metal-organic compounds
catena-Poly[[[tetraaquazinc(II)]-μ-4,4′-bipyridine-κ2N:N′] naphthalene-1,5-disulfonate]
aDepartment of Pharmacy, Xiamen University, Xiamen, Fujian 363105, People's Republic of China, and bDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn
In the title complex, {[Zn(C10H8N2)(H2O)4](C10H6O6S2)}n, the [Zn(4,4′-bipy)(H2O)4]2+ (4,4′-bipy is 4,4′-bipyridine) cations are linked into linear chains along [001] by the 4,4′-bipy ligands. The ZnII ion exhibits a slightly distorted octahedral coordination geometry in which the four water molecules are in the equatorial positions. The anions are hydrogen bonded to the polycationic chains by O—H⋯O hydrogen bonds, forming a three-dimensional network. The ZnII ion, 4,4′-bipy ligand and anion lie on special positions of 2/m site symmetry.
Related literature
For the design, preparation and applications of metal-organic hybrid materials, see: Batten & Robson (1998); Hagrman et al. (1999); Cui et al. (2003). For the structural and photoluminescent properties of d10 metal (such as Zn) complexes, see: Li et al. (2003); Sattarzadeh et al. (2009). 4,4′-Bipyridine can be used to assembly many transition metal coordination polymers through covalent or hydrogen bonds, see: Yaghi & Li (1995, 1996).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1994); cell SAINT (Siemens, 1994); data reduction: SAINT program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809032127/ng2626sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809032127/ng2626Isup2.hkl
The hydrothermal reaction of Zn(OAc)2.2H2O (0.5707 g,2.6 mmol), 1,5-Naphthalenedisulphonic acid(0.5405 g, 1.5 mmol), 4,4'-bipyridine(0.4681 g, 3.0 mmol) and water (15 ml) was carried out at 443 K for 3 d. After cooling to room temperature at 5 K h-1, the colorless block crystalline complex, (I), was isolated in 49% yield (based on Zn).
H atoms attached to C atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å, and Uiso(H)= 1.2Ueq(C); Water H atoms were located in a difference map and refined with O–H and H···H distance restraints of 0.85 (2) and 1.39 (2) Å, respectively, and with Uiso(H)= 1.5Ueq(O). During the
the displacement parameters of the C1 and C2 atoms were restrained to an approximately isotropic behaviour.Data collection: SMART (Siemens, 1994); cell
SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C10H8N2)(H2O)4](C10H6O6S2) | F(000) = 596 |
Mr = 579.89 | Dx = 1.654 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 5711 reflections |
a = 14.584 (3) Å | θ = 3.1–27.4° |
b = 7.3948 (15) Å | µ = 1.29 mm−1 |
c = 11.380 (2) Å | T = 293 K |
β = 108.38 (3)° | Block, colorless |
V = 1164.7 (4) Å3 | 0.38 × 0.29 × 0.19 mm |
Z = 2 |
Siemens SMART CCD area-detector diffractometer | 1421 independent reflections |
Radiation source: fine-focus sealed tube | 1302 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω scans | θmax = 27.4°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −18→18 |
Tmin = 0.658, Tmax = 0.794 | k = −9→9 |
5711 measured reflections | l = −13→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0663P)2 + 1.4457P] where P = (Fo2 + 2Fc2)/3 |
1421 reflections | (Δ/σ)max = 0.001 |
107 parameters | Δρmax = 0.46 e Å−3 |
15 restraints | Δρmin = −0.52 e Å−3 |
[Zn(C10H8N2)(H2O)4](C10H6O6S2) | V = 1164.7 (4) Å3 |
Mr = 579.89 | Z = 2 |
Monoclinic, C2/m | Mo Kα radiation |
a = 14.584 (3) Å | µ = 1.29 mm−1 |
b = 7.3948 (15) Å | T = 293 K |
c = 11.380 (2) Å | 0.38 × 0.29 × 0.19 mm |
β = 108.38 (3)° |
Siemens SMART CCD area-detector diffractometer | 1421 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1302 reflections with I > 2σ(I) |
Tmin = 0.658, Tmax = 0.794 | Rint = 0.033 |
5711 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 15 restraints |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.46 e Å−3 |
1421 reflections | Δρmin = −0.52 e Å−3 |
107 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 0.5000 | 0.5000 | 0.0328 (2) | |
S1 | 0.84039 (6) | 0.5000 | 0.70300 (8) | 0.0323 (3) | |
O1W | 0.60582 (14) | 0.7084 (3) | 0.54834 (19) | 0.0443 (5) | |
H1WA | 0.6631 (16) | 0.698 (5) | 0.596 (2) | 0.053* | |
H1WB | 0.605 (2) | 0.790 (4) | 0.498 (3) | 0.053* | |
O2 | 0.8672 (2) | 0.5000 | 0.5896 (2) | 0.0451 (7) | |
O3 | 0.78840 (14) | 0.6629 (3) | 0.71577 (18) | 0.0425 (5) | |
C1 | 0.5820 (3) | 0.5000 | 0.7822 (4) | 0.0669 (15) | |
H1A | 0.6403 | 0.5000 | 0.7651 | 0.080* | |
C2 | 0.5848 (3) | 0.5000 | 0.9042 (4) | 0.0647 (14) | |
H2A | 0.6440 | 0.5000 | 0.9667 | 0.078* | |
C3 | 0.4997 (3) | 0.5000 | 0.9346 (3) | 0.0324 (8) | |
C4 | 0.4162 (3) | 0.5000 | 0.8359 (3) | 0.0364 (8) | |
H4A | 0.3568 | 0.5000 | 0.8501 | 0.044* | |
C5 | 0.4189 (3) | 0.5000 | 0.7155 (3) | 0.0337 (8) | |
H5A | 0.3607 | 0.5000 | 0.6511 | 0.040* | |
C6 | 0.8693 (3) | 0.5000 | 0.9887 (4) | 0.0580 (14) | |
H6A | 0.8090 | 0.5000 | 0.9283 | 0.070* | |
C7 | 0.9543 (2) | 0.5000 | 0.9528 (3) | 0.0329 (8) | |
C8 | 0.9520 (3) | 0.5000 | 0.8266 (3) | 0.0338 (8) | |
C9 | 1.0349 (3) | 0.5000 | 0.7957 (4) | 0.0549 (13) | |
H9A | 1.0322 | 0.5000 | 0.7130 | 0.066* | |
C10 | 1.1247 (3) | 0.5000 | 0.8898 (5) | 0.080 (2) | |
H10A | 1.1812 | 0.5000 | 0.8684 | 0.096* | |
N1 | 0.5005 (2) | 0.5000 | 0.6874 (3) | 0.0371 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0270 (3) | 0.0560 (4) | 0.0140 (3) | 0.000 | 0.0046 (2) | 0.000 |
S1 | 0.0278 (5) | 0.0414 (5) | 0.0202 (4) | 0.000 | −0.0030 (3) | 0.000 |
O1W | 0.0347 (10) | 0.0589 (13) | 0.0301 (10) | −0.0062 (9) | −0.0031 (8) | 0.0086 (9) |
O2 | 0.0468 (16) | 0.0607 (18) | 0.0213 (13) | 0.000 | 0.0014 (12) | 0.000 |
O3 | 0.0360 (10) | 0.0440 (11) | 0.0372 (10) | 0.0048 (8) | −0.0033 (8) | −0.0028 (8) |
C1 | 0.036 (2) | 0.137 (4) | 0.030 (2) | 0.000 | 0.0134 (18) | 0.000 |
C2 | 0.032 (2) | 0.135 (4) | 0.027 (2) | 0.000 | 0.0088 (17) | 0.000 |
C3 | 0.0311 (18) | 0.048 (2) | 0.0190 (17) | 0.000 | 0.0089 (14) | 0.000 |
C4 | 0.0294 (17) | 0.058 (2) | 0.0230 (17) | 0.000 | 0.0106 (14) | 0.000 |
C5 | 0.0302 (17) | 0.050 (2) | 0.0186 (16) | 0.000 | 0.0044 (13) | 0.000 |
C6 | 0.0194 (17) | 0.120 (5) | 0.029 (2) | 0.000 | −0.0003 (15) | 0.000 |
C7 | 0.0241 (17) | 0.046 (2) | 0.0247 (17) | 0.000 | 0.0027 (15) | 0.000 |
C8 | 0.0244 (16) | 0.049 (2) | 0.0224 (16) | 0.000 | −0.0008 (13) | 0.000 |
C9 | 0.034 (2) | 0.106 (4) | 0.0219 (18) | 0.000 | 0.0048 (16) | 0.000 |
C10 | 0.025 (2) | 0.178 (7) | 0.036 (3) | 0.000 | 0.0093 (19) | 0.000 |
N1 | 0.0307 (15) | 0.065 (2) | 0.0157 (13) | 0.000 | 0.0072 (12) | 0.000 |
Zn1—O1Wi | 2.127 (2) | C3—C4 | 1.372 (5) |
Zn1—O1W | 2.127 (2) | C3—C3iv | 1.485 (6) |
Zn1—O1Wii | 2.127 (2) | C4—C5 | 1.383 (5) |
Zn1—O1Wiii | 2.127 (2) | C4—H4A | 0.9300 |
Zn1—N1i | 2.131 (3) | C5—N1 | 1.326 (5) |
Zn1—N1 | 2.131 (3) | C5—H5A | 0.9300 |
S1—O3ii | 1.455 (2) | C6—C10v | 1.358 (6) |
S1—O3 | 1.455 (2) | C6—C7 | 1.421 (5) |
S1—O2 | 1.461 (3) | C6—H6A | 0.9300 |
S1—C8 | 1.784 (4) | C7—C7v | 1.424 (7) |
O1W—H1WA | 0.846 (19) | C7—C8 | 1.426 (5) |
O1W—H1WB | 0.83 (2) | C8—C9 | 1.362 (6) |
C1—N1 | 1.330 (6) | C9—C10 | 1.406 (6) |
C1—C2 | 1.376 (6) | C9—H9A | 0.9300 |
C1—H1A | 0.9300 | C10—C6v | 1.358 (6) |
C2—C3 | 1.390 (6) | C10—H10A | 0.9300 |
C2—H2A | 0.9300 | ||
O1Wi—Zn1—O1W | 180.00 (9) | C3—C2—H2A | 119.8 |
O1Wi—Zn1—O1Wii | 87.13 (12) | C4—C3—C2 | 115.3 (3) |
O1W—Zn1—O1Wii | 92.87 (12) | C4—C3—C3iv | 123.0 (4) |
O1Wi—Zn1—O1Wiii | 92.87 (12) | C2—C3—C3iv | 121.7 (4) |
O1W—Zn1—O1Wiii | 87.13 (12) | C3—C4—C5 | 121.1 (3) |
O1Wii—Zn1—O1Wiii | 180.000 (1) | C3—C4—H4A | 119.4 |
O1Wi—Zn1—N1i | 88.18 (8) | C5—C4—H4A | 119.4 |
O1W—Zn1—N1i | 91.82 (8) | N1—C5—C4 | 123.1 (3) |
O1Wii—Zn1—N1i | 91.82 (8) | N1—C5—H5A | 118.4 |
O1Wiii—Zn1—N1i | 88.18 (8) | C4—C5—H5A | 118.4 |
O1Wi—Zn1—N1 | 91.82 (8) | C10v—C6—C7 | 120.7 (4) |
O1W—Zn1—N1 | 88.18 (8) | C10v—C6—H6A | 119.7 |
O1Wii—Zn1—N1 | 88.18 (8) | C7—C6—H6A | 119.7 |
O1Wiii—Zn1—N1 | 91.82 (8) | C6—C7—C7v | 118.6 (4) |
N1i—Zn1—N1 | 180.0 | C6—C7—C8 | 122.9 (3) |
O3ii—S1—O3 | 111.78 (18) | C7v—C7—C8 | 118.5 (4) |
O3ii—S1—O2 | 112.40 (11) | C9—C8—C7 | 121.3 (3) |
O3—S1—O2 | 112.40 (11) | C9—C8—S1 | 117.4 (3) |
O3ii—S1—C8 | 107.20 (10) | C7—C8—S1 | 121.3 (3) |
O3—S1—C8 | 107.20 (10) | C8—C9—C10 | 119.6 (4) |
O2—S1—C8 | 105.36 (17) | C8—C9—H9A | 120.2 |
Zn1—O1W—H1WA | 126 (3) | C10—C9—H9A | 120.2 |
Zn1—O1W—H1WB | 120 (2) | C6v—C10—C9 | 121.3 (4) |
H1WA—O1W—H1WB | 108 (3) | C6v—C10—H10A | 119.3 |
N1—C1—C2 | 123.5 (4) | C9—C10—H10A | 119.3 |
N1—C1—H1A | 118.2 | C5—N1—C1 | 116.5 (3) |
C2—C1—H1A | 118.2 | C5—N1—Zn1 | 121.4 (2) |
C1—C2—C3 | 120.5 (4) | C1—N1—Zn1 | 122.1 (3) |
C1—C2—H2A | 119.8 | ||
N1—C1—C2—C3 | 0.000 (2) | C7—C8—C9—C10 | 0.000 (2) |
C1—C2—C3—C4 | 0.000 (2) | S1—C8—C9—C10 | 180.000 (2) |
C1—C2—C3—C3iv | 180.000 (2) | C8—C9—C10—C6v | 0.000 (2) |
C2—C3—C4—C5 | 0.000 (1) | C4—C5—N1—C1 | 0.000 (2) |
C3iv—C3—C4—C5 | 180.000 (1) | C4—C5—N1—Zn1 | 180.000 (1) |
C3—C4—C5—N1 | 0.000 (2) | C2—C1—N1—C5 | 0.000 (1) |
C10v—C6—C7—C7v | 0.000 (2) | C2—C1—N1—Zn1 | 180.000 (1) |
C10v—C6—C7—C8 | 180.000 (2) | O1Wi—Zn1—N1—C5 | −46.47 (6) |
C6—C7—C8—C9 | 180.000 (2) | O1W—Zn1—N1—C5 | 133.53 (6) |
C7v—C7—C8—C9 | 0.000 (2) | O1Wii—Zn1—N1—C5 | −133.53 (6) |
C6—C7—C8—S1 | 0.000 (1) | O1Wiii—Zn1—N1—C5 | 46.47 (6) |
C7v—C7—C8—S1 | 180.000 (1) | N1i—Zn1—N1—C5 | 0 (100) |
O3ii—S1—C8—C9 | 119.92 (10) | O1Wi—Zn1—N1—C1 | 133.53 (6) |
O3—S1—C8—C9 | −119.92 (10) | O1W—Zn1—N1—C1 | −46.47 (6) |
O2—S1—C8—C9 | 0.0 | O1Wii—Zn1—N1—C1 | 46.47 (6) |
O3ii—S1—C8—C7 | −60.08 (10) | O1Wiii—Zn1—N1—C1 | −133.53 (6) |
O3—S1—C8—C7 | 60.08 (10) | N1i—Zn1—N1—C1 | 180 (100) |
O2—S1—C8—C7 | 180.000 (1) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1, z; (iii) −x+1, y, −z+1; (iv) −x+1, −y+1, −z+2; (v) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1wa···O3 | 0.85 (2) | 1.92 (2) | 2.763 (3) | 175 (3) |
O1w—H1wb···O2vi | 0.83 (2) | 1.95 (2) | 2.768 (3) | 166 (3) |
Symmetry code: (vi) −x+3/2, y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C10H8N2)(H2O)4](C10H6O6S2) |
Mr | 579.89 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 293 |
a, b, c (Å) | 14.584 (3), 7.3948 (15), 11.380 (2) |
β (°) | 108.38 (3) |
V (Å3) | 1164.7 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.38 × 0.29 × 0.19 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.658, 0.794 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5711, 1421, 1302 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.647 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.107, 1.03 |
No. of reflections | 1421 |
No. of parameters | 107 |
No. of restraints | 15 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.46, −0.52 |
Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1wa···O3 | 0.85 (2) | 1.92 (2) | 2.763 (3) | 175 (3) |
O1w—H1wb···O2i | 0.83 (2) | 1.95 (2) | 2.768 (3) | 166 (3) |
Symmetry code: (i) −x+3/2, y+1/2, −z+1. |
Acknowledgements
This work was supported by the Natural Science Foundation of Fujian Province (No. 2008 J0172).
References
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. Web of Science CrossRef Google Scholar
Cui, Y., Ngo, H. L., White, P. S. & Lin, W. (2003). Inorg. Chem. 42, 652–654. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684. CrossRef Google Scholar
Li, R. Z., Li, D., Huang, X. C., Qi, Z. Y. & Chen, X. M. (2003). Inorg. Chem. Commun. 6, 1017–1019. Web of Science CSD CrossRef CAS Google Scholar
Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m712–m713. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Yaghi, O. M. & Li, H. (1995). J. Am. Chem. Soc. 117, 10401–10402. CSD CrossRef CAS Web of Science Google Scholar
Yaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295–296. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and preparation of metal-organic hybrid materials have been studied widely during the past decade owing to their intriguing structures and potential practical applications. (Hagrman et al., 1999; Batten & Robson, 1998; Cui et al., 2003). It has been demonstrated that many d10 metal(such as Zn) complexes present intriguing structural and photoluminescent properties (Li et al.,2003; Sattarzadeh et al., 2009). On the other hand, bridged ligand,4,4'-bipyridine, can be efficiently used to assembly many interesting transition metal coordination polymers through covalent or hydrogen bonds (Yaghi & Li, 1995, 1996). In this work, we use 4,4'-bpy, 1, 5-naphthalenedisulphonic acid(NDS) and Zn(OAc)2 to synthesize a novel 1-D chain polymer through hydrothermal synthesis.
Complex (I) consists of one-dimensional chains formed by 4,4'- bipy ligands through connecting Zn atoms,uncoordinated NDS2- anions, as shown in Fig. 1. The [Zn(4,4'-bipy)(H2O)4]2+ cation is located on a twofold rotation axis that passes through atoms Zn1, N1 and C3. In the cation, the Zn1 atom exhibits slightly distorted octahedral coordination geometry, completed by four O atoms from four water molecules in the equatorial positions and two N donors from two 4,4'-bipy ligands in the apical positions. These Zn–O and Zn–N distances are 2.127 (2) and 2.131 (2) Å, respectively. The 4,4'-bipy ligand acts as bis-monodentate linkers and bridge adjacent Zn centers with the Zn···Zn separation of 11.380 (2)Å into an infinite one-dimensional chain.
In complex (I), the NDS2- anions are not involved in coordination but hydrogen-bondedto the [Zn(4,4'-bipy)(H2O)4]2+ cations through the sulfonate oxygen atoms and the coordinated oxygen atoms, forming a three-dimensional hydrogen-bonding network, as shown in Fig. 2.