metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Poly[[di-μ3-nicotinato-μ3-oxalato-samarium(III)silver(I)] dihydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China, and bCollege of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, People's Republic of China
*Correspondence e-mail: lfshjyu@scut.edu.cn

(Received 15 July 2009; accepted 13 August 2009; online 19 August 2009)

In the title three-dimensional heterometallic complex, {[AgSm(C6H4NO2)2(C2O4)]·2H2O}n, the SmIII ion is eight-coordinated by four O atoms from four different nicotinate ligands and four O atoms from two different oxalate ligands. The three-coordinate AgI ion is bonded to two N atoms from two different nicotinate anions and one O atom from an oxalate anion. These metal coordination units are connected by bridging nicotinate and oxalate ligands, generating a three-dimensional network. The uncoordinated water mol­ecules link the carboxyl­ate groups via O—H⋯O hydrogen bonding. The crystal structure is further stabilized by hydrogen bonds between the water mol­ecules.

Related literature

For theapplications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Kuang et al. (2007[Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.]); Luo et al. (2007[Luo, F., Hu, D.-X., Xue, L., Che, Y.-X. & Zheng, J.-M. (2007). Cryst. Growth Des. 7, 851-853.]); Peng et al. (2008[Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409-1411.]).

[Scheme 1]

Experimental

Crystal data
  • [AgSm(C6H4NO2)2(C2O4)]·2H2O

  • Mr = 626.49

  • Monoclinic, P 21 /c

  • a = 9.7145 (9) Å

  • b = 22.3444 (15) Å

  • c = 9.1726 (6) Å

  • β = 117.295 (1)°

  • V = 1769.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.45 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.374, Tmax = 0.429

  • 8972 measured reflections

  • 3171 independent reflections

  • 2995 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.052

  • S = 1.12

  • 3171 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O7i 0.86 2.10 2.960 (5) 175
O1W—H2W⋯O2W 0.86 2.06 2.892 (7) 161
O2W—H4W⋯O1Wi 0.87 1.92 2.780 (7) 171
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands have generated much interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Luo et al., 2007; Peng et al., 2008). As an extension of this research, we report here the structure of the title compound, a new heterometallic coordination polymer.

In the title compound (Fig. 1), there are one SmIII ion, one AgI ion, two halves of oxalate ligand, two nicotinate ligands, and two lattice water molecules in the asymmetric unit. Each SmIII ion is eight-coordinated by four O atoms from four different nicotinate ligands, and four O atoms of two different oxalate ligands. The Sm center can be described as having a bicapped trigonal prism coordination geometry. The three-coordinate AgI ion is bonded to two N atoms from two different nicotinate anions and one O atom from an oxalate anion. Thus the AgI ion is in a T-shaped configuration. These metal coordination units are connected by bridging nicotinate and oxalate ligands, generating a three-dimensional network (Fig. 2). The uncoordinated water molecules link the carboxylate groups by O—H···O hydrogen bonding (Table 1). The crystal structure is further stabilized by hydrogen bonds.

Related literature top

For theapplications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Luo et al. (2007); Peng et al. (2008).

