organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-7-Bromo-2,3,4,4a-tetra­hydro-1H-xanthen-1-one

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: xiaaibao1983@163.com

(Received 20 July 2009; accepted 30 July 2009; online 8 August 2009)

The title compound, C13H11BrO2, contains a tricyclic ring system with one chiral center which exhibits an R configuration. The crystal structure is devoid of any classical hydrogen bonding.

Related literature

For related structures, see: Shi et al. (2004[Shi, G.-F., Lu, R.-H., Yang, Y.-S., Li, C.-L., Yang, A.-M. & Cai, L.-X. (2004). Acta Cryst. E60, o878-o880.]); Ndjakou Lenta et al. (2007[Ndjakou Lenta, B., Devkota, K. P., Neumann, B., Tsamo, E. & Sewald, N. (2007). Acta Cryst. E63, o1629-o1631.]). Domino or cascade reactions allow, in principle, the formation of multiple new bonds and stereocenters in a one-pot system, see: Enders et al. (2007[Enders, D., Grondal, C. & Huttl, M. R. M. (2007). Angew. Chem. Int. Ed. 46, 1570-1581.]); Yu & Wang (2002[Yu, X. & Wang, W. (2002). Org. Biomol. Chem. 6, 2037-2046. ]).

[Scheme 1]

Experimental

Crystal data
  • C13H11BrO2

  • Mr = 279.13

  • Monoclinic, P 21

  • a = 7.5419 (4) Å

  • b = 6.9039 (3) Å

  • c = 10.7634 (5) Å

  • β = 93.7110 (12)°

  • V = 559.26 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.67 mm−1

  • T = 296 K

  • 0.40 × 0.37 × 0.26 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.252, Tmax = 0.386

  • 5496 measured reflections

  • 2525 independent reflections

  • 1772 reflections with F2 > 2σ(F2)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.102

  • S = 1.00

  • 2525 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.88 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1145 Friedel pairs

  • Flack parameter: 0.01 (2)

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2007[Rigaku/MSC and Rigaku (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There has been growing interest in the study of domino or cascade reaction as it allows in principle the formation of multiple new bonds and stereocenters in one-pot system (Enders et al., 2007; Yu & Wang, 2002). Consequently, the title compound, (I), was synthesized as one of a series of oxa-Michael-aldol products under investigation. In this paper, the absolute configuration and crystal structure of (I) has been presented.

The title compound is shown in Fig. 1. One of the three fused rings in (I), the cyclohexanone ring (C1/C/C3/C4/C5/C13) adopts a distorted chair conformation while the ring O2/C5/C6/C11/C12/C13 is in a distorted half chair conformation. The bromophenyl ring (C6—C11/Br) is essentially planar as expected. The crystal structure is devoid of any classical hydrogen bonding. The crystal structures of closely related compound to (I) have been reported (Shi et al., 2004; Ndjakou Lenta et al., 2007).

ADDSYM in PLATON (Spek, 2009) suggested a pseudo mirror plane in the structure and P21/m as the alternate space group requiring all the atoms of the title compound to be coplanar with the atom, C2–C5 Sp2 hybridized which contravenes the true structure of the title compound.

Related literature top

For related structures, see: Shi et al. (2004); Ndjakou Lenta et al. (2007). Domino or cascade reactions allow, in principle, the formation of multiple new bonds and stereocenters in a one-pot system, see: Enders et al. (2007); Yu & Wang (2002).

Experimental top

A 1,4-dioxane (1 ml) solution of alicylic aldehyde (1 mmol) and cyclohex-2-enone (3.5 mmol) in the presence of (S)-1-methyl-2-(pyrrolidin-2-ylmethylthio)-1H-imidazole (0.3 mmol) as amine catalyst and benzoic acid (0.3 mmol) as additive was stirred at room temperature for 72 hrs. After completion of the reaction, the mixture was washed with water and extracted with ethyl acetate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography using petroleum ether-aether (2:1)) as an eluent. Single crystals of the title compound were obtained by slow evaporation of an acetone solution.

Refinement top

An absolute structure of (I) was determined by the Flack (1983) method without merging Friedel Pairs (1145) of reflections. H atoms were placed in calculated positions with in riding mode with C—H distances 0.93, 0.97 and 0.98 Å, for aryl, methylene and methine H-atoms; Uiso(H) = 1.2Ueq of the carrier atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC and Rigaku, 2007) and PLATON Spek (2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound.
(R)-7-Bromo-2,3,4,4a-tetrahydro-1H-xanthen-1-one top
Crystal data top
C13H11BrO2F(000) = 280.00
Mr = 279.13Dx = 1.657 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 4299 reflections
a = 7.5419 (4) Åθ = 3.2–27.4°
b = 6.9039 (3) ŵ = 3.67 mm1
c = 10.7634 (5) ÅT = 296 K
β = 93.7110 (12)°Chunk, yellow
V = 559.26 (5) Å30.40 × 0.37 × 0.26 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1772 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.036
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.252, Tmax = 0.386k = 88
5496 measured reflectionsl = 1213
2525 independent reflections
Refinement top
Refinement on F2(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.033Δρmax = 0.64 e Å3
wR(F2) = 0.102Δρmin = 0.88 e Å3
S = 1.00Extinction correction: SHELXL97 (Sheldrick, 2008)
2525 reflectionsExtinction coefficient: 0.035 (3)
147 parametersAbsolute structure: Flack (1983), 1145 Friedel pairs
H-atom parameters constrainedAbsolute structure parameter: 0.01 (2)
w = 1/[σ2(Fo2) + (0.02P)2 + P]
where P = (Fo2 + 2Fc2)/3
Crystal data top
C13H11BrO2V = 559.26 (5) Å3
Mr = 279.13Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.5419 (4) ŵ = 3.67 mm1
b = 6.9039 (3) ÅT = 296 K
c = 10.7634 (5) Å0.40 × 0.37 × 0.26 mm
β = 93.7110 (12)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2525 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1772 reflections with F2 > 2σ(F2)
Tmin = 0.252, Tmax = 0.386Rint = 0.036
5496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.64 e Å3
S = 1.00Δρmin = 0.88 e Å3
2525 reflectionsAbsolute structure: Flack (1983), 1145 Friedel pairs
147 parametersAbsolute structure parameter: 0.01 (2)
Special details top

Experimental. The structure of the title compound was confirmed by NMR and HRMS methods: 1HNMR (500 MHz, CDCl3): 7.33–7.31(m, 3H), 6.77–6.75(d, J=9.5 Hz,1H),5.00–4.97(m, 1H),2.62–2.58 (m, 1H), 2.51–2.46(m, 1H),2.42–2.35(m, 1H),2.13–2.07(m, 1H),2.04–1.96 (m, 1H), 1.75–1.65(m, 1H) p.p.m.; 13CNMR (125 MHz, CDCl3): 197.1, 154.8, 134.4, 131.8, 131.4, 129.9, 123.9, 117.8, 114.0, 74.8, 38.8, 29.6, 17.9 p.p.m.. HRMS: (EI+) m/z calcd for (C13H11BrO2)+ 277.9942, found 277.9949.

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.96613 (6)0.67049 (12)0.66752 (4)0.0633 (2)
O10.5964 (5)0.6274 (8)0.0423 (3)0.0656 (16)
O20.2944 (3)0.6625 (11)0.3348 (2)0.0473 (7)
C10.4600 (6)0.6384 (11)0.0116 (4)0.0505 (16)
C20.2803 (7)0.6187 (12)0.0570 (4)0.063 (2)
C30.1314 (6)0.7222 (8)0.0028 (4)0.0557 (18)
C40.1286 (5)0.6734 (16)0.1395 (3)0.0519 (11)
C50.2999 (6)0.7335 (7)0.2089 (4)0.0440 (13)
C60.4495 (4)0.6742 (14)0.4075 (3)0.0401 (8)
C70.4396 (5)0.6820 (14)0.5352 (3)0.0434 (10)
C80.5937 (5)0.6827 (14)0.6123 (3)0.0454 (11)
C90.7562 (5)0.6759 (14)0.5602 (3)0.0412 (9)
C100.7694 (5)0.6637 (16)0.4334 (3)0.0425 (9)
C110.6136 (4)0.6623 (14)0.3548 (3)0.0393 (8)
C120.6132 (5)0.6402 (11)0.2208 (4)0.0447 (15)
C130.4640 (4)0.6636 (15)0.1494 (3)0.0413 (9)
H50.30340.87530.21170.053*
H70.32940.68680.56920.052*
H80.58790.68770.69830.054*
H100.88010.65640.40040.051*
H120.71810.60950.18440.054*
H210.25090.48200.06220.075*
H220.28830.67050.14020.075*
H310.01910.68410.03910.067*
H320.14750.86090.00600.067*
H410.03040.74080.17420.062*
H420.11290.53470.14860.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0439 (2)0.0990 (4)0.0455 (2)0.0020 (5)0.00874 (17)0.0000 (5)
O10.062 (2)0.095 (5)0.0402 (16)0.016 (2)0.0060 (15)0.009 (2)
O20.0289 (13)0.070 (2)0.0433 (14)0.006 (3)0.0015 (10)0.005 (3)
C10.053 (2)0.056 (4)0.042 (2)0.012 (3)0.0026 (19)0.005 (2)
C20.063 (3)0.079 (7)0.043 (2)0.004 (3)0.015 (2)0.003 (3)
C30.044 (2)0.073 (5)0.048 (2)0.003 (2)0.012 (2)0.009 (2)
C40.035 (2)0.065 (3)0.056 (2)0.011 (5)0.0060 (17)0.009 (5)
C50.038 (2)0.054 (3)0.039 (2)0.000 (2)0.0029 (18)0.004 (2)
C60.0311 (18)0.045 (2)0.0437 (19)0.001 (3)0.0006 (14)0.007 (4)
C70.037 (2)0.053 (2)0.041 (2)0.000 (3)0.0100 (15)0.006 (3)
C80.047 (2)0.053 (3)0.0361 (19)0.002 (3)0.0038 (16)0.005 (3)
C90.0362 (19)0.047 (2)0.0400 (19)0.003 (4)0.0060 (14)0.005 (4)
C100.0340 (19)0.056 (2)0.0378 (18)0.001 (4)0.0050 (14)0.000 (4)
C110.0359 (19)0.044 (2)0.0376 (18)0.002 (3)0.0014 (14)0.005 (4)
C120.034 (2)0.058 (4)0.042 (2)0.006 (2)0.0051 (15)0.005 (3)
C130.040 (2)0.045 (2)0.0385 (19)0.001 (4)0.0004 (15)0.001 (4)
Geometric parameters (Å, º) top
Br1—C91.899 (3)C10—C111.403 (5)
O1—C11.215 (6)C11—C121.450 (5)
O2—C51.444 (5)C12—C131.330 (5)
O2—C61.367 (4)C2—H210.970
C1—C21.507 (7)C2—H220.970
C1—C131.492 (6)C3—H310.970
C2—C31.510 (8)C3—H320.970
C3—C41.511 (6)C4—H410.970
C4—C51.508 (6)C4—H420.970
C5—C131.509 (6)C5—H50.980
C6—C71.382 (5)C7—H70.930
C6—C111.397 (5)C8—H80.930
C7—C81.384 (5)C10—H100.930
C8—C91.381 (5)C12—H120.930
C9—C101.377 (5)
C5—O2—C6116.2 (3)C1—C2—H21108.1
O1—C1—C2121.5 (4)C1—C2—H22108.1
O1—C1—C13121.2 (4)C3—C2—H21108.1
C2—C1—C13117.2 (4)C3—C2—H22108.1
C1—C2—C3114.7 (4)H21—C2—H22109.5
C2—C3—C4111.5 (5)C2—C3—H31109.0
C3—C4—C5110.8 (4)C2—C3—H32109.0
O2—C5—C4107.2 (4)C4—C3—H31109.0
O2—C5—C13111.3 (4)C4—C3—H32109.0
C4—C5—C13113.7 (4)H31—C3—H32109.5
O2—C6—C7118.2 (3)C3—C4—H41109.1
O2—C6—C11120.8 (3)C3—C4—H42109.1
C7—C6—C11120.8 (3)C5—C4—H41109.1
C6—C7—C8120.0 (3)C5—C4—H42109.1
C7—C8—C9119.2 (3)H41—C4—H42109.5
Br1—C9—C8118.7 (2)O2—C5—H5108.1
Br1—C9—C10119.4 (2)C4—C5—H5108.1
C8—C9—C10121.8 (3)C13—C5—H5108.1
C9—C10—C11119.1 (3)C6—C7—H7120.0
C6—C11—C10119.0 (3)C8—C7—H7120.0
C6—C11—C12117.7 (3)C7—C8—H8120.4
C10—C11—C12123.3 (3)C9—C8—H8120.4
C11—C12—C13120.6 (4)C9—C10—H10120.4
C1—C13—C5119.6 (3)C11—C10—H10120.4
C1—C13—C12121.5 (4)C11—C12—H12119.7
C5—C13—C12118.7 (3)C13—C12—H12119.7
C5—O2—C6—C7155.2 (7)O2—C6—C7—C8176.3 (8)
C5—O2—C6—C1130.1 (12)O2—C6—C11—C10176.4 (9)
C6—O2—C5—C4169.6 (7)O2—C6—C11—C121.0 (13)
C6—O2—C5—C1344.7 (8)C7—C6—C11—C101.8 (14)
O1—C1—C2—C3153.0 (6)C7—C6—C11—C12175.6 (8)
O1—C1—C13—C5162.5 (7)C11—C6—C7—C81.6 (14)
O1—C1—C13—C1212.2 (13)C6—C7—C8—C90.1 (12)
C2—C1—C13—C520.1 (11)C7—C8—C9—Br1178.5 (7)
C2—C1—C13—C12165.2 (8)C7—C8—C9—C101.6 (15)
C13—C1—C2—C329.6 (9)Br1—C9—C10—C11178.2 (7)
C1—C2—C3—C450.2 (8)C8—C9—C10—C111.4 (15)
C2—C3—C4—C560.7 (8)C9—C10—C11—C60.3 (11)
C3—C4—C5—O2173.7 (6)C9—C10—C11—C12176.9 (9)
C3—C4—C5—C1350.2 (9)C6—C11—C12—C1311.1 (13)
O2—C5—C13—C1151.9 (7)C10—C11—C12—C13171.7 (9)
O2—C5—C13—C1233.3 (10)C11—C12—C13—C1179.0 (8)
C4—C5—C13—C130.7 (10)C11—C12—C13—C56.3 (12)
C4—C5—C13—C12154.5 (8)

Experimental details

Crystal data
Chemical formulaC13H11BrO2
Mr279.13
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.5419 (4), 6.9039 (3), 10.7634 (5)
β (°) 93.7110 (12)
V3)559.26 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.67
Crystal size (mm)0.40 × 0.37 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.252, 0.386
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
5496, 2525, 1772
Rint0.036
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.102, 1.00
No. of reflections2525
No. of parameters147
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.88
Absolute structureFlack (1983), 1145 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: PROCESS-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), CrystalStructure (Rigaku/MSC and Rigaku, 2007) and PLATON Spek (2009).

 

Acknowledgements

We acknowledge the help of Professor Jian-Ming Gu of Zhejiang University.

References

First citationEnders, D., Grondal, C. & Huttl, M. R. M. (2007). Angew. Chem. Int. Ed. 46, 1570–1581.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNdjakou Lenta, B., Devkota, K. P., Neumann, B., Tsamo, E. & Sewald, N. (2007). Acta Cryst. E63, o1629–o1631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC and Rigaku (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, G.-F., Lu, R.-H., Yang, Y.-S., Li, C.-L., Yang, A.-M. & Cai, L.-X. (2004). Acta Cryst. E60, o878–o880.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, X. & Wang, W. (2002). Org. Biomol. Chem. 6, 2037–2046.   Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds