organic compounds
Theophylline–gentisic acid (1/1)
aInstitute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833 Singapore, and bDepartment of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576 Singapore
*Correspondence e-mail: srinivasulu_aitipamula@ices.a-star.edu.sg
In the title 1:1 cocrystal, C7H8N4O2·C7H6O4, the anti-asthmatic drug theophylline (systematic name: 1,3-dimethyl-7H-purine-2,6-dione) and a non-steroidal anti-inflammatory drug, gentisic acid (systematic name: 2,5-dihydroxybenzoic acid) crystallize together, forming two-dimensional hydrogen-bonded sheets involving N—H⋯O and O—H⋯N hydrogen bonds. The overall crystal packing features π–π stacking interactions [centroid–centroid distance = 3.348 (1) Å]. The cocrystal described herein belongs to the class of pharmaceutical cocrystals involving two active pharmaceutical ingredients which has been relatively unexplored to date.
Related literature
For characterization of the title cocrystal by Fourier Transform Infrared Spectroscopy, see: Childs et al. (2007). For a detailed study on theophylline monohydrate see: Khankari & Grant (1995). For recent cocrystals of the theophylline, see: Trask et al. (2006); Lu et al. (2008). For recent cocrystals involving two or more active pharmaceutical ingredients, see: Aitipamula et al. (2009); Bhatt et al. (2009); Vishweshwar et al. (2005); Caira (2007); Childs (2007); Childs et al. (2007); Fleischman et al. (2003); Shan & Zaworotko (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809031031/pb2002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809031031/pb2002Isup2.hkl
Equimolar quantities of theophylline and gentisic acid (purchased from Aldrich) were dissolved in methanol upon heating. The solution was set aside to crystallize providing crystals that belong to a 1:1 cocrystal. Crystal suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.
H atoms bonded to N and O atoms were located in a difference map and allowed to ride on their parent atoms in the
cycles. Other H atoms were positioned geometrically and refined using a riding model.Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structures of theophylline and gentisic acid, with atom labels and 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. Part of the crystal structure of the title cocrystal, showing formation of a hydrogen bonded sheet in the (21–1) plane. | |
Fig. 3. Part of the crystal structure of the title cocrystal, showing the π-π stacking interaction between two layers. |
C7H8N4O2·C7H6O4 | Z = 2 |
Mr = 334.29 | F(000) = 348 |
Triclinic, P1 | Dx = 1.567 Mg m−3 |
Hall symbol: -P 1 | Melting point: 513 K |
a = 7.0989 (14) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.0543 (16) Å | Cell parameters from 2156 reflections |
c = 13.034 (3) Å | θ = 2.6–31.0° |
α = 86.08 (3)° | µ = 0.13 mm−1 |
β = 81.27 (3)° | T = 110 K |
γ = 74.14 (3)° | Needle, yellow |
V = 708.3 (3) Å3 | 0.24 × 0.22 × 0.13 mm |
Rigaku Saturn CCD area-deterctor diffractometer | 3478 independent reflections |
Radiation source: fine-focus sealed tube | 3302 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 28.3°, θmin = 2.6° |
Absorption correction: multi-scan (Blessing, 1995) | h = −9→7 |
Tmin = 0.971, Tmax = 0.984 | k = −10→10 |
10245 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0749P)2 + 0.2093P] where P = (Fo2 + 2Fc2)/3 |
3478 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
0 constraints |
C7H8N4O2·C7H6O4 | γ = 74.14 (3)° |
Mr = 334.29 | V = 708.3 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.0989 (14) Å | Mo Kα radiation |
b = 8.0543 (16) Å | µ = 0.13 mm−1 |
c = 13.034 (3) Å | T = 110 K |
α = 86.08 (3)° | 0.24 × 0.22 × 0.13 mm |
β = 81.27 (3)° |
Rigaku Saturn CCD area-deterctor diffractometer | 3478 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 3302 reflections with I > 2σ(I) |
Tmin = 0.971, Tmax = 0.984 | Rint = 0.021 |
10245 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.127 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.36 e Å−3 |
3478 reflections | Δρmin = −0.33 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O5 | 0.17595 (15) | 0.25838 (12) | 0.08234 (7) | 0.0256 (2) | |
O3 | 0.01074 (15) | 0.59680 (12) | 0.09419 (7) | 0.0271 (2) | |
O4 | 0.00547 (15) | 0.72663 (12) | 0.24149 (7) | 0.0271 (2) | |
O6 | 0.30321 (16) | 0.26347 (12) | 0.48941 (7) | 0.0294 (2) | |
C8 | 0.14294 (17) | 0.42610 (14) | 0.23596 (9) | 0.0181 (2) | |
C13 | 0.17542 (18) | 0.42529 (15) | 0.33978 (9) | 0.0199 (2) | |
H13 | 0.1353 | 0.5278 | 0.3757 | 0.024* | |
C14 | 0.04741 (18) | 0.58978 (15) | 0.18344 (9) | 0.0202 (2) | |
C10 | 0.29140 (18) | 0.11806 (15) | 0.23356 (10) | 0.0217 (3) | |
H10 | 0.3297 | 0.0145 | 0.1988 | 0.026* | |
C11 | 0.32413 (19) | 0.11938 (15) | 0.33503 (10) | 0.0220 (3) | |
H11 | 0.3851 | 0.0169 | 0.3679 | 0.026* | |
C9 | 0.20119 (18) | 0.27073 (15) | 0.18233 (9) | 0.0195 (2) | |
C12 | 0.26646 (19) | 0.27340 (15) | 0.38900 (9) | 0.0213 (2) | |
O2 | 0.28704 (13) | 0.57656 (11) | 0.56702 (7) | 0.0221 (2) | |
O1 | 0.50287 (14) | 0.39024 (11) | 0.87972 (7) | 0.0244 (2) | |
N3 | 0.23273 (15) | 0.78018 (12) | 0.68830 (8) | 0.0181 (2) | |
N4 | 0.39267 (15) | 0.48739 (12) | 0.72414 (8) | 0.0187 (2) | |
N2 | 0.19067 (16) | 0.97032 (13) | 0.83320 (8) | 0.0207 (2) | |
C1 | 0.41682 (17) | 0.51168 (15) | 0.82663 (9) | 0.0186 (2) | |
C2 | 0.30251 (17) | 0.61332 (15) | 0.65492 (9) | 0.0176 (2) | |
C5 | 0.33462 (17) | 0.68618 (15) | 0.85505 (9) | 0.0183 (2) | |
C3 | 0.24950 (17) | 0.81358 (15) | 0.78778 (9) | 0.0177 (2) | |
N1 | 0.32986 (16) | 0.76825 (13) | 0.94525 (8) | 0.0206 (2) | |
C6 | 0.1586 (2) | 0.91951 (15) | 0.61444 (9) | 0.0232 (3) | |
H6A | 0.0502 | 1.0050 | 0.6495 | 0.035* | |
H6B | 0.1146 | 0.8733 | 0.5593 | 0.035* | |
H6C | 0.2626 | 0.9716 | 0.5862 | 0.035* | |
C7 | 0.4852 (2) | 0.31464 (15) | 0.68265 (10) | 0.0251 (3) | |
H7A | 0.3879 | 0.2508 | 0.6880 | 0.038* | |
H7B | 0.5893 | 0.2551 | 0.7217 | 0.038* | |
H7C | 0.5391 | 0.3250 | 0.6111 | 0.038* | |
C4 | 0.24348 (19) | 0.93614 (15) | 0.92880 (9) | 0.0225 (3) | |
H4 | 0.2224 | 1.0198 | 0.9781 | 0.027* | |
H5 | 0.111 (3) | 0.366 (3) | 0.0573 (16) | 0.048 (6)* | |
H6 | 0.289 (3) | 0.372 (3) | 0.5139 (16) | 0.046 (5)* | |
H4A | −0.063 (4) | 0.834 (3) | 0.2064 (19) | 0.069 (7)* | |
H1 | 0.383 (3) | 0.714 (3) | 1.0054 (15) | 0.040 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O5 | 0.0382 (5) | 0.0190 (4) | 0.0179 (4) | −0.0011 (4) | −0.0094 (4) | −0.0033 (3) |
O3 | 0.0373 (5) | 0.0208 (4) | 0.0222 (4) | −0.0018 (4) | −0.0123 (4) | −0.0001 (3) |
O4 | 0.0395 (5) | 0.0152 (4) | 0.0233 (4) | 0.0025 (4) | −0.0105 (4) | −0.0035 (3) |
O6 | 0.0512 (6) | 0.0186 (4) | 0.0205 (5) | −0.0070 (4) | −0.0162 (4) | 0.0000 (3) |
C8 | 0.0198 (5) | 0.0149 (5) | 0.0192 (5) | −0.0026 (4) | −0.0049 (4) | −0.0002 (4) |
C13 | 0.0244 (6) | 0.0155 (5) | 0.0195 (5) | −0.0034 (4) | −0.0053 (4) | −0.0021 (4) |
C14 | 0.0229 (5) | 0.0157 (5) | 0.0212 (5) | −0.0024 (4) | −0.0045 (4) | −0.0017 (4) |
C10 | 0.0277 (6) | 0.0142 (5) | 0.0221 (6) | −0.0019 (4) | −0.0052 (5) | −0.0035 (4) |
C11 | 0.0278 (6) | 0.0157 (5) | 0.0218 (6) | −0.0030 (4) | −0.0071 (5) | 0.0006 (4) |
C9 | 0.0222 (5) | 0.0190 (5) | 0.0171 (5) | −0.0037 (4) | −0.0047 (4) | −0.0028 (4) |
C12 | 0.0285 (6) | 0.0189 (5) | 0.0181 (5) | −0.0066 (5) | −0.0073 (4) | −0.0006 (4) |
O2 | 0.0307 (5) | 0.0190 (4) | 0.0158 (4) | −0.0032 (3) | −0.0069 (3) | −0.0023 (3) |
O1 | 0.0324 (5) | 0.0177 (4) | 0.0206 (4) | −0.0001 (3) | −0.0089 (4) | 0.0008 (3) |
N3 | 0.0235 (5) | 0.0142 (4) | 0.0157 (5) | −0.0018 (4) | −0.0061 (4) | −0.0003 (3) |
N4 | 0.0251 (5) | 0.0134 (4) | 0.0163 (5) | −0.0011 (4) | −0.0061 (4) | −0.0016 (4) |
N2 | 0.0265 (5) | 0.0158 (5) | 0.0185 (5) | −0.0018 (4) | −0.0055 (4) | −0.0027 (4) |
C1 | 0.0216 (5) | 0.0174 (5) | 0.0164 (5) | −0.0041 (4) | −0.0033 (4) | −0.0007 (4) |
C2 | 0.0204 (5) | 0.0156 (5) | 0.0160 (5) | −0.0027 (4) | −0.0034 (4) | −0.0008 (4) |
C5 | 0.0224 (5) | 0.0168 (5) | 0.0150 (5) | −0.0029 (4) | −0.0047 (4) | −0.0013 (4) |
C3 | 0.0206 (5) | 0.0160 (5) | 0.0163 (5) | −0.0034 (4) | −0.0039 (4) | −0.0016 (4) |
N1 | 0.0282 (5) | 0.0170 (5) | 0.0152 (5) | −0.0016 (4) | −0.0060 (4) | −0.0018 (4) |
C6 | 0.0318 (6) | 0.0166 (5) | 0.0203 (5) | −0.0023 (5) | −0.0092 (5) | 0.0020 (4) |
C7 | 0.0359 (7) | 0.0131 (5) | 0.0236 (6) | 0.0010 (5) | −0.0083 (5) | −0.0040 (4) |
C4 | 0.0288 (6) | 0.0171 (5) | 0.0196 (6) | −0.0010 (4) | −0.0054 (5) | −0.0039 (4) |
O5—C9 | 1.3561 (14) | N3—C2 | 1.3754 (15) |
O5—H5 | 0.92 (2) | N3—C6 | 1.4649 (15) |
O3—C14 | 1.2245 (15) | N4—C2 | 1.3957 (15) |
O4—C14 | 1.3199 (15) | N4—C1 | 1.4055 (14) |
O4—H4A | 0.99 (3) | N4—C7 | 1.4682 (15) |
O6—C12 | 1.3658 (14) | N2—C4 | 1.3444 (15) |
O6—H6 | 0.92 (2) | N2—C3 | 1.3629 (15) |
C8—C9 | 1.4052 (16) | C1—C5 | 1.4179 (16) |
C8—C13 | 1.4060 (16) | C5—C3 | 1.3733 (16) |
C8—C14 | 1.4817 (17) | C5—N1 | 1.3792 (14) |
C13—C12 | 1.3828 (17) | N1—C4 | 1.3408 (16) |
C13—H13 | 0.9300 | N1—H1 | 0.95 (2) |
C10—C11 | 1.3783 (16) | C6—H6A | 0.9600 |
C10—C9 | 1.3983 (17) | C6—H6B | 0.9600 |
C10—H10 | 0.9300 | C6—H6C | 0.9600 |
C11—C12 | 1.3984 (17) | C7—H7A | 0.9600 |
C11—H11 | 0.9300 | C7—H7B | 0.9600 |
O2—C2 | 1.2306 (14) | C7—H7C | 0.9600 |
O1—C1 | 1.2321 (15) | C4—H4 | 0.9300 |
N3—C3 | 1.3710 (14) | ||
C9—O5—H5 | 109.4 (13) | O1—C1—N4 | 120.78 (11) |
C14—O4—H4A | 113.1 (14) | O1—C1—C5 | 127.75 (11) |
C12—O6—H6 | 111.2 (13) | N4—C1—C5 | 111.46 (10) |
C9—C8—C13 | 119.63 (11) | O2—C2—N3 | 121.22 (11) |
C9—C8—C14 | 120.17 (11) | O2—C2—N4 | 121.22 (10) |
C13—C8—C14 | 120.20 (11) | N3—C2—N4 | 117.56 (10) |
C12—C13—C8 | 120.56 (11) | C3—C5—N1 | 105.65 (10) |
C12—C13—H13 | 119.7 | C3—C5—C1 | 122.98 (10) |
C8—C13—H13 | 119.7 | N1—C5—C1 | 131.26 (11) |
O3—C14—O4 | 123.21 (11) | N2—C3—N3 | 126.79 (11) |
O3—C14—C8 | 122.79 (11) | N2—C3—C5 | 110.99 (10) |
O4—C14—C8 | 114.00 (10) | N3—C3—C5 | 122.21 (11) |
C11—C10—C9 | 120.70 (11) | C4—N1—C5 | 106.66 (10) |
C11—C10—H10 | 119.7 | C4—N1—H1 | 128.1 (12) |
C9—C10—H10 | 119.7 | C5—N1—H1 | 125.2 (12) |
C10—C11—C12 | 120.60 (11) | N3—C6—H6A | 109.5 |
C10—C11—H11 | 119.7 | N3—C6—H6B | 109.5 |
C12—C11—H11 | 119.7 | H6A—C6—H6B | 109.5 |
O5—C9—C10 | 116.96 (10) | N3—C6—H6C | 109.5 |
O5—C9—C8 | 123.97 (11) | H6A—C6—H6C | 109.5 |
C10—C9—C8 | 119.07 (11) | H6B—C6—H6C | 109.5 |
O6—C12—C13 | 123.61 (11) | N4—C7—H7A | 109.5 |
O6—C12—C11 | 116.95 (11) | N4—C7—H7B | 109.5 |
C13—C12—C11 | 119.44 (11) | H7A—C7—H7B | 109.5 |
C3—N3—C2 | 118.91 (10) | N4—C7—H7C | 109.5 |
C3—N3—C6 | 121.52 (10) | H7A—C7—H7C | 109.5 |
C2—N3—C6 | 119.35 (10) | H7B—C7—H7C | 109.5 |
C2—N4—C1 | 126.83 (10) | N1—C4—N2 | 112.63 (11) |
C2—N4—C7 | 116.29 (10) | N1—C4—H4 | 123.7 |
C1—N4—C7 | 116.70 (10) | N2—C4—H4 | 123.7 |
C4—N2—C3 | 104.07 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.95 (2) | 1.85 (2) | 2.8000 (16) | 177.2 (17) |
O6—H6···O2 | 0.92 (2) | 1.83 (2) | 2.7478 (14) | 173.9 (18) |
O5—H5···O3ii | 0.92 (2) | 2.24 (2) | 2.8503 (16) | 122.6 (17) |
O5—H5···O3 | 0.92 (2) | 1.87 (2) | 2.6617 (15) | 142.3 (19) |
O4—H4A···N2iii | 0.99 (3) | 1.68 (3) | 2.6596 (16) | 171 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z; (iii) −x, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H8N4O2·C7H6O4 |
Mr | 334.29 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 110 |
a, b, c (Å) | 7.0989 (14), 8.0543 (16), 13.034 (3) |
α, β, γ (°) | 86.08 (3), 81.27 (3), 74.14 (3) |
V (Å3) | 708.3 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.24 × 0.22 × 0.13 |
Data collection | |
Diffractometer | Rigaku Saturn CCD area-deterctor diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.971, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10245, 3478, 3302 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.127, 1.08 |
No. of reflections | 3478 |
No. of parameters | 235 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.33 |
Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.95 (2) | 1.85 (2) | 2.8000 (16) | 177.2 (17) |
O6—H6···O2 | 0.92 (2) | 1.83 (2) | 2.7478 (14) | 173.9 (18) |
O5—H5···O3ii | 0.92 (2) | 2.24 (2) | 2.8503 (16) | 122.6 (17) |
O5—H5···O3 | 0.92 (2) | 1.87 (2) | 2.6617 (15) | 142.3 (19) |
O4—H4A···N2iii | 0.99 (3) | 1.68 (3) | 2.6596 (16) | 171 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z; (iii) −x, −y+2, −z+1. |
Footnotes
‡Additional contact author, e-mail: reginald_tan@ices.a-star.edu.sg.
Acknowledgements
This work was supported by the Institute of Chemical and Engineering Sciences of A*STAR (Agency for Science, Technology and Research), Singapore.
References
Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2009). CrystEngComm. DOI: 10.1039/b904616j. Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bhatt, P. M., Azim, Y., Thakur, T. S. & Desiraju, G. R. (2009). Cryst. Growth Des. 9, 951–957. Web of Science CSD CrossRef CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Caira, M. R. (2007). Mol. Pharm. 4, 310–316. Web of Science CrossRef PubMed CAS Google Scholar
Childs, S. L. (2007). Int. Patent No. WO 2007/067727 A2, (14/06/2007). Google Scholar
Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919. Web of Science CSD CrossRef CAS Google Scholar
Khankari, R. K. & Grant, D. J. W. (1995). Thermochim. Acta, 248, 61–79. CrossRef CAS Web of Science Google Scholar
Lu, E., Rodríguez-Hornedo, N. & Suryanarayana, R. (2008). CrystEngComm, 10, 665–668. Web of Science CrossRef CAS Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Shan, N. & Zaworotko, M. J. (2008). Drug Discov. Today, 13, 440–446. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trask, A. V., Motherwell, W. D. S. & Jones, W. (2006). Int. J. Pharm. 320, 114–123. Web of Science CSD CrossRef PubMed CAS Google Scholar
Vishweshwar, P., McMahon, J. A., Peterson, M. L., Hickey, M. B., Shattock, T. R. & Zaworotko, M. J. (2005). Chem. Commun. pp. 4601–4603. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Theophylline (1,3-dimethyl-7H-purine-2,6-dione) is a drug used in the treatment of respiratory diseases such as asthma. It has been reported that theophylline forms a monohydrate as a function of relative humidity and poses challenges in the formultion stages (Khankari and Grant, 1995). Using the cocrystallization as an aid to improve the physical stability, several theophylline cocrystals with dicarboxylic acids have been prepared and studied for their physical stability (Trask et al., 2006, Childs et al., 2007). Cocrystals which involve two or more active pharmaceutical ingredients (APIs) are relatively unexplored solid forms of APIs which have potential relevance in the context of combination drugs for pharmaceutical drug development (Aitipamula et al., 2009, Bhatt et al., 2009). We have recently reported trimorphs of a pharmaceutical cocrystal involving two APIs, namely ethenzamide (2-ethoxybenzamide), and gentisic acid and shown that the dissolution rate of the cocrystal polymorphs improved by two times when compared to the parent ethenzamide (Aitipamula et al., 2009). In the present paper, we report a 1:1 cocrystal of theophylline with gentisic acid and analyzed the hydrogen bonding.
The crystal structure of the title cocrystal contains each one molecule of theophylline and gentisic acid in the asymmetric unit (Fig. 1). In the structure, two molecules of theophylline which are related by an inversion centre form a dimer involving N—H···O hydrogen bonds (Table 1). Hydroxy atom O5 of the gentisic acid acts as an intramolecular O—H···O hydrogen bond donor to the carbonyl of carboxyl group and also involves in a bifurcated O—H···O hydrogen bond to atom O3 at (-x, -y + 1, -z) (Fig. 2). Hydroxy atom O4 acts as a hydrogen bond donor to atom N2 of the theophylline at (-x, -y + 2, -z + 1), thus generating chains of alternating dimers of theophylline and gentisic acid running parallel to [21–1]. In addition, there is a C—H···O hydrogen bond between C4 of the theophylline and O5 of the gentisic acid. The 5-hydroxyl group (O6) of the gentisic acid acts as a hydrogen bond donor to atom O2 of the theophylline at (1 + x, -1 + y, 1 + z), thus generating a hydrogen bonded sheet parallel to the (21–1) plane (Fig. 2). The crystal structure is further stabilized by a π-π interaction involving pyrimidine ring of theophylline and phenyl ring of gentisic acid: Cg1···Cg2 (x, y, z) = 3.348 (1) Å, where Cg1 and Cg2 denote the centroids of N3/C2/N4/C1/C5/C3 of the theophylline and C8—C13 of the gentisic acid, respectively (Fig. 3).
Zaworotko and co-workers distinguished between two types of hydrogen bonding possibilities in cocrystal structures depending on whether the interacting complementary functional groups are the same or different (Fleischman et al., 2003). In type I, an API forms hydrogen bonds like in pure structure, e.g. dimers, catemers, etc. (homosynthons) and such units are connected by cocrystal former spacer, and in type II, both the API and cocrystal former involve in heterosynthon formation. The title cocrystal belongs to type I, in which both the theophylline and gentisic acid molecules form dimers involving homosynthons, and such dimers are connected via O—H···O hydrogen bonds (Fig. 2).