organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Chloro­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one

aSchool of Chemistry & Chemical Engineering, Xuzhou Institute of Technology, Xuzhou Jiangsu 221008, People's Republic of China
*Correspondence e-mail: feng.changjun@163.com

(Received 22 July 2009; accepted 8 August 2009; online 15 August 2009)

The title compound, C14H11ClN2O, was synthesized by the reaction of 2-chloro­benzaldehyde and 2-amino­benzamide in an ionic liquid. The pyrimidine ring adopts a skew-boat conformation and the two benzene rings make a dihedral angle of 87.1 (1)°. In the crystal, N—H⋯O and C—H⋯N hydrogen bonding links the mol­ecules along b.

Related literature

For quinazoline derivatives as anti­tumor agents, see: Feng et al. (2006[Feng, Z., Chen, X., Guo, Z., Jiang, Y., Li, J., Zhu, F., Guo, Y., Li, Y. & Fu, J. (2006). Chinese Patent CN 1854130 A, 1 Nov 2006.]); Keenan & Shakespear (2004[Keenan, T. P. & Shakespear, W. C. (2004). PCT Int. Appl. WO 2004058267 A1, 15 Jul 2004.]); Mikiciuk-Olasik et al. (2004[Mikiciuk-Olasik, E., Blaszczak-Swiatkiewiz, K., Zurek, E., Krajewska, U., Rozalski, M., Kruszynski, R. & Bartczak, T. J. (2004). Arch. Pharm. 337, 239-246.]). For the biological activity of quinazoline derivatives, see: Bedi et al. (2004[Bedi, P. M. S., Kumar, V. & Mahajan, M. P. (2004). Bioorg. Med. Chem. Lett. 14, 5211-5213.]); Lin et al. (2006[Lin, A. J., Guan, J., Zhang, Q. & Skillman, D. R. (2006). US Patent Appl. Publ. US 2006094736 A1, 4 May 2006.]); Saleh et al. (2004[Saleh, M. A., Hafez, Y. A., Abdel-Hay, F. E. & Gad, W. I. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 411-426.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O

  • Mr = 258.70

  • Triclinic, [P \overline 1]

  • a = 6.9900 (1) Å

  • b = 8.7488 (2) Å

  • c = 10.4756 (2) Å

  • α = 100.639 (1)°

  • β = 92.726 (1)°

  • γ = 101.786 (1)°

  • V = 613.91 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.47 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.901, Tmax = 0.950

  • 8018 measured reflections

  • 2204 independent reflections

  • 2029 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.07

  • 2204 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.831 (16) 2.461 (16) 3.1847 (16) 146.2 (14)
N1—H1A⋯O1ii 0.824 (18) 2.103 (18) 2.9146 (16) 168.4 (16)
C1—H1B⋯N2iii 0.948 (14) 2.635 (14) 3.4369 (17) 142.6 (11)
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+2, -z; (iii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinazoline derivatives are well known compounds as antitumor agents (Feng et al., 2006; Keenan et al., 2004; Mikiciuk-Olasik et al., 2004). In addition, it was reported that some quinazoline derivatives possessed biological activities, such as antimalarial activity (Lin et al., 2006) antibacterial activity (Bedi et al., 2004) and antifungal activity (Saleh et al., 2004). We report here the crystal structure of 2-(2-chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one, (I).

The X-ray crystal structure determination indicates that the pyrimidine ring in the quinazoline moiety is slightly distorted, adopting a skew-boat conformation. The atoms of C2, C3, C8 and N2 are coplanar, with the atoms N1 and C1 deviating from the defined plane by 0.256 (2) and 0.623 (2) Å, respectively. The basal plane is nearly parallel to the benzene ring (C3—C8), forming a dihedral angle of 5.4 (1) °. And is nearly perpendicular to the benzene ring (C9—C14), forming a dihedral angle of 87.7 (1) °. Two benzene rings make a dihedral angle of 87.1 (1) °.

The hydrogen bonds of N—H···O and C—H···N are presented in the crystal structure of (I) (Table 2). The intermolecular hydrogen bond (N1—H1A···O1) and hydrogen bond (C1—H1B···N2) link the adjacent molecules, forming dimmers, respectively. The hydrogen bond of N2—H2A···O1 and above hydrogen bonds link the molecules forming polymers along b (Figure 2).

Related literature top

For quinazoline derivatives as antitumor agents, see: Feng et al. (2006); Keenan & Shakespear (2004); Mikiciuk-Olasik et al. (2004). For the biological activity of quinazoline derivatives, see: Bedi et al. (2004); Lin et al. (2006); Saleh et al. (2004).

Experimental top

The title compound, (I), was prepared by the reaction of 2-chlorobenzaldehyde (2 mmol, 0.280 g), 2-aminobenzamide (2 mmol, 0.272 g) and ionic liquid of [Bmim]Br (2 ml) at 353 K. The isolated compound melts at 485–486 K. The single crystals suitable for X-ray diffraction were obtained by slow evaporation ethanol solution.

Refinement top

The H atoms were calculated geometrically and refined as riding, with C—H = 0.93 Å except for H1A, H1B and H2A, and with Uiso(H) = 1.2Ueq.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure drawing for (I) showing 50% probability of displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagramshowing the hydrogen-bonding network in the crystal for (I).
2-(2-Chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one top
Crystal data top
C14H11ClN2OZ = 2
Mr = 258.70F(000) = 268
Triclinic, P1Dx = 1.399 Mg m3
Hall symbol: -P 1Melting point = 485–486 K
a = 6.9900 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7488 (2) ÅCell parameters from 5614 reflections
c = 10.4756 (2) Åθ = 2.4–27.3°
α = 100.639 (1)°µ = 0.30 mm1
β = 92.726 (1)°T = 296 K
γ = 101.786 (1)°Block, colourless
V = 613.91 (2) Å30.47 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2204 independent reflections
Radiation source: fine-focus sealed tube2029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 88
Tmin = 0.901, Tmax = 0.950k = 1010
8018 measured reflectionsl = 1211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.1722P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2204 reflectionsΔρmax = 0.20 e Å3
176 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (4)
Crystal data top
C14H11ClN2Oγ = 101.786 (1)°
Mr = 258.70V = 613.91 (2) Å3
Triclinic, P1Z = 2
a = 6.9900 (1) ÅMo Kα radiation
b = 8.7488 (2) ŵ = 0.30 mm1
c = 10.4756 (2) ÅT = 296 K
α = 100.639 (1)°0.47 × 0.15 × 0.15 mm
β = 92.726 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2204 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2029 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.950Rint = 0.019
8018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.20 e Å3
2204 reflectionsΔρmin = 0.19 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16029 (5)0.69778 (5)0.05650 (4)0.05390 (17)
N20.50252 (18)1.00296 (13)0.18929 (11)0.0344 (3)
C90.53903 (19)0.72253 (15)0.14393 (12)0.0301 (3)
O11.08313 (14)1.09067 (13)0.17031 (11)0.0497 (3)
C20.9066 (2)1.04662 (16)0.18541 (14)0.0370 (3)
C80.61534 (19)1.08206 (15)0.30290 (12)0.0319 (3)
N10.78205 (17)0.94682 (14)0.09040 (12)0.0367 (3)
C140.3498 (2)0.62845 (16)0.12560 (13)0.0345 (3)
C10.57649 (19)0.88323 (15)0.10227 (13)0.0315 (3)
C100.6833 (2)0.66331 (18)0.20113 (14)0.0411 (3)
H10A0.81150.72300.21530.049*
C130.3048 (2)0.48197 (17)0.16089 (15)0.0451 (4)
H13A0.17690.42170.14690.054*
C30.8198 (2)1.10531 (17)0.30508 (13)0.0384 (3)
C70.5326 (2)1.14921 (18)0.41197 (14)0.0419 (3)
H7A0.39701.13390.41200.050*
C110.6398 (3)0.5163 (2)0.23777 (16)0.0521 (4)
H11A0.73850.47860.27650.063*
C40.9362 (2)1.1958 (2)0.41504 (17)0.0613 (5)
H4A1.07201.21220.41630.074*
C120.4514 (3)0.42650 (18)0.21692 (16)0.0517 (4)
H12A0.42320.32770.24090.062*
C60.6509 (3)1.2379 (2)0.51937 (16)0.0582 (5)
H6A0.59441.28280.59160.070*
C50.8526 (3)1.2615 (3)0.52208 (17)0.0722 (6)
H5A0.93121.32140.59570.087*
H2A0.382 (2)0.9860 (18)0.1921 (14)0.037 (4)*
H1A0.823 (2)0.9236 (19)0.0184 (18)0.045 (4)*
H1B0.510 (2)0.8682 (16)0.0185 (14)0.027 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0326 (2)0.0464 (2)0.0788 (3)0.00346 (16)0.01097 (18)0.01200 (19)
N20.0259 (6)0.0347 (6)0.0423 (7)0.0069 (5)0.0038 (5)0.0067 (5)
C90.0304 (7)0.0324 (6)0.0270 (6)0.0067 (5)0.0065 (5)0.0041 (5)
O10.0298 (5)0.0554 (7)0.0566 (7)0.0007 (5)0.0140 (5)0.0007 (5)
C20.0310 (7)0.0380 (7)0.0418 (8)0.0051 (6)0.0087 (6)0.0084 (6)
C80.0330 (7)0.0308 (6)0.0347 (7)0.0076 (5)0.0059 (5)0.0119 (5)
N10.0338 (6)0.0396 (6)0.0339 (6)0.0012 (5)0.0126 (5)0.0050 (5)
C140.0329 (7)0.0334 (7)0.0350 (7)0.0055 (6)0.0015 (5)0.0034 (5)
C10.0292 (7)0.0347 (7)0.0298 (7)0.0041 (5)0.0032 (5)0.0073 (5)
C100.0342 (8)0.0447 (8)0.0456 (8)0.0101 (6)0.0034 (6)0.0105 (6)
C130.0473 (9)0.0339 (7)0.0481 (9)0.0027 (6)0.0017 (7)0.0063 (6)
C30.0327 (7)0.0448 (8)0.0368 (7)0.0081 (6)0.0049 (6)0.0060 (6)
C70.0395 (8)0.0473 (8)0.0431 (8)0.0148 (6)0.0130 (6)0.0118 (6)
C110.0576 (10)0.0484 (9)0.0569 (10)0.0218 (8)0.0019 (8)0.0175 (7)
C40.0382 (9)0.0858 (13)0.0502 (10)0.0114 (9)0.0030 (7)0.0067 (9)
C120.0676 (11)0.0326 (7)0.0546 (9)0.0063 (7)0.0013 (8)0.0139 (7)
C60.0641 (11)0.0729 (12)0.0372 (8)0.0220 (9)0.0126 (7)0.0002 (8)
C50.0615 (12)0.0989 (15)0.0431 (10)0.0171 (11)0.0070 (8)0.0161 (9)
Geometric parameters (Å, º) top
Cl1—C141.7453 (14)C10—C111.388 (2)
N2—C81.3787 (17)C10—H10A0.9300
N2—C11.4523 (17)C13—C121.372 (2)
N2—H2A0.831 (16)C13—H13A0.9300
C9—C101.3839 (19)C3—C41.388 (2)
C9—C141.3915 (19)C7—C61.371 (2)
C9—C11.5240 (18)C7—H7A0.9300
O1—C21.2421 (17)C11—C121.373 (2)
C2—N11.3405 (18)C11—H11A0.9300
C2—C31.4716 (19)C4—C51.375 (2)
C8—C71.3924 (19)C4—H4A0.9300
C8—C31.4001 (19)C12—H12A0.9300
N1—C11.4511 (17)C6—C51.380 (3)
N1—H1A0.824 (18)C6—H6A0.9300
C14—C131.378 (2)C5—H5A0.9300
C1—H1B0.948 (14)
C8—N2—C1118.48 (11)C11—C10—H10A119.5
C8—N2—H2A116.8 (10)C12—C13—C14118.97 (14)
C1—N2—H2A116.0 (10)C12—C13—H13A120.5
C10—C9—C14116.97 (12)C14—C13—H13A120.5
C10—C9—C1123.74 (12)C4—C3—C8119.58 (13)
C14—C9—C1119.28 (11)C4—C3—C2121.32 (14)
O1—C2—N1121.40 (13)C8—C3—C2118.80 (12)
O1—C2—C3122.54 (13)C6—C7—C8120.05 (14)
N1—C2—C3116.00 (12)C6—C7—H7A120.0
N2—C8—C7121.83 (12)C8—C7—H7A120.0
N2—C8—C3118.83 (12)C12—C11—C10120.13 (14)
C7—C8—C3119.18 (13)C12—C11—H11A119.9
C2—N1—C1124.90 (12)C10—C11—H11A119.9
C2—N1—H1A117.9 (12)C5—C4—C3120.63 (16)
C1—N1—H1A117.1 (12)C5—C4—H4A119.7
C13—C14—C9122.57 (13)C3—C4—H4A119.7
C13—C14—Cl1118.17 (11)C13—C12—C11120.28 (14)
C9—C14—Cl1119.26 (10)C13—C12—H12A119.9
N1—C1—N2108.17 (11)C11—C12—H12A119.9
N1—C1—C9113.41 (11)C7—C6—C5121.06 (15)
N2—C1—C9112.80 (10)C7—C6—H6A119.5
N1—C1—H1B106.9 (8)C5—C6—H6A119.5
N2—C1—H1B107.8 (8)C4—C5—C6119.49 (16)
C9—C1—H1B107.5 (8)C4—C5—H5A120.3
C9—C10—C11121.08 (14)C6—C5—H5A120.3
C9—C10—H10A119.5
C1—N2—C8—C7154.80 (12)Cl1—C14—C13—C12179.15 (12)
C1—N2—C8—C329.94 (17)N2—C8—C3—C4174.78 (14)
O1—C2—N1—C1176.67 (13)C7—C8—C3—C40.6 (2)
C3—C2—N1—C15.9 (2)N2—C8—C3—C20.93 (19)
C10—C9—C14—C130.6 (2)C7—C8—C3—C2174.45 (13)
C1—C9—C14—C13179.95 (12)O1—C2—C3—C49.3 (2)
C10—C9—C14—Cl1178.92 (10)N1—C2—C3—C4173.25 (15)
C1—C9—C14—Cl10.48 (16)O1—C2—C3—C8164.39 (14)
C2—N1—C1—N233.01 (17)N1—C2—C3—C813.0 (2)
C2—N1—C1—C992.90 (15)N2—C8—C7—C6174.73 (14)
C8—N2—C1—N144.49 (15)C3—C8—C7—C60.5 (2)
C8—N2—C1—C981.78 (14)C9—C10—C11—C120.3 (2)
C10—C9—C1—N117.84 (18)C8—C3—C4—C50.6 (3)
C14—C9—C1—N1162.81 (11)C2—C3—C4—C5174.27 (18)
C10—C9—C1—N2105.57 (14)C14—C13—C12—C110.3 (2)
C14—C9—C1—N273.78 (15)C10—C11—C12—C130.6 (3)
C14—C9—C10—C110.2 (2)C8—C7—C6—C50.4 (3)
C1—C9—C10—C11179.58 (13)C3—C4—C5—C60.5 (3)
C9—C14—C13—C120.3 (2)C7—C6—C5—C40.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.831 (16)2.461 (16)3.1847 (16)146.2 (14)
N1—H1A···O1ii0.824 (18)2.103 (18)2.9146 (16)168.4 (16)
C1—H1B···N2iii0.948 (14)2.635 (14)3.4369 (17)142.6 (11)
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O
Mr258.70
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.9900 (1), 8.7488 (2), 10.4756 (2)
α, β, γ (°)100.639 (1), 92.726 (1), 101.786 (1)
V3)613.91 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.47 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.901, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
8018, 2204, 2029
Rint0.019
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.07
No. of reflections2204
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.831 (16)2.461 (16)3.1847 (16)146.2 (14)
N1—H1A···O1ii0.824 (18)2.103 (18)2.9146 (16)168.4 (16)
C1—H1B···N2iii0.948 (14)2.635 (14)3.4369 (17)142.6 (11)
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z; (iii) x+1, y+2, z.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (20776149) and the Natural Science Foundation (XKY2008313) of Xuzhou Institute of Technology for financial support.

References

First citationBedi, P. M. S., Kumar, V. & Mahajan, M. P. (2004). Bioorg. Med. Chem. Lett. 14, 5211–5213.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, Z., Chen, X., Guo, Z., Jiang, Y., Li, J., Zhu, F., Guo, Y., Li, Y. & Fu, J. (2006). Chinese Patent CN 1854130 A, 1 Nov 2006.  Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKeenan, T. P. & Shakespear, W. C. (2004). PCT Int. Appl. WO 2004058267 A1, 15 Jul 2004.  Google Scholar
First citationLin, A. J., Guan, J., Zhang, Q. & Skillman, D. R. (2006). US Patent Appl. Publ. US 2006094736 A1, 4 May 2006.  Google Scholar
First citationMikiciuk-Olasik, E., Blaszczak-Swiatkiewiz, K., Zurek, E., Krajewska, U., Rozalski, M., Kruszynski, R. & Bartczak, T. J. (2004). Arch. Pharm. 337, 239–246.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaleh, M. A., Hafez, Y. A., Abdel-Hay, F. E. & Gad, W. I. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 411–426.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds