metal-organic compounds
Poly[[diaquahemi-μ4-oxalato-μ2-oxalato-praseodymium(III)] monohydrate]
aHigh-Tech Institute of Nangjing University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: tinghaiyang@gmail.com
In the title complex, {[Pr(C2O4)1.5(H2O)2]·H2O}n, the PrIII ion, which lies on a crystallographic inversion centre, is coordinated by seven O atoms from four oxalate ligands and two O atoms from two water ligands; further Pr—O coordination from tetradentate oxalate ligands forms a three-dimensional structure. The compound crystallized as a monohydrate, the water molecule occupying space in small voids and being secured by O—H⋯O hydrogen bonding as an acceptor from ligand water H atoms and as a donor to oxalate O-acceptor sites.
Related literature
For background to lanthanide oxalates and their preparation, see: Hansson (1970, 1972, 1973a, 1973b); Michaelides et al. (1988); Ollendorf & Weigel (1969); Steinfink & Brunton (1970); Trollet et al. (1998); Trombe (2003); Unaleroglu et al. (1997). For related structures, see: Trombe et al. (2004); Barrett Adams et al. (1998); Beagley et al. (1988).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809033947/nk2001sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809033947/nk2001Isup2.hkl
All solvents and chemicals were of analytical grade and were used without further purification. Pr(NO3)3.6H2O (0.05 mmol, 0.023 g), Na2C2O4(0.075 mmol, 0.011 g), and deionized water (10 ml) were mixed together. The mixture was sealed in a Teflon-line autoclave and then heated at 443 K for 5 d under autogenous pressure and then cooled to room temperature. Green crystals were obtained.
All non-hydrogen atoms were refined anisotropically. The water H atoms were located in a difference Fourier map and refined with a distance restraint of O-H = 0.83-0.85 Å, and with Uiso(H) = 1.5Uiso(O).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of (I), showing 50% probability displacement ellipsoids. [symmetry codes:(i) -x + 2,-y + 1,-z + 1; (ii) -x + 3,-y + 2,-z + 1; (iii) -x + 2,-y + 1,-z; (iv) -x + 2,-y + 2,-z + 1. | |
Fig. 2. The unit cell packing diagram of (I). |
[Pr(C2O4)1.5(H2O)2]·H2O | Z = 2 |
Mr = 326.99 | F(000) = 310 |
Triclinic, P1 | Dx = 2.738 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0367 (12) Å | Cell parameters from 905 reflections |
b = 7.6222 (15) Å | θ = 3.3–28.3° |
c = 8.9353 (18) Å | µ = 6.17 mm−1 |
α = 98.330 (4)° | T = 273 K |
β = 99.814 (3)° | Block, green |
γ = 96.734 (4)° | 0.18 × 0.16 × 0.10 mm |
V = 396.58 (14) Å3 |
Bruker SMART APEX CCD diffractometer | 1521 independent reflections |
Radiation source: fine-focus sealed tube | 1450 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −7→7 |
Tmin = 0.341, Tmax = 0.542 | k = −9→8 |
2140 measured reflections | l = −10→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.049P)2 + 1.09P] where P = (Fo2 + 2Fc2)/3 |
1521 reflections | (Δ/σ)max = 0.001 |
118 parameters | Δρmax = 0.80 e Å−3 |
0 restraints | Δρmin = −1.50 e Å−3 |
[Pr(C2O4)1.5(H2O)2]·H2O | γ = 96.734 (4)° |
Mr = 326.99 | V = 396.58 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.0367 (12) Å | Mo Kα radiation |
b = 7.6222 (15) Å | µ = 6.17 mm−1 |
c = 8.9353 (18) Å | T = 273 K |
α = 98.330 (4)° | 0.18 × 0.16 × 0.10 mm |
β = 99.814 (3)° |
Bruker SMART APEX CCD diffractometer | 1521 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1450 reflections with I > 2σ(I) |
Tmin = 0.341, Tmax = 0.542 | Rint = 0.020 |
2140 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.80 e Å−3 |
1521 reflections | Δρmin = −1.50 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pr1 | 1.00780 (5) | 0.80762 (4) | 0.29489 (3) | 0.01182 (13) | |
C1 | 1.4452 (9) | 1.0278 (7) | 0.5703 (6) | 0.0155 (11) | |
C2 | 1.0808 (10) | 0.5659 (7) | −0.0322 (7) | 0.0163 (12) | |
C3 | 0.8789 (9) | 0.5155 (7) | 0.5109 (6) | 0.0157 (11) | |
O1 | 1.2322 (6) | 0.9964 (5) | 0.5514 (4) | 0.0156 (8) | |
O2 | 1.5785 (7) | 1.1009 (6) | 0.6910 (5) | 0.0220 (9) | |
O3 | 1.1296 (7) | 0.7232 (5) | 0.0431 (5) | 0.0195 (9) | |
O4 | 1.1455 (7) | 0.5077 (5) | −0.1515 (5) | 0.0217 (9) | |
O5 | 0.8004 (7) | 0.6413 (5) | 0.4552 (5) | 0.0195 (9) | |
O6 | 0.7818 (7) | 0.4116 (6) | 0.5849 (5) | 0.0230 (9) | |
O1W | 0.6751 (7) | 0.8292 (7) | 0.0928 (5) | 0.0310 (11) | |
H1WA | 0.5581 | 0.8534 | 0.1260 | 0.046* | |
H1WB | 0.6299 | 0.7771 | 0.0011 | 0.046* | |
O2W | 1.0612 (8) | 1.0993 (6) | 0.2071 (5) | 0.0288 (10) | |
H2WA | 1.1653 | 1.1872 | 0.2227 | 0.043* | |
H2WB | 0.9752 | 1.1029 | 0.1239 | 0.043* | |
O3W | 0.4213 (9) | 0.3694 (7) | 0.2101 (6) | 0.0420 (13) | |
H3WA | 0.4103 | 0.4339 | 0.2922 | 0.063* | |
H3WB | 0.5590 | 0.3823 | 0.2031 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pr1 | 0.01064 (19) | 0.01179 (18) | 0.01243 (18) | 0.00024 (12) | 0.00360 (12) | −0.00045 (12) |
C1 | 0.012 (3) | 0.016 (3) | 0.019 (3) | 0.001 (2) | 0.005 (2) | 0.001 (2) |
C2 | 0.015 (3) | 0.016 (3) | 0.018 (3) | 0.002 (2) | 0.005 (2) | 0.002 (2) |
C3 | 0.016 (3) | 0.016 (3) | 0.014 (3) | 0.002 (2) | 0.004 (2) | 0.000 (2) |
O1 | 0.0075 (19) | 0.019 (2) | 0.020 (2) | 0.0013 (15) | 0.0047 (15) | −0.0003 (16) |
O2 | 0.013 (2) | 0.032 (2) | 0.016 (2) | −0.0027 (17) | 0.0036 (16) | −0.0062 (18) |
O3 | 0.023 (2) | 0.016 (2) | 0.017 (2) | −0.0029 (16) | 0.0072 (17) | −0.0033 (16) |
O4 | 0.025 (2) | 0.018 (2) | 0.020 (2) | −0.0062 (17) | 0.0118 (17) | −0.0028 (17) |
O5 | 0.021 (2) | 0.019 (2) | 0.023 (2) | 0.0084 (17) | 0.0089 (17) | 0.0085 (17) |
O6 | 0.017 (2) | 0.026 (2) | 0.031 (2) | 0.0070 (18) | 0.0095 (18) | 0.0138 (19) |
O1W | 0.015 (2) | 0.053 (3) | 0.023 (2) | 0.010 (2) | 0.0049 (18) | −0.005 (2) |
O2W | 0.029 (3) | 0.021 (2) | 0.035 (3) | −0.0021 (19) | 0.001 (2) | 0.013 (2) |
O3W | 0.029 (3) | 0.050 (3) | 0.038 (3) | −0.013 (2) | 0.013 (2) | −0.017 (2) |
Pr1—O5 | 2.448 (4) | C2—C2iii | 1.555 (11) |
Pr1—O2W | 2.466 (4) | C3—O5 | 1.248 (7) |
Pr1—O6i | 2.472 (4) | C3—O6 | 1.258 (7) |
Pr1—O2ii | 2.490 (4) | C3—C3i | 1.548 (11) |
Pr1—O1W | 2.500 (4) | O1—Pr1iv | 2.609 (4) |
Pr1—O3 | 2.504 (4) | O2—Pr1ii | 2.490 (4) |
Pr1—O4iii | 2.541 (4) | O4—Pr1iii | 2.541 (4) |
Pr1—O1 | 2.586 (4) | O6—Pr1i | 2.472 (4) |
Pr1—O1iv | 2.609 (4) | O1W—H1WA | 0.8413 |
C1—O2 | 1.243 (7) | O1W—H1WB | 0.8417 |
C1—O1 | 1.258 (7) | O2W—H2WA | 0.8412 |
C1—C1ii | 1.546 (11) | O2W—H2WB | 0.8372 |
C2—O4 | 1.238 (7) | O3W—H3WA | 0.8386 |
C2—O3 | 1.263 (7) | O3W—H3WB | 0.8400 |
O5—Pr1—O2W | 142.99 (15) | O6i—Pr1—O1iv | 120.77 (14) |
O5—Pr1—O6i | 65.89 (14) | O2ii—Pr1—O1iv | 121.99 (13) |
O2W—Pr1—O6i | 142.54 (15) | O1W—Pr1—O1iv | 77.27 (13) |
O5—Pr1—O2ii | 131.79 (14) | O3—Pr1—O1iv | 146.78 (13) |
O2W—Pr1—O2ii | 71.54 (15) | O4iii—Pr1—O1iv | 122.88 (13) |
O6i—Pr1—O2ii | 71.37 (14) | O1—Pr1—O1iv | 65.40 (14) |
O5—Pr1—O1W | 97.65 (15) | O2—C1—O1 | 126.7 (5) |
O2W—Pr1—O1W | 70.26 (16) | O2—C1—C1ii | 116.0 (6) |
O6i—Pr1—O1W | 142.27 (16) | O1—C1—C1ii | 117.3 (6) |
O2ii—Pr1—O1W | 130.26 (15) | O4—C2—O3 | 126.8 (5) |
O5—Pr1—O3 | 133.93 (13) | O4—C2—C2iii | 117.5 (6) |
O2W—Pr1—O3 | 78.07 (15) | O3—C2—C2iii | 115.7 (6) |
O6i—Pr1—O3 | 92.40 (14) | O5—C3—O6 | 126.5 (5) |
O2ii—Pr1—O3 | 67.24 (13) | O5—C3—C3i | 117.1 (6) |
O1W—Pr1—O3 | 74.66 (14) | O6—C3—C3i | 116.4 (6) |
O5—Pr1—O4iii | 70.30 (13) | C1—O1—Pr1 | 118.7 (3) |
O2W—Pr1—O4iii | 132.32 (15) | C1—O1—Pr1iv | 123.3 (3) |
O6i—Pr1—O4iii | 69.96 (15) | Pr1—O1—Pr1iv | 114.60 (14) |
O2ii—Pr1—O4iii | 114.58 (14) | C1—O2—Pr1ii | 123.5 (4) |
O1W—Pr1—O4iii | 72.53 (15) | C2—O3—Pr1 | 121.8 (4) |
O3—Pr1—O4iii | 64.03 (13) | C2—O4—Pr1iii | 120.5 (4) |
O5—Pr1—O1 | 85.86 (13) | C3—O5—Pr1 | 120.4 (4) |
O2W—Pr1—O1 | 81.79 (14) | C3—O6—Pr1i | 119.7 (4) |
O6i—Pr1—O1 | 77.20 (14) | Pr1—O1W—H1WA | 115.2 |
O2ii—Pr1—O1 | 63.42 (12) | Pr1—O1W—H1WB | 132.7 |
O1W—Pr1—O1 | 137.77 (14) | H1WA—O1W—H1WB | 106.2 |
O3—Pr1—O1 | 130.36 (13) | Pr1—O2W—H2WA | 136.4 |
O4iii—Pr1—O1 | 145.06 (13) | Pr1—O2W—H2WB | 113.6 |
O5—Pr1—O1iv | 67.14 (13) | H2WA—O2W—H2WB | 107.3 |
O2W—Pr1—O1iv | 76.00 (14) | H3WA—O3W—H3WB | 107.4 |
O2—C1—O1—Pr1 | −172.7 (5) | C2iii—C2—O3—Pr1 | 6.3 (8) |
C1ii—C1—O1—Pr1 | 8.0 (8) | O5—Pr1—O3—C2 | 1.9 (5) |
O2—C1—O1—Pr1iv | 29.2 (8) | O2W—Pr1—O3—C2 | −156.5 (4) |
C1ii—C1—O1—Pr1iv | −150.1 (5) | O6i—Pr1—O3—C2 | 60.1 (4) |
O5—Pr1—O1—C1 | 133.4 (4) | O2ii—Pr1—O3—C2 | 128.7 (5) |
O2W—Pr1—O1—C1 | −81.6 (4) | O1W—Pr1—O3—C2 | −83.9 (4) |
O6i—Pr1—O1—C1 | 67.2 (4) | O4iii—Pr1—O3—C2 | −6.2 (4) |
O2ii—Pr1—O1—C1 | −8.2 (4) | O1—Pr1—O3—C2 | 135.3 (4) |
O1W—Pr1—O1—C1 | −129.8 (4) | O1iv—Pr1—O3—C2 | −117.2 (4) |
O3—Pr1—O1—C1 | −15.0 (5) | O3—C2—O4—Pr1iii | −174.2 (5) |
O4iii—Pr1—O1—C1 | 87.3 (4) | C2iii—C2—O4—Pr1iii | 4.8 (9) |
O1iv—Pr1—O1—C1 | −159.9 (5) | O6—C3—O5—Pr1 | −174.3 (5) |
O5—Pr1—O1—Pr1iv | −66.72 (16) | C3i—C3—O5—Pr1 | 6.5 (8) |
O2W—Pr1—O1—Pr1iv | 78.30 (17) | O2W—Pr1—O5—C3 | −154.9 (4) |
O6i—Pr1—O1—Pr1iv | −132.92 (18) | O6i—Pr1—O5—C3 | −6.5 (4) |
O2ii—Pr1—O1—Pr1iv | 151.7 (2) | O2ii—Pr1—O5—C3 | −36.2 (5) |
O1W—Pr1—O1—Pr1iv | 30.1 (3) | O1W—Pr1—O5—C3 | 138.0 (4) |
O3—Pr1—O1—Pr1iv | 144.93 (15) | O3—Pr1—O5—C3 | 61.9 (5) |
O4iii—Pr1—O1—Pr1iv | −112.8 (2) | O4iii—Pr1—O5—C3 | 69.7 (4) |
O1iv—Pr1—O1—Pr1iv | 0.0 | O1—Pr1—O5—C3 | −84.4 (4) |
O1—C1—O2—Pr1ii | −171.6 (4) | O1iv—Pr1—O5—C3 | −149.4 (4) |
C1ii—C1—O2—Pr1ii | 7.8 (9) | O5—C3—O6—Pr1i | −173.9 (4) |
O4—C2—O3—Pr1 | −174.7 (5) | C3i—C3—O6—Pr1i | 5.3 (8) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+3, −y+2, −z+1; (iii) −x+2, −y+1, −z; (iv) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2WB···O1W | 0.84 | 2.55 | 2.858 (7) | 103 |
O1W—H1WA···O2iv | 0.84 | 1.96 | 2.694 (6) | 146 |
O1W—H1WA···O3v | 0.84 | 2.60 | 3.235 (6) | 133 |
O1W—H1WB···O3Wvi | 0.84 | 2.00 | 2.833 (6) | 169 |
O2W—H2WA···O3Wvii | 0.84 | 1.98 | 2.807 (7) | 166 |
O2W—H2WB···O3viii | 0.84 | 2.20 | 2.919 (6) | 144 |
O3W—H3WA···O6ix | 0.84 | 2.08 | 2.829 (7) | 149 |
O3W—H3WB···O4iii | 0.84 | 2.03 | 2.833 (6) | 159 |
Symmetry codes: (iii) −x+2, −y+1, −z; (iv) −x+2, −y+2, −z+1; (v) x−1, y, z; (vi) −x+1, −y+1, −z; (vii) x+1, y+1, z; (viii) −x+2, −y+2, −z; (ix) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Pr(C2O4)1.5(H2O)2]·H2O |
Mr | 326.99 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 273 |
a, b, c (Å) | 6.0367 (12), 7.6222 (15), 8.9353 (18) |
α, β, γ (°) | 98.330 (4), 99.814 (3), 96.734 (4) |
V (Å3) | 396.58 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.17 |
Crystal size (mm) | 0.18 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.341, 0.542 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2140, 1521, 1450 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.075, 1.00 |
No. of reflections | 1521 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.80, −1.50 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2WB···O1W | 0.84 | 2.55 | 2.858 (7) | 103.3 |
O1W—H1WA···O2i | 0.84 | 1.96 | 2.694 (6) | 145.6 |
O1W—H1WA···O3ii | 0.84 | 2.60 | 3.235 (6) | 133.4 |
O1W—H1WB···O3Wiii | 0.84 | 2.00 | 2.833 (6) | 168.6 |
O2W—H2WA···O3Wiv | 0.84 | 1.98 | 2.807 (7) | 166.3 |
O2W—H2WB···O3v | 0.84 | 2.20 | 2.919 (6) | 144.3 |
O3W—H3WA···O6vi | 0.84 | 2.08 | 2.829 (7) | 148.8 |
O3W—H3WB···O4vii | 0.84 | 2.03 | 2.833 (6) | 158.6 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z; (iv) x+1, y+1, z; (v) −x+2, −y+2, −z; (vi) −x+1, −y+1, −z+1; (vii) −x+2, −y+1, −z. |
Acknowledgements
The authors acknowledge the High-Tech Research Institute of Nanjing University for supporting this work.
References
Barrett Adams, D. M. Y., Kahwa, I. A. & Mague, J. T. (1998). New J. Chem. 22, 919–921. CSD CrossRef CAS Google Scholar
Beagley, B., Pritchard, R. G., Evmiridis, N. P., Michailides, A. & Skoulika, S. (1988). Acta Cryst. C44, 174–175. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hansson, E. (1970). Acta Chem. Scand. 24, 2969–2982. CrossRef CAS Web of Science Google Scholar
Hansson, E. (1972). Acta Chem. Scand. 26, 1337–1350. CrossRef CAS Web of Science Google Scholar
Hansson, E. (1973a). Acta Chem. Scand. 27, 823–834. CrossRef CAS Web of Science Google Scholar
Hansson, E. (1973b). Acta Chem. Scand. 27, 2852–2860. CrossRef CAS Web of Science Google Scholar
Michaelides, A., Skoulika, S. & Aubry, A. (1988). Mater. Res. Bull. 23, 579–585. CSD CrossRef CAS Web of Science Google Scholar
Ollendorf, W. & Weigel, F. (1969). Inorg. Nucl. Chem. Lett. 5, 263–269. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steinfink, H. & Brunton, G. D. (1970). Inorg. Chem. 9, 2112–2117. CSD CrossRef CAS Web of Science Google Scholar
Trollet, D., Rome, S. & Mosset, A. (1998). Polyhedron, 17, 3977–3978. CAS Google Scholar
Trombe, J. C. (2003). J. Chem. Crystallogr. 33, 19–26. Web of Science CSD CrossRef CAS Google Scholar
Trombe, J. C. & Mohanu, A. (2004). Solid State Sci. 6, 1403–1419. Web of Science CSD CrossRef CAS Google Scholar
Unaleroglu, C., Zumreoglu-Karan, B. & Zencir, Y. (1997). Polyhedron, 16, 2155–2161. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the last decade considerable attention has been afforded to the structures and properties of lanthanide oxalates due to their ability to act as precursors of lanthanide oxides. Some single crystals of lanthanide oxalates, such as[Ln(C2O4)3(H2O)4].(H2O) (Ln = Sc or Yb), [Ln2(C2O4)3(H2O)6].4H2O (Ln = La, Ce, Pr or Nd) and [Nd2(C2O4)3(H2O)6] have been obtained either in silica gel (Ollendorff & Weigel, 1969), by hydrothermal reaction (Michaelides et al., 1988) or by other methods (Hansson, 1970, 1972, 1973a,b; Unaleroglu et al., 1997; Trollet et al., 1998; Trombe, 2003). Crystals of [Ln(C2O4)(HC2O4)].4H2O (Ln = Er or Tm) were prepared by saturating a boiling solution of oxalic acid in 3 M H2SO4 with the lanthanide oxide and then slowly cooling to 273 K (Steinfink & Brunton, 1970). However, a few praseodymium oxalate complex has been reported. The present paper is concerned with a new crystal structure of praseodymium oxalate complex with a three-dimensional network structure.
The asymmetric unit of the title compound, [Pr(C2O4)1.5(H2O)2].(H2O), (I), is shown in Fig. 1. The Pr atom lies on an inversion centre and is coordinated by seven O atoms [O1, O1iv, O2ii, O3, O4iii, O5 and O6i] from four oxlate ligands, and two O atoms from two aqua ligands, thereby forming a slightly distorted PrO9 polyhedral coordination geometry. The Pr—O bond distances range from 2.451 (4) Å to 2.608 (3) Å, in agreement with those in compounds (Trombe et al. (2004); Barrett Adams et al. (1998)).
In the complex, the equivalent Pr atom are connected is coordinated by seven O atoms from four oxalate ligands and two O atoms from water ligands. Further Pr–O coordination from the tetradentate oxalate ligands forms a three-dimensional structure (Fig.2). The compound crystallized as a monohydrate; this water molecule occupies space in small voids and is secured by O–H···O hydrogen bonding as an acceptor from ligand water H-atoms and as a donor to oxalate O acceptor sites.