metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1152-m1153

Poly[[di­aqua­hemi-μ4-oxalato-μ2-oxalato-praseodymium(III)] monohydrate]

aHigh-Tech Institute of Nangjing University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: tinghaiyang@gmail.com

(Received 9 August 2009; accepted 25 August 2009; online 29 August 2009)

In the title complex, {[Pr(C2O4)1.5(H2O)2]·H2O}n, the PrIII ion, which lies on a crystallographic inversion centre, is coordinated by seven O atoms from four oxalate ligands and two O atoms from two water ligands; further Pr—O coordination from tetra­dentate oxalate ligands forms a three-dimensional structure. The compound crystallized as a monohydrate, the water mol­ecule occupying space in small voids and being secured by O—H⋯O hydrogen bonding as an acceptor from ligand water H atoms and as a donor to oxalate O-acceptor sites.

Related literature

For background to lanthanide oxalates and their preparation, see: Hansson (1970[Hansson, E. (1970). Acta Chem. Scand. 24, 2969-2982.], 1972[Hansson, E. (1972). Acta Chem. Scand. 26, 1337-1350.], 1973a[Hansson, E. (1973a). Acta Chem. Scand. 27, 823-834.], 1973b[Hansson, E. (1973b). Acta Chem. Scand. 27, 2852-2860.]); Michaelides et al. (1988[Michaelides, A., Skoulika, S. & Aubry, A. (1988). Mater. Res. Bull. 23, 579-585.]); Ollendorf & Weigel (1969[Ollendorf, W. & Weigel, F. (1969). Inorg. Nucl. Chem. Lett. 5, 263-269.]); Steinfink & Brunton (1970[Steinfink, H. & Brunton, G. D. (1970). Inorg. Chem. 9, 2112-2117.]); Trollet et al. (1998[Trollet, D., Rome, S. & Mosset, A. (1998). Polyhedron, 17, 3977-3978.]); Trombe (2003[Trombe, J. C. (2003). J. Chem. Crystallogr. 33, 19-26.]); Unaleroglu et al. (1997[Unaleroglu, C., Zumreoglu-Karan, B. & Zencir, Y. (1997). Polyhedron, 16, 2155-2161.]). For related structures, see: Trombe et al. (2004[Trombe, J. C. & Mohanu, A. (2004). Solid State Sci. 6, 1403-1419.]); Barrett Adams et al. (1998[Barrett Adams, D. M. Y., Kahwa, I. A. & Mague, J. T. (1998). New J. Chem. 22, 919-921.]); Beagley et al. (1988[Beagley, B., Pritchard, R. G., Evmiridis, N. P., Michailides, A. & Skoulika, S. (1988). Acta Cryst. C44, 174-175.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr(C2O4)1.5(H2O)2]·H2O

  • Mr = 326.99

  • Triclinic, [P \overline 1]

  • a = 6.0367 (12) Å

  • b = 7.6222 (15) Å

  • c = 8.9353 (18) Å

  • α = 98.330 (4)°

  • β = 99.814 (3)°

  • γ = 96.734 (4)°

  • V = 396.58 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.17 mm−1

  • T = 273 K

  • 0.18 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.341, Tmax = 0.542

  • 2140 measured reflections

  • 1521 independent reflections

  • 1450 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.00

  • 1521 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −1.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WB⋯O1W 0.84 2.55 2.858 (7) 103
O1W—H1WA⋯O2i 0.84 1.96 2.694 (6) 146
O1W—H1WA⋯O3ii 0.84 2.60 3.235 (6) 133
O1W—H1WB⋯O3Wiii 0.84 2.00 2.833 (6) 169
O2W—H2WA⋯O3Wiv 0.84 1.98 2.807 (7) 166
O2W—H2WB⋯O3v 0.84 2.20 2.919 (6) 144
O3W—H3WA⋯O6vi 0.84 2.08 2.829 (7) 149
O3W—H3WB⋯O4vii 0.84 2.03 2.833 (6) 159
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z; (iv) x+1, y+1, z; (v) -x+2, -y+2, -z; (vi) -x+1, -y+1, -z+1; (vii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the last decade considerable attention has been afforded to the structures and properties of lanthanide oxalates due to their ability to act as precursors of lanthanide oxides. Some single crystals of lanthanide oxalates, such as[Ln(C2O4)3(H2O)4].(H2O) (Ln = Sc or Yb), [Ln2(C2O4)3(H2O)6].4H2O (Ln = La, Ce, Pr or Nd) and [Nd2(C2O4)3(H2O)6] have been obtained either in silica gel (Ollendorff & Weigel, 1969), by hydrothermal reaction (Michaelides et al., 1988) or by other methods (Hansson, 1970, 1972, 1973a,b; Unaleroglu et al., 1997; Trollet et al., 1998; Trombe, 2003). Crystals of [Ln(C2O4)(HC2O4)].4H2O (Ln = Er or Tm) were prepared by saturating a boiling solution of oxalic acid in 3 M H2SO4 with the lanthanide oxide and then slowly cooling to 273 K (Steinfink & Brunton, 1970). However, a few praseodymium oxalate complex has been reported. The present paper is concerned with a new crystal structure of praseodymium oxalate complex with a three-dimensional network structure.

The asymmetric unit of the title compound, [Pr(C2O4)1.5(H2O)2].(H2O), (I), is shown in Fig. 1. The Pr atom lies on an inversion centre and is coordinated by seven O atoms [O1, O1iv, O2ii, O3, O4iii, O5 and O6i] from four oxlate ligands, and two O atoms from two aqua ligands, thereby forming a slightly distorted PrO9 polyhedral coordination geometry. The Pr—O bond distances range from 2.451 (4) Å to 2.608 (3) Å, in agreement with those in compounds (Trombe et al. (2004); Barrett Adams et al. (1998)).

In the complex, the equivalent Pr atom are connected is coordinated by seven O atoms from four oxalate ligands and two O atoms from water ligands. Further Pr–O coordination from the tetradentate oxalate ligands forms a three-dimensional structure (Fig.2). The compound crystallized as a monohydrate; this water molecule occupies space in small voids and is secured by O–H···O hydrogen bonding as an acceptor from ligand water H-atoms and as a donor to oxalate O acceptor sites.

Related literature top

For background to lanthanide oxalates and their preparation, see: Hansson (1970, 1972, 1973a, 1973b); Michaelides et al. (1988); Ollendorf & Weigel (1969); Steinfink & Brunton (1970); Trollet et al. (1998); Trombe (2003); Unaleroglu et al. (1997). For related structures, see: Trombe et al. (2004); Barrett Adams et al. (1998); Beagley et al. (1988).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. Pr(NO3)3.6H2O (0.05 mmol, 0.023 g), Na2C2O4(0.075 mmol, 0.011 g), and deionized water (10 ml) were mixed together. The mixture was sealed in a Teflon-line autoclave and then heated at 443 K for 5 d under autogenous pressure and then cooled to room temperature. Green crystals were obtained.

Refinement top

All non-hydrogen atoms were refined anisotropically. The water H atoms were located in a difference Fourier map and refined with a distance restraint of O-H = 0.83-0.85 Å, and with Uiso(H) = 1.5Uiso(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 50% probability displacement ellipsoids. [symmetry codes:(i) -x + 2,-y + 1,-z + 1; (ii) -x + 3,-y + 2,-z + 1; (iii) -x + 2,-y + 1,-z; (iv) -x + 2,-y + 2,-z + 1.
[Figure 2] Fig. 2. The unit cell packing diagram of (I).
Poly[[diaquahemi-µ4-oxalato-µ2-oxalato-praseodymium(III)] monohydrate] top
Crystal data top
[Pr(C2O4)1.5(H2O)2]·H2OZ = 2
Mr = 326.99F(000) = 310
Triclinic, P1Dx = 2.738 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0367 (12) ÅCell parameters from 905 reflections
b = 7.6222 (15) Åθ = 3.3–28.3°
c = 8.9353 (18) ŵ = 6.17 mm1
α = 98.330 (4)°T = 273 K
β = 99.814 (3)°Block, green
γ = 96.734 (4)°0.18 × 0.16 × 0.10 mm
V = 396.58 (14) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
1521 independent reflections
Radiation source: fine-focus sealed tube1450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.341, Tmax = 0.542k = 98
2140 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.049P)2 + 1.09P]
where P = (Fo2 + 2Fc2)/3
1521 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 1.50 e Å3
Crystal data top
[Pr(C2O4)1.5(H2O)2]·H2Oγ = 96.734 (4)°
Mr = 326.99V = 396.58 (14) Å3
Triclinic, P1Z = 2
a = 6.0367 (12) ÅMo Kα radiation
b = 7.6222 (15) ŵ = 6.17 mm1
c = 8.9353 (18) ÅT = 273 K
α = 98.330 (4)°0.18 × 0.16 × 0.10 mm
β = 99.814 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1521 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1450 reflections with I > 2σ(I)
Tmin = 0.341, Tmax = 0.542Rint = 0.020
2140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.00Δρmax = 0.80 e Å3
1521 reflectionsΔρmin = 1.50 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr11.00780 (5)0.80762 (4)0.29489 (3)0.01182 (13)
C11.4452 (9)1.0278 (7)0.5703 (6)0.0155 (11)
C21.0808 (10)0.5659 (7)0.0322 (7)0.0163 (12)
C30.8789 (9)0.5155 (7)0.5109 (6)0.0157 (11)
O11.2322 (6)0.9964 (5)0.5514 (4)0.0156 (8)
O21.5785 (7)1.1009 (6)0.6910 (5)0.0220 (9)
O31.1296 (7)0.7232 (5)0.0431 (5)0.0195 (9)
O41.1455 (7)0.5077 (5)0.1515 (5)0.0217 (9)
O50.8004 (7)0.6413 (5)0.4552 (5)0.0195 (9)
O60.7818 (7)0.4116 (6)0.5849 (5)0.0230 (9)
O1W0.6751 (7)0.8292 (7)0.0928 (5)0.0310 (11)
H1WA0.55810.85340.12600.046*
H1WB0.62990.77710.00110.046*
O2W1.0612 (8)1.0993 (6)0.2071 (5)0.0288 (10)
H2WA1.16531.18720.22270.043*
H2WB0.97521.10290.12390.043*
O3W0.4213 (9)0.3694 (7)0.2101 (6)0.0420 (13)
H3WA0.41030.43390.29220.063*
H3WB0.55900.38230.20310.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01064 (19)0.01179 (18)0.01243 (18)0.00024 (12)0.00360 (12)0.00045 (12)
C10.012 (3)0.016 (3)0.019 (3)0.001 (2)0.005 (2)0.001 (2)
C20.015 (3)0.016 (3)0.018 (3)0.002 (2)0.005 (2)0.002 (2)
C30.016 (3)0.016 (3)0.014 (3)0.002 (2)0.004 (2)0.000 (2)
O10.0075 (19)0.019 (2)0.020 (2)0.0013 (15)0.0047 (15)0.0003 (16)
O20.013 (2)0.032 (2)0.016 (2)0.0027 (17)0.0036 (16)0.0062 (18)
O30.023 (2)0.016 (2)0.017 (2)0.0029 (16)0.0072 (17)0.0033 (16)
O40.025 (2)0.018 (2)0.020 (2)0.0062 (17)0.0118 (17)0.0028 (17)
O50.021 (2)0.019 (2)0.023 (2)0.0084 (17)0.0089 (17)0.0085 (17)
O60.017 (2)0.026 (2)0.031 (2)0.0070 (18)0.0095 (18)0.0138 (19)
O1W0.015 (2)0.053 (3)0.023 (2)0.010 (2)0.0049 (18)0.005 (2)
O2W0.029 (3)0.021 (2)0.035 (3)0.0021 (19)0.001 (2)0.013 (2)
O3W0.029 (3)0.050 (3)0.038 (3)0.013 (2)0.013 (2)0.017 (2)
Geometric parameters (Å, º) top
Pr1—O52.448 (4)C2—C2iii1.555 (11)
Pr1—O2W2.466 (4)C3—O51.248 (7)
Pr1—O6i2.472 (4)C3—O61.258 (7)
Pr1—O2ii2.490 (4)C3—C3i1.548 (11)
Pr1—O1W2.500 (4)O1—Pr1iv2.609 (4)
Pr1—O32.504 (4)O2—Pr1ii2.490 (4)
Pr1—O4iii2.541 (4)O4—Pr1iii2.541 (4)
Pr1—O12.586 (4)O6—Pr1i2.472 (4)
Pr1—O1iv2.609 (4)O1W—H1WA0.8413
C1—O21.243 (7)O1W—H1WB0.8417
C1—O11.258 (7)O2W—H2WA0.8412
C1—C1ii1.546 (11)O2W—H2WB0.8372
C2—O41.238 (7)O3W—H3WA0.8386
C2—O31.263 (7)O3W—H3WB0.8400
O5—Pr1—O2W142.99 (15)O6i—Pr1—O1iv120.77 (14)
O5—Pr1—O6i65.89 (14)O2ii—Pr1—O1iv121.99 (13)
O2W—Pr1—O6i142.54 (15)O1W—Pr1—O1iv77.27 (13)
O5—Pr1—O2ii131.79 (14)O3—Pr1—O1iv146.78 (13)
O2W—Pr1—O2ii71.54 (15)O4iii—Pr1—O1iv122.88 (13)
O6i—Pr1—O2ii71.37 (14)O1—Pr1—O1iv65.40 (14)
O5—Pr1—O1W97.65 (15)O2—C1—O1126.7 (5)
O2W—Pr1—O1W70.26 (16)O2—C1—C1ii116.0 (6)
O6i—Pr1—O1W142.27 (16)O1—C1—C1ii117.3 (6)
O2ii—Pr1—O1W130.26 (15)O4—C2—O3126.8 (5)
O5—Pr1—O3133.93 (13)O4—C2—C2iii117.5 (6)
O2W—Pr1—O378.07 (15)O3—C2—C2iii115.7 (6)
O6i—Pr1—O392.40 (14)O5—C3—O6126.5 (5)
O2ii—Pr1—O367.24 (13)O5—C3—C3i117.1 (6)
O1W—Pr1—O374.66 (14)O6—C3—C3i116.4 (6)
O5—Pr1—O4iii70.30 (13)C1—O1—Pr1118.7 (3)
O2W—Pr1—O4iii132.32 (15)C1—O1—Pr1iv123.3 (3)
O6i—Pr1—O4iii69.96 (15)Pr1—O1—Pr1iv114.60 (14)
O2ii—Pr1—O4iii114.58 (14)C1—O2—Pr1ii123.5 (4)
O1W—Pr1—O4iii72.53 (15)C2—O3—Pr1121.8 (4)
O3—Pr1—O4iii64.03 (13)C2—O4—Pr1iii120.5 (4)
O5—Pr1—O185.86 (13)C3—O5—Pr1120.4 (4)
O2W—Pr1—O181.79 (14)C3—O6—Pr1i119.7 (4)
O6i—Pr1—O177.20 (14)Pr1—O1W—H1WA115.2
O2ii—Pr1—O163.42 (12)Pr1—O1W—H1WB132.7
O1W—Pr1—O1137.77 (14)H1WA—O1W—H1WB106.2
O3—Pr1—O1130.36 (13)Pr1—O2W—H2WA136.4
O4iii—Pr1—O1145.06 (13)Pr1—O2W—H2WB113.6
O5—Pr1—O1iv67.14 (13)H2WA—O2W—H2WB107.3
O2W—Pr1—O1iv76.00 (14)H3WA—O3W—H3WB107.4
O2—C1—O1—Pr1172.7 (5)C2iii—C2—O3—Pr16.3 (8)
C1ii—C1—O1—Pr18.0 (8)O5—Pr1—O3—C21.9 (5)
O2—C1—O1—Pr1iv29.2 (8)O2W—Pr1—O3—C2156.5 (4)
C1ii—C1—O1—Pr1iv150.1 (5)O6i—Pr1—O3—C260.1 (4)
O5—Pr1—O1—C1133.4 (4)O2ii—Pr1—O3—C2128.7 (5)
O2W—Pr1—O1—C181.6 (4)O1W—Pr1—O3—C283.9 (4)
O6i—Pr1—O1—C167.2 (4)O4iii—Pr1—O3—C26.2 (4)
O2ii—Pr1—O1—C18.2 (4)O1—Pr1—O3—C2135.3 (4)
O1W—Pr1—O1—C1129.8 (4)O1iv—Pr1—O3—C2117.2 (4)
O3—Pr1—O1—C115.0 (5)O3—C2—O4—Pr1iii174.2 (5)
O4iii—Pr1—O1—C187.3 (4)C2iii—C2—O4—Pr1iii4.8 (9)
O1iv—Pr1—O1—C1159.9 (5)O6—C3—O5—Pr1174.3 (5)
O5—Pr1—O1—Pr1iv66.72 (16)C3i—C3—O5—Pr16.5 (8)
O2W—Pr1—O1—Pr1iv78.30 (17)O2W—Pr1—O5—C3154.9 (4)
O6i—Pr1—O1—Pr1iv132.92 (18)O6i—Pr1—O5—C36.5 (4)
O2ii—Pr1—O1—Pr1iv151.7 (2)O2ii—Pr1—O5—C336.2 (5)
O1W—Pr1—O1—Pr1iv30.1 (3)O1W—Pr1—O5—C3138.0 (4)
O3—Pr1—O1—Pr1iv144.93 (15)O3—Pr1—O5—C361.9 (5)
O4iii—Pr1—O1—Pr1iv112.8 (2)O4iii—Pr1—O5—C369.7 (4)
O1iv—Pr1—O1—Pr1iv0.0O1—Pr1—O5—C384.4 (4)
O1—C1—O2—Pr1ii171.6 (4)O1iv—Pr1—O5—C3149.4 (4)
C1ii—C1—O2—Pr1ii7.8 (9)O5—C3—O6—Pr1i173.9 (4)
O4—C2—O3—Pr1174.7 (5)C3i—C3—O6—Pr1i5.3 (8)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3, y+2, z+1; (iii) x+2, y+1, z; (iv) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O1W0.842.552.858 (7)103
O1W—H1WA···O2iv0.841.962.694 (6)146
O1W—H1WA···O3v0.842.603.235 (6)133
O1W—H1WB···O3Wvi0.842.002.833 (6)169
O2W—H2WA···O3Wvii0.841.982.807 (7)166
O2W—H2WB···O3viii0.842.202.919 (6)144
O3W—H3WA···O6ix0.842.082.829 (7)149
O3W—H3WB···O4iii0.842.032.833 (6)159
Symmetry codes: (iii) x+2, y+1, z; (iv) x+2, y+2, z+1; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x+1, y+1, z; (viii) x+2, y+2, z; (ix) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pr(C2O4)1.5(H2O)2]·H2O
Mr326.99
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)6.0367 (12), 7.6222 (15), 8.9353 (18)
α, β, γ (°)98.330 (4), 99.814 (3), 96.734 (4)
V3)396.58 (14)
Z2
Radiation typeMo Kα
µ (mm1)6.17
Crystal size (mm)0.18 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.341, 0.542
No. of measured, independent and
observed [I > 2σ(I)] reflections
2140, 1521, 1450
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.00
No. of reflections1521
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 1.50

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O1W0.842.552.858 (7)103.3
O1W—H1WA···O2i0.841.962.694 (6)145.6
O1W—H1WA···O3ii0.842.603.235 (6)133.4
O1W—H1WB···O3Wiii0.842.002.833 (6)168.6
O2W—H2WA···O3Wiv0.841.982.807 (7)166.3
O2W—H2WB···O3v0.842.202.919 (6)144.3
O3W—H3WA···O6vi0.842.082.829 (7)148.8
O3W—H3WB···O4vii0.842.032.833 (6)158.6
Symmetry codes: (i) x+2, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z; (v) x+2, y+2, z; (vi) x+1, y+1, z+1; (vii) x+2, y+1, z.
 

Acknowledgements

The authors acknowledge the High-Tech Research Institute of Nanjing University for supporting this work.

References

First citationBarrett Adams, D. M. Y., Kahwa, I. A. & Mague, J. T. (1998). New J. Chem. 22, 919–921.  CSD CrossRef CAS Google Scholar
First citationBeagley, B., Pritchard, R. G., Evmiridis, N. P., Michailides, A. & Skoulika, S. (1988). Acta Cryst. C44, 174–175.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHansson, E. (1970). Acta Chem. Scand. 24, 2969–2982.  CrossRef CAS Web of Science Google Scholar
First citationHansson, E. (1972). Acta Chem. Scand. 26, 1337–1350.  CrossRef CAS Web of Science Google Scholar
First citationHansson, E. (1973a). Acta Chem. Scand. 27, 823–834.  CrossRef CAS Web of Science Google Scholar
First citationHansson, E. (1973b). Acta Chem. Scand. 27, 2852–2860.  CrossRef CAS Web of Science Google Scholar
First citationMichaelides, A., Skoulika, S. & Aubry, A. (1988). Mater. Res. Bull. 23, 579–585.  CSD CrossRef CAS Web of Science Google Scholar
First citationOllendorf, W. & Weigel, F. (1969). Inorg. Nucl. Chem. Lett. 5, 263–269.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinfink, H. & Brunton, G. D. (1970). Inorg. Chem. 9, 2112–2117.  CSD CrossRef CAS Web of Science Google Scholar
First citationTrollet, D., Rome, S. & Mosset, A. (1998). Polyhedron, 17, 3977–3978.  CAS Google Scholar
First citationTrombe, J. C. (2003). J. Chem. Crystallogr. 33, 19–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrombe, J. C. & Mohanu, A. (2004). Solid State Sci. 6, 1403–1419.  Web of Science CSD CrossRef CAS Google Scholar
First citationUnaleroglu, C., Zumreoglu-Karan, B. & Zencir, Y. (1997). Polyhedron, 16, 2155–2161.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1152-m1153
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds