4)C11—C12—Br2126.3 (5)
C5—C6—C7114.3 (5)S3—C12—Br2120.6 (4)
C5—C6—H6122.9
C4—S1—C1—C20.0 (5)C6—C7—C8—C9179.1 (6)
C4—S1—C1—Br1179.1 (4)C6—C7—C8—S20.3 (6)
S1—C1—C2—C30.1 (7)C5—S2—C8—C70.0 (5)
Br1—C1—C2—C3179.1 (5)C5—S2—C8—C9179.0 (5)
C1—C2—C3—C40.2 (8)C7—C8—C9—C10179.5 (6)
C2—C3—C4—C5177.2 (6)S2—C8—C9—C101.8 (9)
C2—C3—C4—S10.2 (7)C7—C8—C9—S30.8 (9)
C1—S1—C4—C30.1 (5)S2—C8—C9—S3178.0 (3)
C1—S1—C4—C5177.6 (5)C12—S3—C9—C100.2 (5)
C3—C4—C5—C6178.4 (7)C12—S3—C9—C8180.0 (5)
S1—C4—C5—C61.6 (9)C8—C9—C10—C11179.2 (6)
C3—C4—C5—S22.0 (9)S3—C9—C10—C110.6 (7)
S1—C4—C5—S2178.8 (3)C9—C10—C11—C121.3 (8)
C8—S2—C5—C60.2 (5)C10—C11—C12—S31.4 (7)
C8—S2—C5—C4179.8 (5)C10—C11—C12—Br2178.2 (5)
C4—C5—C6—C7180.0 (5)C9—S3—C12—C111.0 (5)
S2—C5—C6—C70.4 (7)C9—S3—C12—Br2177.9 (4)
C5—C6—C7—C80.4 (7)

Experimental details

Crystal data
Chemical formulaC12H6Br2S3
Mr406.17
Crystal system, space groupOrthorhombic, Pcc2
Temperature (K)173
a, b, c (Å)7.6216 (16), 30.003 (6), 5.8841 (13)
V3)1345.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)6.46
Crystal size (mm)0.37 × 0.24 × 0.10
Data collection
DiffractometerSiemens SMART Platform CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.184, 0.524
No. of measured, independent and
observed [I > 2σ(I)] reflections
9565, 3045, 2818
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.114, 1.25
No. of reflections3045
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 0.62
Absolute structureFlack (1983), 1341 Friedel pairs
Absolute structure parameter0.00 (7)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

This work was supported in part by Research Development Grants from the Pennsylvania State University and partially by the MRSEC Program of the National Science Foundation under Award Number DMR-0819885. The author also acknowledges William W. Brennessel, Lindsay M. Hinkle, Victor G. Young Jr and the X-Ray Crystallographic Laboratory at the University of Minnesota.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHoffmann, K. J. & Carlsen, H. J. (1999). Synth. Commun. 29, 1607–1610.  Web of Science CrossRef CAS Google Scholar
First citationMei, J., Heston, N. C., Vasilyeva, S. V. & Reynolds, J. R. (2009). Macromolecules, 42, 1482–1487.  Web of Science CrossRef CAS Google Scholar
First citationMishra, A., Ma, C. & Buerle, P. (2009). Chem. Rev. 109, 1141–1276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPyrka, G. J., Fernando, Q., Inoue, M. B., Inoue, M. & Velazquez, E. F. (1988). Acta Cryst. C44, 562–564.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS.. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds