metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­zinc(II)]-μ-4,4′-bi­pyridine-κ2N:N′] naphthalene-1,5-di­sulfonate]

aDepartment of Pharmacy, Xiamen University, Xiamen, Fujian 363105, People's Republic of China, and bDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn

(Received 12 August 2009; accepted 13 August 2009; online 19 August 2009)

In the title complex, {[Zn(C10H8N2)(H2O)4](C10H6O6S2)}n, the [Zn(4,4′-bipy)(H2O)4]2+ (4,4′-bipy is 4,4′-bipyridine) cations are linked into linear chains along [001] by the 4,4′-bipy ligands. The ZnII ion exhibits a slightly distorted octa­hedral coordination geometry in which the four water mol­ecules are in the equatorial positions. The anions are hydrogen bonded to the polycationic chains by O—H⋯O hydrogen bonds, forming a three-dimensional network. The ZnII ion, 4,4′-bipy ligand and anion lie on special positions of 2/m site symmetry.

Related literature

For the design, preparation and applications of metal-organic hybrid materials, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]); Cui et al. (2003[Cui, Y., Ngo, H. L., White, P. S. & Lin, W. (2003). Inorg. Chem. 42, 652-654.]). For the structural and photoluminescent properties of d10 metal (such as Zn) complexes, see: Li et al. (2003[Li, R. Z., Li, D., Huang, X. C., Qi, Z. Y. & Chen, X. M. (2003). Inorg. Chem. Commun. 6, 1017-1019.]); Sattarzadeh et al. (2009[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m712-m713.]). 4,4′-Bipyridine can be used to assembly many transition metal coordination polymers through covalent or hydrogen bonds, see: Yaghi & Li (1995[Yaghi, O. M. & Li, H. (1995). J. Am. Chem. Soc. 117, 10401-10402.], 1996[Yaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295-296.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H8N2)(H2O)4](C10H6O6S2)

  • Mr = 579.89

  • Monoclinic, C 2/m

  • a = 14.584 (3) Å

  • b = 7.3948 (15) Å

  • c = 11.380 (2) Å

  • β = 108.38 (3)°

  • V = 1164.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 293 K

  • 0.38 × 0.29 × 0.19 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.658, Tmax = 0.794

  • 5711 measured reflections

  • 1421 independent reflections

  • 1302 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.107

  • S = 1.03

  • 1421 reflections

  • 107 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1wa⋯O3 0.85 (2) 1.92 (2) 2.763 (3) 175 (3)
O1w—H1wb⋯O2i 0.83 (2) 1.95 (2) 2.768 (3) 166 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and preparation of metal-organic hybrid materials have been studied widely during the past decade owing to their intriguing structures and potential practical applications. (Hagrman et al., 1999; Batten & Robson, 1998; Cui et al., 2003). It has been demonstrated that many d10 metal(such as Zn) complexes present intriguing structural and photoluminescent properties (Li et al.,2003; Sattarzadeh et al., 2009). On the other hand, bridged ligand,4,4'-bipyridine, can be efficiently used to assembly many interesting transition metal coordination polymers through covalent or hydrogen bonds (Yaghi & Li, 1995, 1996). In this work, we use 4,4'-bpy, 1, 5-naphthalenedisulphonic acid(NDS) and Zn(OAc)2 to synthesize a novel 1-D chain polymer through hydrothermal synthesis.

Complex (I) consists of one-dimensional chains formed by 4,4'- bipy ligands through connecting Zn atoms,uncoordinated NDS2- anions, as shown in Fig. 1. The [Zn(4,4'-bipy)(H2O)4]2+ cation is located on a twofold rotation axis that passes through atoms Zn1, N1 and C3. In the cation, the Zn1 atom exhibits slightly distorted octahedral coordination geometry, completed by four O atoms from four water molecules in the equatorial positions and two N donors from two 4,4'-bipy ligands in the apical positions. These Zn–O and Zn–N distances are 2.127 (2) and 2.131 (2) Å, respectively. The 4,4'-bipy ligand acts as bis-monodentate linkers and bridge adjacent Zn centers with the Zn···Zn separation of 11.380 (2)Å into an infinite one-dimensional chain.

In complex (I), the NDS2- anions are not involved in coordination but hydrogen-bondedto the [Zn(4,4'-bipy)(H2O)4]2+ cations through the sulfonate oxygen atoms and the coordinated oxygen atoms, forming a three-dimensional hydrogen-bonding network, as shown in Fig. 2.

Related literature top

For the design, preparation and applications of metal-organic hybrid materials, see: Batten & Robson (1998); Hagrman et al. (1999); Cui et al. (2003). For the structural and photoluminescent properties of d10 metal (such as Zn) complexes, see: Li et al. (2003); Sattarzadeh et al. (2009). 4,4'-Bipyridine can be used to assembly many transition metal coordination polymers through covalent or hydrogen bonds, see: Yaghi & Li (1995, 1996).

Experimental top

The hydrothermal reaction of Zn(OAc)2.2H2O (0.5707 g,2.6 mmol), 1,5-Naphthalenedisulphonic acid(0.5405 g, 1.5 mmol), 4,4'-bipyridine(0.4681 g, 3.0 mmol) and water (15 ml) was carried out at 443 K for 3 d. After cooling to room temperature at 5 K h-1, the colorless block crystalline complex, (I), was isolated in 49% yield (based on Zn).

Refinement top

H atoms attached to C atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å, and Uiso(H)= 1.2Ueq(C); Water H atoms were located in a difference map and refined with O–H and H···H distance restraints of 0.85 (2) and 1.39 (2) Å, respectively, and with Uiso(H)= 1.5Ueq(O). During the refinement, the displacement parameters of the C1 and C2 atoms were restrained to an approximately isotropic behaviour.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the 3D hydrogen-bonded network in the packing of the title compound. The packing is viewed along the b axis; O-H···O interactions are shown as dashed lines.
catena-Poly[[[tetraaquazinc(II)]-µ-4,4'-bipyridine- κ2N:N'] naphthalene-1,5-disulfonate] top
Crystal data top
[Zn(C10H8N2)(H2O)4](C10H6O6S2)F(000) = 596
Mr = 579.89Dx = 1.654 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 5711 reflections
a = 14.584 (3) Åθ = 3.1–27.4°
b = 7.3948 (15) ŵ = 1.29 mm1
c = 11.380 (2) ÅT = 293 K
β = 108.38 (3)°Block, colorless
V = 1164.7 (4) Å30.38 × 0.29 × 0.19 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
1421 independent reflections
Radiation source: fine-focus sealed tube1302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.658, Tmax = 0.794k = 99
5711 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0663P)2 + 1.4457P]
where P = (Fo2 + 2Fc2)/3
1421 reflections(Δ/σ)max = 0.001
107 parametersΔρmax = 0.46 e Å3
15 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Zn(C10H8N2)(H2O)4](C10H6O6S2)V = 1164.7 (4) Å3
Mr = 579.89Z = 2
Monoclinic, C2/mMo Kα radiation
a = 14.584 (3) ŵ = 1.29 mm1
b = 7.3948 (15) ÅT = 293 K
c = 11.380 (2) Å0.38 × 0.29 × 0.19 mm
β = 108.38 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1421 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1302 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.794Rint = 0.033
5711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03415 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
1421 reflectionsΔρmin = 0.52 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.0328 (2)
S10.84039 (6)0.50000.70300 (8)0.0323 (3)
O1W0.60582 (14)0.7084 (3)0.54834 (19)0.0443 (5)
H1WA0.6631 (16)0.698 (5)0.596 (2)0.053*
H1WB0.605 (2)0.790 (4)0.498 (3)0.053*
O20.8672 (2)0.50000.5896 (2)0.0451 (7)
O30.78840 (14)0.6629 (3)0.71577 (18)0.0425 (5)
C10.5820 (3)0.50000.7822 (4)0.0669 (15)
H1A0.64030.50000.76510.080*
C20.5848 (3)0.50000.9042 (4)0.0647 (14)
H2A0.64400.50000.96670.078*
C30.4997 (3)0.50000.9346 (3)0.0324 (8)
C40.4162 (3)0.50000.8359 (3)0.0364 (8)
H4A0.35680.50000.85010.044*
C50.4189 (3)0.50000.7155 (3)0.0337 (8)
H5A0.36070.50000.65110.040*
C60.8693 (3)0.50000.9887 (4)0.0580 (14)
H6A0.80900.50000.92830.070*
C70.9543 (2)0.50000.9528 (3)0.0329 (8)
C80.9520 (3)0.50000.8266 (3)0.0338 (8)
C91.0349 (3)0.50000.7957 (4)0.0549 (13)
H9A1.03220.50000.71300.066*
C101.1247 (3)0.50000.8898 (5)0.080 (2)
H10A1.18120.50000.86840.096*
N10.5005 (2)0.50000.6874 (3)0.0371 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0270 (3)0.0560 (4)0.0140 (3)0.0000.0046 (2)0.000
S10.0278 (5)0.0414 (5)0.0202 (4)0.0000.0030 (3)0.000
O1W0.0347 (10)0.0589 (13)0.0301 (10)0.0062 (9)0.0031 (8)0.0086 (9)
O20.0468 (16)0.0607 (18)0.0213 (13)0.0000.0014 (12)0.000
O30.0360 (10)0.0440 (11)0.0372 (10)0.0048 (8)0.0033 (8)0.0028 (8)
C10.036 (2)0.137 (4)0.030 (2)0.0000.0134 (18)0.000
C20.032 (2)0.135 (4)0.027 (2)0.0000.0088 (17)0.000
C30.0311 (18)0.048 (2)0.0190 (17)0.0000.0089 (14)0.000
C40.0294 (17)0.058 (2)0.0230 (17)0.0000.0106 (14)0.000
C50.0302 (17)0.050 (2)0.0186 (16)0.0000.0044 (13)0.000
C60.0194 (17)0.120 (5)0.029 (2)0.0000.0003 (15)0.000
C70.0241 (17)0.046 (2)0.0247 (17)0.0000.0027 (15)0.000
C80.0244 (16)0.049 (2)0.0224 (16)0.0000.0008 (13)0.000
C90.034 (2)0.106 (4)0.0219 (18)0.0000.0048 (16)0.000
C100.025 (2)0.178 (7)0.036 (3)0.0000.0093 (19)0.000
N10.0307 (15)0.065 (2)0.0157 (13)0.0000.0072 (12)0.000
Geometric parameters (Å, º) top
Zn1—O1Wi2.127 (2)C3—C41.372 (5)
Zn1—O1W2.127 (2)C3—C3iv1.485 (6)
Zn1—O1Wii2.127 (2)C4—C51.383 (5)
Zn1—O1Wiii2.127 (2)C4—H4A0.9300
Zn1—N1i2.131 (3)C5—N11.326 (5)
Zn1—N12.131 (3)C5—H5A0.9300
S1—O3ii1.455 (2)C6—C10v1.358 (6)
S1—O31.455 (2)C6—C71.421 (5)
S1—O21.461 (3)C6—H6A0.9300
S1—C81.784 (4)C7—C7v1.424 (7)
O1W—H1WA0.846 (19)C7—C81.426 (5)
O1W—H1WB0.83 (2)C8—C91.362 (6)
C1—N11.330 (6)C9—C101.406 (6)
C1—C21.376 (6)C9—H9A0.9300
C1—H1A0.9300C10—C6v1.358 (6)
C2—C31.390 (6)C10—H10A0.9300
C2—H2A0.9300
O1Wi—Zn1—O1W180.00 (9)C3—C2—H2A119.8
O1Wi—Zn1—O1Wii87.13 (12)C4—C3—C2115.3 (3)
O1W—Zn1—O1Wii92.87 (12)C4—C3—C3iv123.0 (4)
O1Wi—Zn1—O1Wiii92.87 (12)C2—C3—C3iv121.7 (4)
O1W—Zn1—O1Wiii87.13 (12)C3—C4—C5121.1 (3)
O1Wii—Zn1—O1Wiii180.000 (1)C3—C4—H4A119.4
O1Wi—Zn1—N1i88.18 (8)C5—C4—H4A119.4
O1W—Zn1—N1i91.82 (8)N1—C5—C4123.1 (3)
O1Wii—Zn1—N1i91.82 (8)N1—C5—H5A118.4
O1Wiii—Zn1—N1i88.18 (8)C4—C5—H5A118.4
O1Wi—Zn1—N191.82 (8)C10v—C6—C7120.7 (4)
O1W—Zn1—N188.18 (8)C10v—C6—H6A119.7
O1Wii—Zn1—N188.18 (8)C7—C6—H6A119.7
O1Wiii—Zn1—N191.82 (8)C6—C7—C7v118.6 (4)
N1i—Zn1—N1180.0C6—C7—C8122.9 (3)
O3ii—S1—O3111.78 (18)C7v—C7—C8118.5 (4)
O3ii—S1—O2112.40 (11)C9—C8—C7121.3 (3)
O3—S1—O2112.40 (11)C9—C8—S1117.4 (3)
O3ii—S1—C8107.20 (10)C7—C8—S1121.3 (3)
O3—S1—C8107.20 (10)C8—C9—C10119.6 (4)
O2—S1—C8105.36 (17)C8—C9—H9A120.2
Zn1—O1W—H1WA126 (3)C10—C9—H9A120.2
Zn1—O1W—H1WB120 (2)C6v—C10—C9121.3 (4)
H1WA—O1W—H1WB108 (3)C6v—C10—H10A119.3
N1—C1—C2123.5 (4)C9—C10—H10A119.3
N1—C1—H1A118.2C5—N1—C1116.5 (3)
C2—C1—H1A118.2C5—N1—Zn1121.4 (2)
C1—C2—C3120.5 (4)C1—N1—Zn1122.1 (3)
C1—C2—H2A119.8
N1—C1—C2—C30.000 (2)C7—C8—C9—C100.000 (2)
C1—C2—C3—C40.000 (2)S1—C8—C9—C10180.000 (2)
C1—C2—C3—C3iv180.000 (2)C8—C9—C10—C6v0.000 (2)
C2—C3—C4—C50.000 (1)C4—C5—N1—C10.000 (2)
C3iv—C3—C4—C5180.000 (1)C4—C5—N1—Zn1180.000 (1)
C3—C4—C5—N10.000 (2)C2—C1—N1—C50.000 (1)
C10v—C6—C7—C7v0.000 (2)C2—C1—N1—Zn1180.000 (1)
C10v—C6—C7—C8180.000 (2)O1Wi—Zn1—N1—C546.47 (6)
C6—C7—C8—C9180.000 (2)O1W—Zn1—N1—C5133.53 (6)
C7v—C7—C8—C90.000 (2)O1Wii—Zn1—N1—C5133.53 (6)
C6—C7—C8—S10.000 (1)O1Wiii—Zn1—N1—C546.47 (6)
C7v—C7—C8—S1180.000 (1)N1i—Zn1—N1—C50 (100)
O3ii—S1—C8—C9119.92 (10)O1Wi—Zn1—N1—C1133.53 (6)
O3—S1—C8—C9119.92 (10)O1W—Zn1—N1—C146.47 (6)
O2—S1—C8—C90.0O1Wii—Zn1—N1—C146.47 (6)
O3ii—S1—C8—C760.08 (10)O1Wiii—Zn1—N1—C1133.53 (6)
O3—S1—C8—C760.08 (10)N1i—Zn1—N1—C1180 (100)
O2—S1—C8—C7180.000 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+2; (v) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1wa···O30.85 (2)1.92 (2)2.763 (3)175 (3)
O1w—H1wb···O2vi0.83 (2)1.95 (2)2.768 (3)166 (3)
Symmetry code: (vi) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C10H8N2)(H2O)4](C10H6O6S2)
Mr579.89
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)14.584 (3), 7.3948 (15), 11.380 (2)
β (°) 108.38 (3)
V3)1164.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.38 × 0.29 × 0.19
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.658, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
5711, 1421, 1302
Rint0.033
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.107, 1.03
No. of reflections1421
No. of parameters107
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.52

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1wa···O30.85 (2)1.92 (2)2.763 (3)175 (3)
O1w—H1wb···O2i0.83 (2)1.95 (2)2.768 (3)166 (3)
Symmetry code: (i) x+3/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province (No. 2008 J0172).

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationCui, Y., Ngo, H. L., White, P. S. & Lin, W. (2003). Inorg. Chem. 42, 652–654.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationLi, R. Z., Li, D., Huang, X. C., Qi, Z. Y. & Chen, X. M. (2003). Inorg. Chem. Commun. 6, 1017–1019.  Web of Science CSD CrossRef CAS Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m712–m713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYaghi, O. M. & Li, H. (1995). J. Am. Chem. Soc. 117, 10401–10402.  CSD CrossRef CAS Web of Science Google Scholar
First citationYaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295–296.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds