metal-organic compounds
A correction has been published for this article. To view the correction, click here.
Poly[[di-μ3-nicotinato-μ3-oxalato-samarium(III)silver(I)] dihydrate]
aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China, and bCollege of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, People's Republic of China
*Correspondence e-mail: lfshjyu@scut.edu.cn
In the title three-dimensional heterometallic complex, {[AgSm(C6H4NO2)2(C2O4)]·2H2O}n, the SmIII ion is eight-coordinated by four O atoms from four different nicotinate ligands and four O atoms from two different oxalate ligands. The three-coordinate AgI ion is bonded to two N atoms from two different nicotinate anions and one O atom from an oxalate anion. These metal coordination units are connected by bridging nicotinate and oxalate ligands, generating a three-dimensional network. The uncoordinated water molecules link the carboxylate groups via O—H⋯O hydrogen bonding. The is further stabilized by hydrogen bonds between the water molecules.
Related literature
For theapplications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Luo et al. (2007); Peng et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809032115/pv2185sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809032115/pv2185Isup2.hkl
A mixture of AgNO3 (0.057 g, 0.33 mmol), Sm2O3 (0.116 g, 0.33 mmol), nicotinic acid (0.164 g, 1.33 mmol), oxalic acid (0.119 g, 1.33 mmol), H2O (7 ml), and HClO4 (0.257 mmol)(pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals suitable for X-ray analysis were obtained.
H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms of water molecules were found from difference Fourier maps and included in the refinements with a restraint of O—H = 0.86 - 0.87 Å and Uiso(H) = 1.5 Ueq(O). The largest residual electron density in the final difference map was located at a distance of 0.82 Å from Ag2 atom and was meaningless.
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[AgSm(C6H4NO2)2(C2O4)]·2H2O | F(000) = 1196 |
Mr = 626.49 | Dx = 2.352 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6346 reflections |
a = 9.7145 (9) Å | θ = 2.4–27.8° |
b = 22.3444 (15) Å | µ = 4.45 mm−1 |
c = 9.1726 (6) Å | T = 296 K |
β = 117.295 (1)° | Block, colorless |
V = 1769.4 (2) Å3 | 0.23 × 0.20 × 0.19 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 3171 independent reflections |
Radiation source: fine-focus sealed tube | 2995 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 25.2°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −5→11 |
Tmin = 0.374, Tmax = 0.429 | k = −26→26 |
8972 measured reflections | l = −10→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.0174P)2 + 1.7329P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.002 |
3171 reflections | Δρmax = 0.84 e Å−3 |
254 parameters | Δρmin = −0.65 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00351 (16) |
[AgSm(C6H4NO2)2(C2O4)]·2H2O | V = 1769.4 (2) Å3 |
Mr = 626.49 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.7145 (9) Å | µ = 4.45 mm−1 |
b = 22.3444 (15) Å | T = 296 K |
c = 9.1726 (6) Å | 0.23 × 0.20 × 0.19 mm |
β = 117.295 (1)° |
Bruker APEXII area-detector diffractometer | 3171 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2995 reflections with I > 2σ(I) |
Tmin = 0.374, Tmax = 0.429 | Rint = 0.027 |
8972 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.052 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.84 e Å−3 |
3171 reflections | Δρmin = −0.65 e Å−3 |
254 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sm1 | 0.85715 (2) | 0.991315 (8) | 0.11767 (2) | 0.01683 (8) | |
Ag2 | 0.82067 (4) | 0.852371 (14) | 0.48309 (5) | 0.04794 (12) | |
O1 | 0.8835 (3) | 0.94402 (11) | 0.3695 (3) | 0.0275 (6) | |
N1 | 0.6254 (4) | 0.88411 (15) | 0.5163 (4) | 0.0346 (8) | |
C4 | 0.3834 (4) | 0.93617 (16) | 0.4147 (4) | 0.0231 (8) | |
C3 | 0.4789 (5) | 0.88129 (19) | 0.6648 (5) | 0.0368 (10) | |
H3 | 0.4696 | 0.8681 | 0.7560 | 0.044* | |
C1 | 0.5154 (4) | 0.91951 (17) | 0.4047 (5) | 0.0291 (9) | |
H1 | 0.5291 | 0.9334 | 0.3166 | 0.035* | |
C2 | 0.6042 (5) | 0.86566 (19) | 0.6441 (5) | 0.0382 (10) | |
H2 | 0.6788 | 0.8410 | 0.7221 | 0.046* | |
C6 | 0.2586 (4) | 0.97226 (16) | 0.2811 (4) | 0.0222 (8) | |
C5 | 0.3662 (5) | 0.91690 (17) | 0.5490 (4) | 0.0293 (9) | |
H5 | 0.2795 | 0.9279 | 0.5608 | 0.035* | |
O3 | 0.2900 (3) | 0.99674 (11) | 0.1769 (3) | 0.0284 (6) | |
O2 | 0.1309 (3) | 0.97383 (13) | 0.2834 (3) | 0.0313 (6) | |
N2 | 0.9619 (4) | 0.78296 (14) | 0.4537 (4) | 0.0332 (8) | |
C7 | 0.9364 (4) | 0.72618 (16) | 0.4792 (5) | 0.0287 (8) | |
H7 | 0.8605 | 0.7184 | 0.5117 | 0.034* | |
C9 | 1.1309 (5) | 0.6899 (2) | 0.4136 (5) | 0.0390 (10) | |
H9 | 1.1876 | 0.6589 | 0.3994 | 0.047* | |
C8 | 1.0722 (5) | 0.79305 (19) | 0.4069 (5) | 0.0408 (10) | |
H8 | 1.0903 | 0.8322 | 0.3859 | 0.049* | |
O7 | 0.6156 (3) | 0.93618 (11) | 0.0496 (3) | 0.0253 (6) | |
C10 | 1.0169 (4) | 0.67816 (16) | 0.4599 (4) | 0.0239 (8) | |
C12 | 1.1588 (5) | 0.7483 (2) | 0.3889 (6) | 0.0490 (12) | |
H12 | 1.2365 | 0.7573 | 0.3600 | 0.059* | |
C13 | 0.9793 (4) | 0.96697 (16) | 0.5028 (4) | 0.0207 (7) | |
O8 | 1.0418 (3) | 0.94114 (11) | 0.6386 (3) | 0.0255 (6) | |
O6 | 0.3580 (3) | 0.94430 (11) | −0.0787 (3) | 0.0280 (6) | |
O1W | 0.6113 (6) | 0.69616 (19) | 0.5607 (5) | 0.0925 (14) | |
H1W | 0.6115 | 0.6576 | 0.5630 | 0.139* | |
H2W | 0.5551 | 0.7081 | 0.6053 | 0.139* | |
O2W | 0.4884 (7) | 0.7331 (2) | 0.7801 (6) | 0.1179 (19) | |
H3W | 0.4044 | 0.7508 | 0.7119 | 0.177* | |
H4W | 0.5226 | 0.7525 | 0.8720 | 0.177* | |
C11 | 0.9771 (4) | 0.61643 (15) | 0.4922 (4) | 0.0236 (8) | |
O4 | 0.8882 (3) | 0.61157 (11) | 0.5557 (3) | 0.0322 (6) | |
O5 | 1.0350 (3) | 0.57246 (12) | 0.4552 (3) | 0.0353 (7) | |
C14 | 0.4919 (4) | 0.96531 (16) | −0.0083 (4) | 0.0216 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.01410 (11) | 0.01776 (12) | 0.01771 (11) | 0.00069 (7) | 0.00649 (8) | 0.00163 (7) |
Ag2 | 0.0358 (2) | 0.02335 (18) | 0.0903 (3) | 0.00795 (13) | 0.0338 (2) | 0.00929 (16) |
O1 | 0.0327 (16) | 0.0290 (14) | 0.0187 (12) | −0.0129 (12) | 0.0100 (12) | −0.0031 (10) |
N1 | 0.0243 (18) | 0.0306 (19) | 0.046 (2) | 0.0061 (14) | 0.0134 (16) | 0.0060 (15) |
C4 | 0.021 (2) | 0.026 (2) | 0.0181 (17) | −0.0007 (15) | 0.0052 (15) | 0.0010 (14) |
C3 | 0.044 (3) | 0.042 (3) | 0.024 (2) | 0.010 (2) | 0.0148 (19) | 0.0092 (17) |
C1 | 0.023 (2) | 0.032 (2) | 0.032 (2) | 0.0064 (16) | 0.0126 (17) | 0.0080 (17) |
C2 | 0.032 (3) | 0.037 (2) | 0.034 (2) | 0.0069 (19) | 0.005 (2) | 0.0100 (18) |
C6 | 0.0167 (19) | 0.0244 (19) | 0.0190 (17) | 0.0007 (15) | 0.0027 (15) | −0.0008 (14) |
C5 | 0.026 (2) | 0.035 (2) | 0.027 (2) | 0.0038 (17) | 0.0124 (17) | 0.0024 (17) |
O3 | 0.0231 (15) | 0.0376 (16) | 0.0205 (13) | 0.0005 (11) | 0.0066 (11) | 0.0056 (11) |
O2 | 0.0161 (14) | 0.0495 (17) | 0.0254 (14) | 0.0082 (12) | 0.0070 (11) | 0.0042 (12) |
N2 | 0.0314 (19) | 0.0210 (17) | 0.048 (2) | 0.0001 (14) | 0.0188 (16) | 0.0057 (15) |
C7 | 0.024 (2) | 0.023 (2) | 0.041 (2) | 0.0007 (16) | 0.0171 (18) | 0.0021 (16) |
C9 | 0.036 (3) | 0.037 (3) | 0.053 (3) | 0.0067 (19) | 0.029 (2) | 0.005 (2) |
C8 | 0.044 (3) | 0.031 (2) | 0.053 (3) | −0.0032 (19) | 0.026 (2) | 0.010 (2) |
O7 | 0.0179 (14) | 0.0232 (13) | 0.0326 (14) | 0.0020 (11) | 0.0097 (11) | 0.0017 (11) |
C10 | 0.022 (2) | 0.0234 (19) | 0.0251 (18) | 0.0017 (15) | 0.0098 (16) | −0.0018 (15) |
C12 | 0.041 (3) | 0.051 (3) | 0.071 (3) | −0.002 (2) | 0.040 (3) | 0.011 (2) |
C13 | 0.0181 (19) | 0.0234 (19) | 0.0239 (19) | 0.0007 (14) | 0.0126 (16) | 0.0006 (14) |
O8 | 0.0291 (15) | 0.0218 (13) | 0.0221 (13) | 0.0012 (11) | 0.0088 (11) | 0.0022 (10) |
O6 | 0.0179 (14) | 0.0271 (14) | 0.0371 (15) | −0.0011 (11) | 0.0109 (12) | −0.0066 (11) |
O1W | 0.120 (4) | 0.060 (3) | 0.108 (3) | 0.008 (3) | 0.062 (3) | −0.012 (2) |
O2W | 0.147 (5) | 0.100 (4) | 0.106 (4) | 0.027 (4) | 0.056 (4) | 0.012 (3) |
C11 | 0.024 (2) | 0.0162 (18) | 0.0233 (18) | 0.0018 (14) | 0.0045 (16) | −0.0033 (14) |
O4 | 0.0308 (16) | 0.0235 (14) | 0.0488 (17) | −0.0014 (11) | 0.0239 (14) | 0.0039 (12) |
O5 | 0.0417 (18) | 0.0265 (15) | 0.0296 (14) | 0.0111 (12) | 0.0092 (13) | −0.0050 (11) |
C14 | 0.021 (2) | 0.025 (2) | 0.0208 (18) | −0.0003 (15) | 0.0115 (16) | −0.0035 (14) |
Sm1—O5i | 2.340 (3) | N2—C7 | 1.334 (5) |
Sm1—O2ii | 2.414 (2) | N2—C8 | 1.342 (5) |
Sm1—O4iii | 2.420 (3) | C7—C10 | 1.386 (5) |
Sm1—O3iv | 2.424 (2) | C7—H7 | 0.9300 |
Sm1—O6iv | 2.425 (2) | C9—C12 | 1.372 (6) |
Sm1—O1 | 2.444 (2) | C9—C10 | 1.381 (5) |
Sm1—O7 | 2.464 (2) | C9—H9 | 0.9300 |
Sm1—O8v | 2.496 (2) | C8—C12 | 1.366 (6) |
Ag2—N2 | 2.168 (3) | C8—H8 | 0.9300 |
Ag2—N1 | 2.174 (3) | O7—C14 | 1.251 (4) |
Ag2—O1 | 2.497 (2) | C10—C11 | 1.498 (5) |
O1—C13 | 1.257 (4) | C12—H12 | 0.9300 |
N1—C2 | 1.344 (5) | C13—O8 | 1.249 (4) |
N1—C1 | 1.346 (5) | C13—C13v | 1.537 (7) |
C4—C1 | 1.378 (5) | O8—Sm1v | 2.496 (2) |
C4—C5 | 1.385 (5) | O6—C14 | 1.249 (4) |
C4—C6 | 1.504 (5) | O6—Sm1iv | 2.425 (2) |
C3—C2 | 1.361 (6) | O1W—H1W | 0.8624 |
C3—C5 | 1.376 (5) | O1W—H2W | 0.8612 |
C3—H3 | 0.9300 | O2W—H3W | 0.8629 |
C1—H1 | 0.9300 | O2W—H4W | 0.8667 |
C2—H2 | 0.9300 | C11—O4 | 1.249 (4) |
C6—O2 | 1.251 (4) | C11—O5 | 1.253 (4) |
C6—O3 | 1.254 (4) | O4—Sm1vii | 2.420 (3) |
C5—H5 | 0.9300 | O5—Sm1viii | 2.340 (3) |
O3—Sm1iv | 2.424 (2) | C14—C14iv | 1.559 (7) |
O2—Sm1vi | 2.414 (2) | ||
O5i—Sm1—O2ii | 78.29 (10) | N1—C2—C3 | 123.2 (4) |
O5i—Sm1—O4iii | 123.28 (10) | N1—C2—H2 | 118.4 |
O2ii—Sm1—O4iii | 76.96 (9) | C3—C2—H2 | 118.4 |
O5i—Sm1—O3iv | 73.05 (9) | O2—C6—O3 | 126.2 (3) |
O2ii—Sm1—O3iv | 129.50 (9) | O2—C6—C4 | 115.9 (3) |
O4iii—Sm1—O3iv | 85.19 (9) | O3—C6—C4 | 117.9 (3) |
O5i—Sm1—O6iv | 88.09 (10) | C3—C5—C4 | 119.2 (4) |
O2ii—Sm1—O6iv | 144.58 (9) | C3—C5—H5 | 120.4 |
O4iii—Sm1—O6iv | 136.12 (9) | C4—C5—H5 | 120.4 |
O3iv—Sm1—O6iv | 75.08 (9) | C6—O3—Sm1iv | 132.3 (2) |
O5i—Sm1—O1 | 137.60 (8) | C6—O2—Sm1vi | 143.9 (2) |
O2ii—Sm1—O1 | 74.16 (9) | C7—N2—C8 | 117.1 (4) |
O4iii—Sm1—O1 | 80.84 (9) | C7—N2—Ag2 | 118.6 (3) |
O3iv—Sm1—O1 | 148.63 (9) | C8—N2—Ag2 | 124.2 (3) |
O6iv—Sm1—O1 | 96.06 (9) | N2—C7—C10 | 123.6 (4) |
O5i—Sm1—O7 | 144.52 (9) | N2—C7—H7 | 118.2 |
O2ii—Sm1—O7 | 136.44 (9) | C10—C7—H7 | 118.2 |
O4iii—Sm1—O7 | 70.86 (9) | C12—C9—C10 | 118.5 (4) |
O3iv—Sm1—O7 | 76.49 (9) | C12—C9—H9 | 120.7 |
O6iv—Sm1—O7 | 66.61 (8) | C10—C9—H9 | 120.7 |
O1—Sm1—O7 | 72.42 (8) | N2—C8—C12 | 122.8 (4) |
O5i—Sm1—O8v | 75.15 (9) | N2—C8—H8 | 118.6 |
O2ii—Sm1—O8v | 70.51 (9) | C12—C8—H8 | 118.6 |
O4iii—Sm1—O8v | 138.13 (9) | C14—O7—Sm1 | 117.7 (2) |
O3iv—Sm1—O8v | 136.13 (8) | C9—C10—C7 | 118.1 (4) |
O6iv—Sm1—O8v | 74.44 (8) | C9—C10—C11 | 123.5 (3) |
O1—Sm1—O8v | 65.62 (8) | C7—C10—C11 | 118.4 (3) |
O7—Sm1—O8v | 117.85 (8) | C8—C12—C9 | 119.8 (4) |
N2—Ag2—N1 | 153.35 (12) | C8—C12—H12 | 120.1 |
N2—Ag2—O1 | 104.18 (11) | C9—C12—H12 | 120.1 |
N1—Ag2—O1 | 100.77 (11) | O8—C13—O1 | 125.9 (3) |
C13—O1—Sm1 | 116.9 (2) | O8—C13—C13v | 117.5 (4) |
C13—O1—Ag2 | 98.2 (2) | O1—C13—C13v | 116.6 (4) |
Sm1—O1—Ag2 | 144.02 (10) | C13—O8—Sm1v | 115.2 (2) |
C2—N1—C1 | 117.2 (4) | C14—O6—Sm1iv | 118.5 (2) |
C2—N1—Ag2 | 120.9 (3) | H1W—O1W—H2W | 106.9 |
C1—N1—Ag2 | 121.7 (3) | H3W—O2W—H4W | 106.8 |
C1—C4—C5 | 118.1 (3) | O4—C11—O5 | 123.4 (3) |
C1—C4—C6 | 121.2 (3) | O4—C11—C10 | 118.0 (3) |
C5—C4—C6 | 120.7 (3) | O5—C11—C10 | 118.7 (3) |
C2—C3—C5 | 119.1 (4) | C11—O4—Sm1vii | 112.3 (2) |
C2—C3—H3 | 120.5 | C11—O5—Sm1viii | 179.0 (3) |
C5—C3—H3 | 120.5 | O6—C14—O7 | 126.5 (3) |
N1—C1—C4 | 123.1 (4) | O6—C14—C14iv | 117.3 (4) |
N1—C1—H1 | 118.4 | O7—C14—C14iv | 116.2 (4) |
C4—C1—H1 | 118.4 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+2, −z; (v) −x+2, −y+2, −z+1; (vi) x−1, y, z; (vii) x, −y+3/2, z+1/2; (viii) −x+2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O7vii | 0.86 | 2.10 | 2.960 (5) | 175 |
O1W—H2W···O2W | 0.86 | 2.06 | 2.892 (7) | 161 |
O2W—H4W···O1Wvii | 0.87 | 1.92 | 2.780 (7) | 171 |
Symmetry code: (vii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [AgSm(C6H4NO2)2(C2O4)]·2H2O |
Mr | 626.49 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 9.7145 (9), 22.3444 (15), 9.1726 (6) |
β (°) | 117.295 (1) |
V (Å3) | 1769.4 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.45 |
Crystal size (mm) | 0.23 × 0.20 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.374, 0.429 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8972, 3171, 2995 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.598 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.052, 1.12 |
No. of reflections | 3171 |
No. of parameters | 254 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.84, −0.65 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O7i | 0.86 | 2.10 | 2.960 (5) | 175 |
O1W—H2W···O2W | 0.86 | 2.06 | 2.892 (7) | 161 |
O2W—H4W···O1Wi | 0.87 | 1.92 | 2.780 (7) | 171 |
Symmetry code: (i) x, −y+3/2, z+1/2. |
Acknowledgements
The authors acknowledge South China Normal University for supporting this work.
References
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77. Web of Science CSD CrossRef CAS Google Scholar
Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527. Web of Science CSD CrossRef IUCr Journals Google Scholar
Luo, F., Hu, D.-X., Xue, L., Che, Y.-X. & Zheng, J.-M. (2007). Cryst. Growth Des. 7, 851–853. Web of Science CSD CrossRef CAS Google Scholar
Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409–1411. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands have generated much interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Luo et al., 2007; Peng et al., 2008). As an extension of this research, we report here the structure of the title compound, a new heterometallic coordination polymer.
In the title compound (Fig. 1), there are one SmIII ion, one AgI ion, two halves of oxalate ligand, two nicotinate ligands, and two lattice water molecules in the asymmetric unit. Each SmIII ion is eight-coordinated by four O atoms from four different nicotinate ligands, and four O atoms of two different oxalate ligands. The Sm center can be described as having a bicapped trigonal prism coordination geometry. The three-coordinate AgI ion is bonded to two N atoms from two different nicotinate anions and one O atom from an oxalate anion. Thus the AgI ion is in a T-shaped configuration. These metal coordination units are connected by bridging nicotinate and oxalate ligands, generating a three-dimensional network (Fig. 2). The uncoordinated water molecules link the carboxylate groups by O—H···O hydrogen bonding (Table 1). The crystal structure is further stabilized by hydrogen bonds.