Experimental top

A mixture of AgNO3 (0.057 g, 0.33 mmol), Sm2O3 (0.116 g, 0.33 mmol), nicotinic acid (0.164 g, 1.33 mmol), oxalic acid (0.119 g, 1.33 mmol), H2O (7 ml), and HClO4 (0.257 mmol)(pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms of water molecules were found from difference Fourier maps and included in the refinements with a restraint of O—H = 0.86 - 0.87 Å and Uiso(H) = 1.5 Ueq(O). The largest residual electron density in the final difference map was located at a distance of 0.82 Å from Ag2 atom and was meaningless.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes included in the atomic labels: (A) 2-x, 2-y, 1-z; (B) 1-x, 2-y, -z; (C) 1+x, y, z; (D) x, 1.5-y, -0.5+z; (E) 2-x, 0.5+y, 0.5-z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound; dotted lines denote hydrogen bonds.
Poly[[di-µ3-nicotinato-µ3-oxalato-samarium(III)silver(I)] dihydrate] top
Crystal data top
[AgSm(C6H4NO2)2(C2O4)]·2H2OF(000) = 1196
Mr = 626.49Dx = 2.352 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6346 reflections
a = 9.7145 (9) Åθ = 2.4–27.8°
b = 22.3444 (15) ŵ = 4.45 mm1
c = 9.1726 (6) ÅT = 296 K
β = 117.295 (1)°Block, colorless
V = 1769.4 (2) Å30.23 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3171 independent reflections
Radiation source: fine-focus sealed tube2995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 511
Tmin = 0.374, Tmax = 0.429k = 2626
8972 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0174P)2 + 1.7329P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.002
3171 reflectionsΔρmax = 0.84 e Å3
254 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00351 (16)
Crystal data top
[AgSm(C6H4NO2)2(C2O4)]·2H2OV = 1769.4 (2) Å3
Mr = 626.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7145 (9) ŵ = 4.45 mm1
b = 22.3444 (15) ÅT = 296 K
c = 9.1726 (6) Å0.23 × 0.20 × 0.19 mm
β = 117.295 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3171 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2995 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.429Rint = 0.027
8972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.12Δρmax = 0.84 e Å3
3171 reflectionsΔρmin = 0.65 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.85715 (2)0.991315 (8)0.11767 (2)0.01683 (8)
Ag20.82067 (4)0.852371 (14)0.48309 (5)0.04794 (12)
O10.8835 (3)0.94402 (11)0.3695 (3)0.0275 (6)
N10.6254 (4)0.88411 (15)0.5163 (4)0.0346 (8)
C40.3834 (4)0.93617 (16)0.4147 (4)0.0231 (8)
C30.4789 (5)0.88129 (19)0.6648 (5)0.0368 (10)
H30.46960.86810.75600.044*
C10.5154 (4)0.91951 (17)0.4047 (5)0.0291 (9)
H10.52910.93340.31660.035*
C20.6042 (5)0.86566 (19)0.6441 (5)0.0382 (10)
H20.67880.84100.72210.046*
C60.2586 (4)0.97226 (16)0.2811 (4)0.0222 (8)
C50.3662 (5)0.91690 (17)0.5490 (4)0.0293 (9)
H50.27950.92790.56080.035*
O30.2900 (3)0.99674 (11)0.1769 (3)0.0284 (6)
O20.1309 (3)0.97383 (13)0.2834 (3)0.0313 (6)
N20.9619 (4)0.78296 (14)0.4537 (4)0.0332 (8)
C70.9364 (4)0.72618 (16)0.4792 (5)0.0287 (8)
H70.86050.71840.51170.034*
C91.1309 (5)0.6899 (2)0.4136 (5)0.0390 (10)
H91.18760.65890.39940.047*
C81.0722 (5)0.79305 (19)0.4069 (5)0.0408 (10)
H81.09030.83220.38590.049*
O70.6156 (3)0.93618 (11)0.0496 (3)0.0253 (6)
C101.0169 (4)0.67816 (16)0.4599 (4)0.0239 (8)
C121.1588 (5)0.7483 (2)0.3889 (6)0.0490 (12)
H121.23650.75730.36000.059*
C130.9793 (4)0.96697 (16)0.5028 (4)0.0207 (7)
O81.0418 (3)0.94114 (11)0.6386 (3)0.0255 (6)
O60.3580 (3)0.94430 (11)0.0787 (3)0.0280 (6)
O1W0.6113 (6)0.69616 (19)0.5607 (5)0.0925 (14)
H1W0.61150.65760.56300.139*
H2W0.55510.70810.60530.139*
O2W0.4884 (7)0.7331 (2)0.7801 (6)0.1179 (19)
H3W0.40440.75080.71190.177*
H4W0.52260.75250.87200.177*
C110.9771 (4)0.61643 (15)0.4922 (4)0.0236 (8)
O40.8882 (3)0.61157 (11)0.5557 (3)0.0322 (6)
O51.0350 (3)0.57246 (12)0.4552 (3)0.0353 (7)
C140.4919 (4)0.96531 (16)0.0083 (4)0.0216 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.01410 (11)0.01776 (12)0.01771 (11)0.00069 (7)0.00649 (8)0.00163 (7)
Ag20.0358 (2)0.02335 (18)0.0903 (3)0.00795 (13)0.0338 (2)0.00929 (16)
O10.0327 (16)0.0290 (14)0.0187 (12)0.0129 (12)0.0100 (12)0.0031 (10)
N10.0243 (18)0.0306 (19)0.046 (2)0.0061 (14)0.0134 (16)0.0060 (15)
C40.021 (2)0.026 (2)0.0181 (17)0.0007 (15)0.0052 (15)0.0010 (14)
C30.044 (3)0.042 (3)0.024 (2)0.010 (2)0.0148 (19)0.0092 (17)
C10.023 (2)0.032 (2)0.032 (2)0.0064 (16)0.0126 (17)0.0080 (17)
C20.032 (3)0.037 (2)0.034 (2)0.0069 (19)0.005 (2)0.0100 (18)
C60.0167 (19)0.0244 (19)0.0190 (17)0.0007 (15)0.0027 (15)0.0008 (14)
C50.026 (2)0.035 (2)0.027 (2)0.0038 (17)0.0124 (17)0.0024 (17)
O30.0231 (15)0.0376 (16)0.0205 (13)0.0005 (11)0.0066 (11)0.0056 (11)
O20.0161 (14)0.0495 (17)0.0254 (14)0.0082 (12)0.0070 (11)0.0042 (12)
N20.0314 (19)0.0210 (17)0.048 (2)0.0001 (14)0.0188 (16)0.0057 (15)
C70.024 (2)0.023 (2)0.041 (2)0.0007 (16)0.0171 (18)0.0021 (16)
C90.036 (3)0.037 (3)0.053 (3)0.0067 (19)0.029 (2)0.005 (2)
C80.044 (3)0.031 (2)0.053 (3)0.0032 (19)0.026 (2)0.010 (2)
O70.0179 (14)0.0232 (13)0.0326 (14)0.0020 (11)0.0097 (11)0.0017 (11)
C100.022 (2)0.0234 (19)0.0251 (18)0.0017 (15)0.0098 (16)0.0018 (15)
C120.041 (3)0.051 (3)0.071 (3)0.002 (2)0.040 (3)0.011 (2)
C130.0181 (19)0.0234 (19)0.0239 (19)0.0007 (14)0.0126 (16)0.0006 (14)
O80.0291 (15)0.0218 (13)0.0221 (13)0.0012 (11)0.0088 (11)0.0022 (10)
O60.0179 (14)0.0271 (14)0.0371 (15)0.0011 (11)0.0109 (12)0.0066 (11)
O1W0.120 (4)0.060 (3)0.108 (3)0.008 (3)0.062 (3)0.012 (2)
O2W0.147 (5)0.100 (4)0.106 (4)0.027 (4)0.056 (4)0.012 (3)
C110.024 (2)0.0162 (18)0.0233 (18)0.0018 (14)0.0045 (16)0.0033 (14)
O40.0308 (16)0.0235 (14)0.0488 (17)0.0014 (11)0.0239 (14)0.0039 (12)
O50.0417 (18)0.0265 (15)0.0296 (14)0.0111 (12)0.0092 (13)0.0050 (11)
C140.021 (2)0.025 (2)0.0208 (18)0.0003 (15)0.0115 (16)0.0035 (14)
Geometric parameters (Å, º) top
Sm1—O5i2.340 (3)N2—C71.334 (5)
Sm1—O2ii2.414 (2)N2—C81.342 (5)
Sm1—O4iii2.420 (3)C7—C101.386 (5)
Sm1—O3iv2.424 (2)C7—H70.9300
Sm1—O6iv2.425 (2)C9—C121.372 (6)
Sm1—O12.444 (2)C9—C101.381 (5)
Sm1—O72.464 (2)C9—H90.9300
Sm1—O8v2.496 (2)C8—C121.366 (6)
Ag2—N22.168 (3)C8—H80.9300
Ag2—N12.174 (3)O7—C141.251 (4)
Ag2—O12.497 (2)C10—C111.498 (5)
O1—C131.257 (4)C12—H120.9300
N1—C21.344 (5)C13—O81.249 (4)
N1—C11.346 (5)C13—C13v1.537 (7)
C4—C11.378 (5)O8—Sm1v2.496 (2)
C4—C51.385 (5)O6—C141.249 (4)
C4—C61.504 (5)O6—Sm1iv2.425 (2)
C3—C21.361 (6)O1W—H1W0.8624
C3—C51.376 (5)O1W—H2W0.8612
C3—H30.9300O2W—H3W0.8629
C1—H10.9300O2W—H4W0.8667
C2—H20.9300C11—O41.249 (4)
C6—O21.251 (4)C11—O51.253 (4)
C6—O31.254 (4)O4—Sm1vii2.420 (3)
C5—H50.9300O5—Sm1viii2.340 (3)
O3—Sm1iv2.424 (2)C14—C14iv1.559 (7)
O2—Sm1vi2.414 (2)
O5i—Sm1—O2ii78.29 (10)N1—C2—C3123.2 (4)
O5i—Sm1—O4iii123.28 (10)N1—C2—H2118.4
O2ii—Sm1—O4iii76.96 (9)C3—C2—H2118.4
O5i—Sm1—O3iv73.05 (9)O2—C6—O3126.2 (3)
O2ii—Sm1—O3iv129.50 (9)O2—C6—C4115.9 (3)
O4iii—Sm1—O3iv85.19 (9)O3—C6—C4117.9 (3)
O5i—Sm1—O6iv88.09 (10)C3—C5—C4119.2 (4)
O2ii—Sm1—O6iv144.58 (9)C3—C5—H5120.4
O4iii—Sm1—O6iv136.12 (9)C4—C5—H5120.4
O3iv—Sm1—O6iv75.08 (9)C6—O3—Sm1iv132.3 (2)
O5i—Sm1—O1137.60 (8)C6—O2—Sm1vi143.9 (2)
O2ii—Sm1—O174.16 (9)C7—N2—C8117.1 (4)
O4iii—Sm1—O180.84 (9)C7—N2—Ag2118.6 (3)
O3iv—Sm1—O1148.63 (9)C8—N2—Ag2124.2 (3)
O6iv—Sm1—O196.06 (9)N2—C7—C10123.6 (4)
O5i—Sm1—O7144.52 (9)N2—C7—H7118.2
O2ii—Sm1—O7136.44 (9)C10—C7—H7118.2
O4iii—Sm1—O770.86 (9)C12—C9—C10118.5 (4)
O3iv—Sm1—O776.49 (9)C12—C9—H9120.7
O6iv—Sm1—O766.61 (8)C10—C9—H9120.7
O1—Sm1—O772.42 (8)N2—C8—C12122.8 (4)
O5i—Sm1—O8v75.15 (9)N2—C8—H8118.6
O2ii—Sm1—O8v70.51 (9)C12—C8—H8118.6
O4iii—Sm1—O8v138.13 (9)C14—O7—Sm1117.7 (2)
O3iv—Sm1—O8v136.13 (8)C9—C10—C7118.1 (4)
O6iv—Sm1—O8v74.44 (8)C9—C10—C11123.5 (3)
O1—Sm1—O8v65.62 (8)C7—C10—C11118.4 (3)
O7—Sm1—O8v117.85 (8)C8—C12—C9119.8 (4)
N2—Ag2—N1153.35 (12)C8—C12—H12120.1
N2—Ag2—O1104.18 (11)C9—C12—H12120.1
N1—Ag2—O1100.77 (11)O8—C13—O1125.9 (3)
C13—O1—Sm1116.9 (2)O8—C13—C13v117.5 (4)
C13—O1—Ag298.2 (2)O1—C13—C13v116.6 (4)
Sm1—O1—Ag2144.02 (10)C13—O8—Sm1v115.2 (2)
C2—N1—C1117.2 (4)C14—O6—Sm1iv118.5 (2)
C2—N1—Ag2120.9 (3)H1W—O1W—H2W106.9
C1—N1—Ag2121.7 (3)H3W—O2W—H4W106.8
C1—C4—C5118.1 (3)O4—C11—O5123.4 (3)
C1—C4—C6121.2 (3)O4—C11—C10118.0 (3)
C5—C4—C6120.7 (3)O5—C11—C10118.7 (3)
C2—C3—C5119.1 (4)C11—O4—Sm1vii112.3 (2)
C2—C3—H3120.5C11—O5—Sm1viii179.0 (3)
C5—C3—H3120.5O6—C14—O7126.5 (3)
N1—C1—C4123.1 (4)O6—C14—C14iv117.3 (4)
N1—C1—H1118.4O7—C14—C14iv116.2 (4)
C4—C1—H1118.4
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y+3/2, z1/2; (iv) x+1, y+2, z; (v) x+2, y+2, z+1; (vi) x1, y, z; (vii) x, y+3/2, z+1/2; (viii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O7vii0.862.102.960 (5)175
O1W—H2W···O2W0.862.062.892 (7)161
O2W—H4W···O1Wvii0.871.922.780 (7)171
Symmetry code: (vii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[AgSm(C6H4NO2)2(C2O4)]·2H2O
Mr626.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.7145 (9), 22.3444 (15), 9.1726 (6)
β (°) 117.295 (1)
V3)1769.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.45
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.374, 0.429
No. of measured, independent and
observed [I > 2σ(I)] reflections
8972, 3171, 2995
Rint0.027
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.12
No. of reflections3171
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.65

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O7i0.862.102.960 (5)175
O1W—H2W···O2W0.862.062.892 (7)161
O2W—H4W···O1Wi0.871.922.780 (7)171
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuo, F., Hu, D.-X., Xue, L., Che, Y.-X. & Zheng, J.-M. (2007). Cryst. Growth Des. 7, 851–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409–1411.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds