organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2126-o2127

Theophylline–gentisic acid (1/1)

aInstitute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833 Singapore, and bDepartment of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576 Singapore
*Correspondence e-mail: srinivasulu_aitipamula@ices.a-star.edu.sg

(Received 9 July 2009; accepted 5 August 2009; online 8 August 2009)

In the title 1:1 cocrystal, C7H8N4O2·C7H6O4, the anti-asthmatic drug theophylline (systematic name: 1,3-dimethyl-7H-purine-2,6-dione) and a non-steroidal anti-inflammatory drug, gentisic acid (systematic name: 2,5-dihydroxy­benzoic acid) crystallize together, forming two-dimensional hydrogen-bonded sheets involving N—H⋯O and O—H⋯N hydrogen bonds. The overall crystal packing features ππ stacking inter­actions [centroid–centroid distance = 3.348 (1) Å]. The cocrystal described herein belongs to the class of pharmaceutical cocrystals involving two active pharmaceutical ingredients which has been relatively unexplored to date.

Related literature

For characterization of the title cocrystal by Fourier Transform Infrared Spectroscopy, see: Childs et al. (2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]). For a detailed study on theophylline monohydrate see: Khankari & Grant (1995[Khankari, R. K. & Grant, D. J. W. (1995). Thermochim. Acta, 248, 61-79.]). For recent cocrystals of the theophylline, see: Trask et al. (2006[Trask, A. V., Motherwell, W. D. S. & Jones, W. (2006). Int. J. Pharm. 320, 114-123.]); Lu et al. (2008[Lu, E., Rodríguez-Hornedo, N. & Suryanarayana, R. (2008). CrystEngComm, 10, 665-668.]). For recent cocrystals involving two or more active pharmaceutical ingredients, see: Aitipamula et al. (2009[Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2009). CrystEngComm. DOI: 10.1039/b904616j. ]); Bhatt et al. (2009[Bhatt, P. M., Azim, Y., Thakur, T. S. & Desiraju, G. R. (2009). Cryst. Growth Des. 9, 951-957.]); Vishweshwar et al. (2005[Vishweshwar, P., McMahon, J. A., Peterson, M. L., Hickey, M. B., Shattock, T. R. & Zaworotko, M. J. (2005). Chem. Commun. pp. 4601-4603.]); Caira (2007[Caira, M. R. (2007). Mol. Pharm. 4, 310-316.]); Childs (2007[Childs, S. L. (2007). Int. Patent No. WO 2007/067727 A2, (14/06/2007).]); Childs et al. (2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]); Fleischman et al. (2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]); Shan & Zaworotko (2008[Shan, N. & Zaworotko, M. J. (2008). Drug Discov. Today, 13, 440-446.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N4O2·C7H6O4

  • Mr = 334.29

  • Triclinic, [P \overline 1]

  • a = 7.0989 (14) Å

  • b = 8.0543 (16) Å

  • c = 13.034 (3) Å

  • α = 86.08 (3)°

  • β = 81.27 (3)°

  • γ = 74.14 (3)°

  • V = 708.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 110 K

  • 0.24 × 0.22 × 0.13 mm

Data collection
  • Rigaku Saturn CCD area-deterctor diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.971, Tmax = 0.984

  • 10245 measured reflections

  • 3478 independent reflections

  • 3302 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.08

  • 3478 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.95 (2) 1.85 (2) 2.8000 (16) 177.2 (17)
O6—H6⋯O2 0.92 (2) 1.83 (2) 2.7478 (14) 173.9 (18)
O5—H5⋯O3ii 0.92 (2) 2.24 (2) 2.8503 (16) 122.6 (17)
O5—H5⋯O3 0.92 (2) 1.87 (2) 2.6617 (15) 142.3 (19)
O4—H4A⋯N2iii 0.99 (3) 1.68 (3) 2.6596 (16) 171 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z; (iii) -x, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Theophylline (1,3-dimethyl-7H-purine-2,6-dione) is a drug used in the treatment of respiratory diseases such as asthma. It has been reported that theophylline forms a monohydrate as a function of relative humidity and poses challenges in the formultion stages (Khankari and Grant, 1995). Using the cocrystallization as an aid to improve the physical stability, several theophylline cocrystals with dicarboxylic acids have been prepared and studied for their physical stability (Trask et al., 2006, Childs et al., 2007). Cocrystals which involve two or more active pharmaceutical ingredients (APIs) are relatively unexplored solid forms of APIs which have potential relevance in the context of combination drugs for pharmaceutical drug development (Aitipamula et al., 2009, Bhatt et al., 2009). We have recently reported trimorphs of a pharmaceutical cocrystal involving two APIs, namely ethenzamide (2-ethoxybenzamide), and gentisic acid and shown that the dissolution rate of the cocrystal polymorphs improved by two times when compared to the parent ethenzamide (Aitipamula et al., 2009). In the present paper, we report a 1:1 cocrystal of theophylline with gentisic acid and analyzed the hydrogen bonding.

The crystal structure of the title cocrystal contains each one molecule of theophylline and gentisic acid in the asymmetric unit (Fig. 1). In the structure, two molecules of theophylline which are related by an inversion centre form a dimer involving N—H···O hydrogen bonds (Table 1). Hydroxy atom O5 of the gentisic acid acts as an intramolecular O—H···O hydrogen bond donor to the carbonyl of carboxyl group and also involves in a bifurcated O—H···O hydrogen bond to atom O3 at (-x, -y + 1, -z) (Fig. 2). Hydroxy atom O4 acts as a hydrogen bond donor to atom N2 of the theophylline at (-x, -y + 2, -z + 1), thus generating chains of alternating dimers of theophylline and gentisic acid running parallel to [21–1]. In addition, there is a C—H···O hydrogen bond between C4 of the theophylline and O5 of the gentisic acid. The 5-hydroxyl group (O6) of the gentisic acid acts as a hydrogen bond donor to atom O2 of the theophylline at (1 + x, -1 + y, 1 + z), thus generating a hydrogen bonded sheet parallel to the (21–1) plane (Fig. 2). The crystal structure is further stabilized by a π-π interaction involving pyrimidine ring of theophylline and phenyl ring of gentisic acid: Cg1···Cg2 (x, y, z) = 3.348 (1) Å, where Cg1 and Cg2 denote the centroids of N3/C2/N4/C1/C5/C3 of the theophylline and C8—C13 of the gentisic acid, respectively (Fig. 3).

Zaworotko and co-workers distinguished between two types of hydrogen bonding possibilities in cocrystal structures depending on whether the interacting complementary functional groups are the same or different (Fleischman et al., 2003). In type I, an API forms hydrogen bonds like in pure structure, e.g. dimers, catemers, etc. (homosynthons) and such units are connected by cocrystal former spacer, and in type II, both the API and cocrystal former involve in heterosynthon formation. The title cocrystal belongs to type I, in which both the theophylline and gentisic acid molecules form dimers involving homosynthons, and such dimers are connected via O—H···O hydrogen bonds (Fig. 2).

Related literature top

For characterization of the title cocrystal by Fourier Transform Infrared Spectroscopy, see: Childs et al. (2007). For a detailed study on the theophylline monohydrate see: Khankari & Grant (1995). For recent cocrystals of the theophylline, see: Trask et al. (2006); Lu et al. (2008). For recent cocrystals involving two or more active pharmaceutical ingredients, see: Aitipamula et al. (2009); Bhatt et al. (2009); Vishweshwar et al. (2005); Caira (2007); Childs (2007); Childs et al. (2007); Fleischman et al. (2003); Shan & Zaworotko (2008).

Experimental top

Equimolar quantities of theophylline and gentisic acid (purchased from Aldrich) were dissolved in methanol upon heating. The solution was set aside to crystallize providing crystals that belong to a 1:1 cocrystal. Crystal suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and allowed to ride on their parent atoms in the refinement cycles. Other H atoms were positioned geometrically and refined using a riding model.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of theophylline and gentisic acid, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of the title cocrystal, showing formation of a hydrogen bonded sheet in the (21–1) plane.
[Figure 3] Fig. 3. Part of the crystal structure of the title cocrystal, showing the π-π stacking interaction between two layers.
Theophylline–gentisic acid (1/1) top
Crystal data top
C7H8N4O2·C7H6O4Z = 2
Mr = 334.29F(000) = 348
Triclinic, P1Dx = 1.567 Mg m3
Hall symbol: -P 1Melting point: 513 K
a = 7.0989 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0543 (16) ÅCell parameters from 2156 reflections
c = 13.034 (3) Åθ = 2.6–31.0°
α = 86.08 (3)°µ = 0.13 mm1
β = 81.27 (3)°T = 110 K
γ = 74.14 (3)°Needle, yellow
V = 708.3 (3) Å30.24 × 0.22 × 0.13 mm
Data collection top
Rigaku Saturn CCD area-deterctor
diffractometer
3478 independent reflections
Radiation source: fine-focus sealed tube3302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 97
Tmin = 0.971, Tmax = 0.984k = 1010
10245 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.2093P]
where P = (Fo2 + 2Fc2)/3
3478 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.33 e Å3
0 constraints
Crystal data top
C7H8N4O2·C7H6O4γ = 74.14 (3)°
Mr = 334.29V = 708.3 (3) Å3
Triclinic, P1Z = 2
a = 7.0989 (14) ÅMo Kα radiation
b = 8.0543 (16) ŵ = 0.13 mm1
c = 13.034 (3) ÅT = 110 K
α = 86.08 (3)°0.24 × 0.22 × 0.13 mm
β = 81.27 (3)°
Data collection top
Rigaku Saturn CCD area-deterctor
diffractometer
3478 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3302 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.984Rint = 0.021
10245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.36 e Å3
3478 reflectionsΔρmin = 0.33 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.17595 (15)0.25838 (12)0.08234 (7)0.0256 (2)
O30.01074 (15)0.59680 (12)0.09419 (7)0.0271 (2)
O40.00547 (15)0.72663 (12)0.24149 (7)0.0271 (2)
O60.30321 (16)0.26347 (12)0.48941 (7)0.0294 (2)
C80.14294 (17)0.42610 (14)0.23596 (9)0.0181 (2)
C130.17542 (18)0.42529 (15)0.33978 (9)0.0199 (2)
H130.13530.52780.37570.024*
C140.04741 (18)0.58978 (15)0.18344 (9)0.0202 (2)
C100.29140 (18)0.11806 (15)0.23356 (10)0.0217 (3)
H100.32970.01450.19880.026*
C110.32413 (19)0.11938 (15)0.33503 (10)0.0220 (3)
H110.38510.01690.36790.026*
C90.20119 (18)0.27073 (15)0.18233 (9)0.0195 (2)
C120.26646 (19)0.27340 (15)0.38900 (9)0.0213 (2)
O20.28704 (13)0.57656 (11)0.56702 (7)0.0221 (2)
O10.50287 (14)0.39024 (11)0.87972 (7)0.0244 (2)
N30.23273 (15)0.78018 (12)0.68830 (8)0.0181 (2)
N40.39267 (15)0.48739 (12)0.72414 (8)0.0187 (2)
N20.19067 (16)0.97032 (13)0.83320 (8)0.0207 (2)
C10.41682 (17)0.51168 (15)0.82663 (9)0.0186 (2)
C20.30251 (17)0.61332 (15)0.65492 (9)0.0176 (2)
C50.33462 (17)0.68618 (15)0.85505 (9)0.0183 (2)
C30.24950 (17)0.81358 (15)0.78778 (9)0.0177 (2)
N10.32986 (16)0.76825 (13)0.94525 (8)0.0206 (2)
C60.1586 (2)0.91951 (15)0.61444 (9)0.0232 (3)
H6A0.05021.00500.64950.035*
H6B0.11460.87330.55930.035*
H6C0.26260.97160.58620.035*
C70.4852 (2)0.31464 (15)0.68265 (10)0.0251 (3)
H7A0.38790.25080.68800.038*
H7B0.58930.25510.72170.038*
H7C0.53910.32500.61110.038*
C40.24348 (19)0.93614 (15)0.92880 (9)0.0225 (3)
H40.22241.01980.97810.027*
H50.111 (3)0.366 (3)0.0573 (16)0.048 (6)*
H60.289 (3)0.372 (3)0.5139 (16)0.046 (5)*
H4A0.063 (4)0.834 (3)0.2064 (19)0.069 (7)*
H10.383 (3)0.714 (3)1.0054 (15)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0382 (5)0.0190 (4)0.0179 (4)0.0011 (4)0.0094 (4)0.0033 (3)
O30.0373 (5)0.0208 (4)0.0222 (4)0.0018 (4)0.0123 (4)0.0001 (3)
O40.0395 (5)0.0152 (4)0.0233 (4)0.0025 (4)0.0105 (4)0.0035 (3)
O60.0512 (6)0.0186 (4)0.0205 (5)0.0070 (4)0.0162 (4)0.0000 (3)
C80.0198 (5)0.0149 (5)0.0192 (5)0.0026 (4)0.0049 (4)0.0002 (4)
C130.0244 (6)0.0155 (5)0.0195 (5)0.0034 (4)0.0053 (4)0.0021 (4)
C140.0229 (5)0.0157 (5)0.0212 (5)0.0024 (4)0.0045 (4)0.0017 (4)
C100.0277 (6)0.0142 (5)0.0221 (6)0.0019 (4)0.0052 (5)0.0035 (4)
C110.0278 (6)0.0157 (5)0.0218 (6)0.0030 (4)0.0071 (5)0.0006 (4)
C90.0222 (5)0.0190 (5)0.0171 (5)0.0037 (4)0.0047 (4)0.0028 (4)
C120.0285 (6)0.0189 (5)0.0181 (5)0.0066 (5)0.0073 (4)0.0006 (4)
O20.0307 (5)0.0190 (4)0.0158 (4)0.0032 (3)0.0069 (3)0.0023 (3)
O10.0324 (5)0.0177 (4)0.0206 (4)0.0001 (3)0.0089 (4)0.0008 (3)
N30.0235 (5)0.0142 (4)0.0157 (5)0.0018 (4)0.0061 (4)0.0003 (3)
N40.0251 (5)0.0134 (4)0.0163 (5)0.0011 (4)0.0061 (4)0.0016 (4)
N20.0265 (5)0.0158 (5)0.0185 (5)0.0018 (4)0.0055 (4)0.0027 (4)
C10.0216 (5)0.0174 (5)0.0164 (5)0.0041 (4)0.0033 (4)0.0007 (4)
C20.0204 (5)0.0156 (5)0.0160 (5)0.0027 (4)0.0034 (4)0.0008 (4)
C50.0224 (5)0.0168 (5)0.0150 (5)0.0029 (4)0.0047 (4)0.0013 (4)
C30.0206 (5)0.0160 (5)0.0163 (5)0.0034 (4)0.0039 (4)0.0016 (4)
N10.0282 (5)0.0170 (5)0.0152 (5)0.0016 (4)0.0060 (4)0.0018 (4)
C60.0318 (6)0.0166 (5)0.0203 (5)0.0023 (5)0.0092 (5)0.0020 (4)
C70.0359 (7)0.0131 (5)0.0236 (6)0.0010 (5)0.0083 (5)0.0040 (4)
C40.0288 (6)0.0171 (5)0.0196 (6)0.0010 (4)0.0054 (5)0.0039 (4)
Geometric parameters (Å, º) top
O5—C91.3561 (14)N3—C21.3754 (15)
O5—H50.92 (2)N3—C61.4649 (15)
O3—C141.2245 (15)N4—C21.3957 (15)
O4—C141.3199 (15)N4—C11.4055 (14)
O4—H4A0.99 (3)N4—C71.4682 (15)
O6—C121.3658 (14)N2—C41.3444 (15)
O6—H60.92 (2)N2—C31.3629 (15)
C8—C91.4052 (16)C1—C51.4179 (16)
C8—C131.4060 (16)C5—C31.3733 (16)
C8—C141.4817 (17)C5—N11.3792 (14)
C13—C121.3828 (17)N1—C41.3408 (16)
C13—H130.9300N1—H10.95 (2)
C10—C111.3783 (16)C6—H6A0.9600
C10—C91.3983 (17)C6—H6B0.9600
C10—H100.9300C6—H6C0.9600
C11—C121.3984 (17)C7—H7A0.9600
C11—H110.9300C7—H7B0.9600
O2—C21.2306 (14)C7—H7C0.9600
O1—C11.2321 (15)C4—H40.9300
N3—C31.3710 (14)
C9—O5—H5109.4 (13)O1—C1—N4120.78 (11)
C14—O4—H4A113.1 (14)O1—C1—C5127.75 (11)
C12—O6—H6111.2 (13)N4—C1—C5111.46 (10)
C9—C8—C13119.63 (11)O2—C2—N3121.22 (11)
C9—C8—C14120.17 (11)O2—C2—N4121.22 (10)
C13—C8—C14120.20 (11)N3—C2—N4117.56 (10)
C12—C13—C8120.56 (11)C3—C5—N1105.65 (10)
C12—C13—H13119.7C3—C5—C1122.98 (10)
C8—C13—H13119.7N1—C5—C1131.26 (11)
O3—C14—O4123.21 (11)N2—C3—N3126.79 (11)
O3—C14—C8122.79 (11)N2—C3—C5110.99 (10)
O4—C14—C8114.00 (10)N3—C3—C5122.21 (11)
C11—C10—C9120.70 (11)C4—N1—C5106.66 (10)
C11—C10—H10119.7C4—N1—H1128.1 (12)
C9—C10—H10119.7C5—N1—H1125.2 (12)
C10—C11—C12120.60 (11)N3—C6—H6A109.5
C10—C11—H11119.7N3—C6—H6B109.5
C12—C11—H11119.7H6A—C6—H6B109.5
O5—C9—C10116.96 (10)N3—C6—H6C109.5
O5—C9—C8123.97 (11)H6A—C6—H6C109.5
C10—C9—C8119.07 (11)H6B—C6—H6C109.5
O6—C12—C13123.61 (11)N4—C7—H7A109.5
O6—C12—C11116.95 (11)N4—C7—H7B109.5
C13—C12—C11119.44 (11)H7A—C7—H7B109.5
C3—N3—C2118.91 (10)N4—C7—H7C109.5
C3—N3—C6121.52 (10)H7A—C7—H7C109.5
C2—N3—C6119.35 (10)H7B—C7—H7C109.5
C2—N4—C1126.83 (10)N1—C4—N2112.63 (11)
C2—N4—C7116.29 (10)N1—C4—H4123.7
C1—N4—C7116.70 (10)N2—C4—H4123.7
C4—N2—C3104.07 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.95 (2)1.85 (2)2.8000 (16)177.2 (17)
O6—H6···O20.92 (2)1.83 (2)2.7478 (14)173.9 (18)
O5—H5···O3ii0.92 (2)2.24 (2)2.8503 (16)122.6 (17)
O5—H5···O30.92 (2)1.87 (2)2.6617 (15)142.3 (19)
O4—H4A···N2iii0.99 (3)1.68 (3)2.6596 (16)171 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z; (iii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H8N4O2·C7H6O4
Mr334.29
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)7.0989 (14), 8.0543 (16), 13.034 (3)
α, β, γ (°)86.08 (3), 81.27 (3), 74.14 (3)
V3)708.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.24 × 0.22 × 0.13
Data collection
DiffractometerRigaku Saturn CCD area-deterctor
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.971, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10245, 3478, 3302
Rint0.021
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.08
No. of reflections3478
No. of parameters235
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.33

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.95 (2)1.85 (2)2.8000 (16)177.2 (17)
O6—H6···O20.92 (2)1.83 (2)2.7478 (14)173.9 (18)
O5—H5···O3ii0.92 (2)2.24 (2)2.8503 (16)122.6 (17)
O5—H5···O30.92 (2)1.87 (2)2.6617 (15)142.3 (19)
O4—H4A···N2iii0.99 (3)1.68 (3)2.6596 (16)171 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z; (iii) x, y+2, z+1.
 

Footnotes

Additional contact author, e-mail: reginald_tan@ices.a-star.edu.sg.

Acknowledgements

This work was supported by the Institute of Chemical and Engineering Sciences of A*STAR (Agency for Science, Technology and Research), Singapore.

References

First citationAitipamula, S., Chow, P. S. & Tan, R. B. H. (2009). CrystEngComm. DOI: 10.1039/b904616j.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBhatt, P. M., Azim, Y., Thakur, T. S. & Desiraju, G. R. (2009). Cryst. Growth Des. 9, 951–957.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCaira, M. R. (2007). Mol. Pharm. 4, 310–316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChilds, S. L. (2007). Int. Patent No. WO 2007/067727 A2, (14/06/2007).  Google Scholar
First citationChilds, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhankari, R. K. & Grant, D. J. W. (1995). Thermochim. Acta, 248, 61–79.  CrossRef CAS Web of Science Google Scholar
First citationLu, E., Rodríguez-Hornedo, N. & Suryanarayana, R. (2008). CrystEngComm, 10, 665–668.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShan, N. & Zaworotko, M. J. (2008). Drug Discov. Today, 13, 440–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrask, A. V., Motherwell, W. D. S. & Jones, W. (2006). Int. J. Pharm. 320, 114–123.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVishweshwar, P., McMahon, J. A., Peterson, M. L., Hickey, M. B., Shattock, T. R. & Zaworotko, M. J. (2005). Chem. Commun. pp. 4601–4603.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2126-o2127
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds