metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[copper(II)-di-μ-dicyan­amido-μ-1,3-di-4-pyridylpropane]

aInstitute of Science and Technology, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: zjf260@ujs.edu.cn

(Received 22 July 2009; accepted 29 July 2009; online 8 August 2009)

In the title compound, [Cu(C2N3)2(C13H14N2)]n, the CuII atom, located on an inversion centre, adopts a distorted octa­hedral coordination by six N atoms, two from 1,3-di-4-pyridylpropane and four from dicyanamide ligands, with significantly different Cu—N distances. The metal centres are linked in an unusual triple-bridged mode into chains parallel to [101].

Related literature

For the architectures and topologies of metal-organic compounds, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]). For their potential applications, see: Zhang et al. (2007[Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.]); Banerjee et al. (2008[Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939-943.]). For compounds constructed in single or double-bridged modes, see: Zhang et al. (2008[Zhang, J. F., Song, Y. L., Yang, J. Y., Humphrey, M. G. & Zhang, C. (2008). Cryst. Growth Des. 8, 387-390.]); Lang et al. (2004[Lang, J. P., Xu, Q. F., Yuan, R. X. & Abrahams, B. F. (2004). Angew. Chem. Int. Ed. 43, 4741-4745.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2N3)2(C13H14N2)]

  • Mr = 393.91

  • Monoclinic, C 2/c

  • a = 16.097 (3) Å

  • b = 10.163 (2) Å

  • c = 12.920 (3) Å

  • β = 123.10 (3)°

  • V = 1770.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.882

  • 4144 measured reflections

  • 1713 independent reflections

  • 1490 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.154

  • S = 1.09

  • 1713 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.027 (3)
Cu1—N4 2.031 (4)
Cu1—N2 2.388 (5)

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and syntheses of metal-organic compounds have attracted great attention in recent years because of not only their intriguing architectures and topologies (Eddaoudi et al., 2001) but also due to their potential applications (Banerjee et al., 2008; Zhang et al., 2007). The flexible bridging ligands can construct metal-organic frameworks with various structures. The tilte compound, (I), was constructed by two kinds of flexible bridging ligands through diffusion reactions of copper(II) nitrate trihydrate, sodium dicyanamide and 1,3-di-4-pyridylpropane which were self-assembled to form a one-dimensional neutral metal-organic compound. In this paper, the crystal structure of (I) is presented.

As illustrated in Fig. 1, Cu2+ adopts a distorted octahedral geometry, generated by six nitrogen atoms two from 1,3-di-4-pyridylpropane (bpp) and four from dicyanamide (dca) ligands, Interestingly, the distance Cu1—N2 ([2.388 (5) Å) is significantly longer than those of Cu1—N1 (2.027 (3) Å) and Cu1—N4 (2.031 (4) Å).

Two neighboring Cu atoms are linked by one bpp and two dca ligangs forming a one-dimensional neutral chain in a triple-bridged mode. Compared to single or double-bridged modes (Zhang et al., 2008; Lang et al., 2004), this triple-bridged mode is unfamiliar in coordination compounds.

Related literature top

For the architectures and topologies of metal-organic compounds, see: Eddaoudi et al. (2001). For their potential applications, see: Zhang et al. (2007); Banerjee et al. 2008. For compounds constructed in single or double-bridged modes, see: Zhang et al. (2008); Lang et al. (2004).

Experimental top

Cu(NO3)2.3H2O (96.6 mg, 0.4 mmol) was added to 2 ml H2O with thorough stirring for 5 minutes and filtered. The blue filtrate was carefully laid on the surface of a solution of bpp (99.1 mg, 0.5 mmol) and NaN(CN)2 (89.1 mg, 1 mmol) in 4 ml i-PrOH and 2 ml H2O. Blue block crystals were obtained after five days.

Refinement top

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.2Ueq for methylene and pyridyl H atoms, the C—H bonds are 0.97 Å and 0.93 Å in methylene and pyridyl groups, respectively.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atomic labels and 30% probability displacement ellipsoids; H atoms have been omitted for clarity.
catena-Poly[copper(II)-di-µ-dicyanamido-µ-1,3-di-4-pyridylpropane] top
Crystal data top
[Cu(C2N3)2(C13H14N2)]F(000) = 804
Mr = 393.91Dx = 1.478 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3458 reflections
a = 16.097 (3) Åθ = 2.6–29.1°
b = 10.163 (2) ŵ = 1.25 mm1
c = 12.920 (3) ÅT = 293 K
β = 123.10 (3)°Block, blue
V = 1770.6 (6) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
1713 independent reflections
Radiation source: fine-focus sealed tube1490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
dtprofit.ref scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1915
Tmin = 0.798, Tmax = 0.882k = 1212
4144 measured reflectionsl = 1215
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0663P)2 + 4.1353P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1713 reflectionsΔρmax = 0.42 e Å3
121 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (8)
Crystal data top
[Cu(C2N3)2(C13H14N2)]V = 1770.6 (6) Å3
Mr = 393.91Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.097 (3) ŵ = 1.25 mm1
b = 10.163 (2) ÅT = 293 K
c = 12.920 (3) Å0.20 × 0.15 × 0.10 mm
β = 123.10 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
1713 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1490 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.882Rint = 0.027
4144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.09Δρmax = 0.42 e Å3
1713 reflectionsΔρmin = 0.32 e Å3
121 parameters
Special details top

Experimental. Yield: 82.1 mg in pure form, 52.1% based on Cu. Analysis calculated for C17H14CuN8: C 51.83, H 3.58, N 28.45%; found: C 51.72, H 3.45, N 28.61%. IR: ν, cm-1,2182 s, 1606 s, 1424 s, 809 s.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.25000.25000.00000.0533 (3)
N10.3080 (2)0.4314 (3)0.0637 (3)0.0568 (8)
N20.1117 (3)0.3051 (5)0.0129 (5)0.0969 (16)
N30.0582 (3)0.3715 (6)0.1106 (4)0.1082 (19)
N40.3218 (3)0.1822 (4)0.1764 (4)0.0835 (13)
C10.50000.8653 (7)0.25000.166 (6)
H1A0.51170.92400.20010.199*0.50
H1B0.48830.92400.29990.199*0.50
C20.0327 (3)0.3341 (4)0.0500 (4)0.0614 (11)
C40.3810 (3)0.1618 (4)0.2776 (4)0.0635 (11)
C50.3299 (4)0.6216 (5)0.1826 (5)0.0795 (14)
H50.32030.66240.23980.095*
C60.2971 (3)0.4963 (5)0.1450 (4)0.0680 (12)
H60.26530.45390.17780.082*
C70.3545 (3)0.4953 (5)0.0197 (4)0.0681 (12)
H70.36390.45200.03650.082*
C80.3770 (3)0.6876 (5)0.1364 (5)0.0771 (15)
C90.4068 (4)0.8298 (5)0.1660 (6)0.101 (2)
H9A0.38840.87230.08910.121*
H9B0.36550.86810.19150.121*
C30.3891 (4)0.6210 (5)0.0527 (5)0.0757 (13)
H30.42070.66150.01870.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0436 (4)0.0493 (5)0.0453 (5)0.0036 (3)0.0103 (3)0.0012 (3)
N10.0464 (17)0.0520 (18)0.0527 (19)0.0028 (15)0.0146 (16)0.0036 (16)
N20.056 (2)0.078 (3)0.097 (3)0.005 (2)0.004 (2)0.013 (3)
N30.068 (3)0.161 (5)0.068 (3)0.028 (3)0.019 (2)0.032 (3)
N40.060 (2)0.071 (3)0.068 (3)0.002 (2)0.002 (2)0.004 (2)
C10.074 (5)0.040 (4)0.226 (12)0.0000.019 (7)0.000
C20.058 (3)0.058 (2)0.049 (2)0.001 (2)0.017 (2)0.001 (2)
C40.050 (2)0.061 (3)0.060 (3)0.004 (2)0.018 (2)0.001 (2)
C50.062 (3)0.071 (3)0.080 (3)0.002 (2)0.023 (3)0.026 (3)
C60.061 (2)0.069 (3)0.065 (3)0.007 (2)0.028 (2)0.013 (2)
C70.070 (3)0.063 (3)0.064 (3)0.006 (2)0.031 (2)0.005 (2)
C80.047 (2)0.049 (3)0.087 (3)0.000 (2)0.006 (2)0.005 (3)
C90.071 (3)0.049 (3)0.120 (5)0.003 (2)0.011 (3)0.014 (3)
C30.068 (3)0.058 (3)0.086 (3)0.015 (2)0.033 (3)0.001 (3)
Geometric parameters (Å, º) top
Cu1—N1i2.027 (3)C1—H1A0.9700
Cu1—N12.027 (3)C1—H1B0.9700
Cu1—N42.031 (4)C4—N3iv1.270 (6)
Cu1—N4i2.031 (4)C5—C61.363 (7)
Cu1—N22.388 (5)C5—C81.370 (8)
Cu1—N2i2.388 (5)C5—H50.9300
N1—C71.330 (6)C6—H60.9300
N1—C61.331 (5)C7—C31.366 (7)
N2—C21.112 (6)C7—H70.9300
N3—C4ii1.270 (6)C8—C31.376 (8)
N3—C21.283 (6)C8—C91.505 (7)
N4—C41.141 (6)C9—H9A0.9700
C1—C9iii1.335 (6)C9—H9B0.9700
C1—C91.335 (6)C3—H30.9300
N1i—Cu1—N1180.00 (8)C9—C1—H1B99.6
N1i—Cu1—N490.06 (16)H1A—C1—H1B104.1
N1—Cu1—N489.94 (16)N2—C2—N3172.9 (6)
N1i—Cu1—N4i89.94 (16)N4—C4—N3iv174.1 (6)
N1—Cu1—N4i90.06 (16)C6—C5—C8120.0 (5)
N4—Cu1—N4i180.0 (2)C6—C5—H5120.0
N1i—Cu1—N290.08 (16)C8—C5—H5120.0
N1—Cu1—N289.92 (16)N1—C6—C5123.6 (5)
N4—Cu1—N288.97 (19)N1—C6—H6118.2
N4i—Cu1—N291.03 (19)C5—C6—H6118.2
N1i—Cu1—N2i89.92 (16)N1—C7—C3123.5 (5)
N1—Cu1—N2i90.08 (16)N1—C7—H7118.2
N4—Cu1—N2i91.03 (19)C3—C7—H7118.2
N4i—Cu1—N2i88.97 (19)C5—C8—C3116.9 (4)
N2—Cu1—N2i180.0 (2)C5—C8—C9122.3 (5)
C7—N1—C6116.3 (4)C3—C8—C9120.7 (6)
C7—N1—Cu1120.8 (3)C1—C9—C8121.8 (5)
C6—N1—Cu1122.8 (3)C1—C9—H9A106.9
C2—N2—Cu1138.5 (5)C8—C9—H9A106.9
C4ii—N3—C2121.9 (5)C1—C9—H9B106.9
C4—N4—Cu1162.8 (4)C8—C9—H9B106.9
C9iii—C1—C9148.6 (8)H9A—C9—H9B106.7
C9iii—C1—H1A99.6C7—C3—C8119.8 (5)
C9—C1—H1A99.6C7—C3—H3120.1
C9iii—C1—H1B99.6C8—C3—H3120.1
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C2N3)2(C13H14N2)]
Mr393.91
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.097 (3), 10.163 (2), 12.920 (3)
β (°) 123.10 (3)
V3)1770.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
4144, 1713, 1490
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.154, 1.09
No. of reflections1713
No. of parameters121
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.32

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.027 (3)Cu1—N22.388 (5)
Cu1—N42.031 (4)
 

Acknowledgements

This work is supported by the Foundation of Jiangsu University (08JDG036).

References

First citationBanerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939–943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLang, J. P., Xu, Q. F., Yuan, R. X. & Abrahams, B. F. (2004). Angew. Chem. Int. Ed. 43, 4741–4745.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111–141.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J. F., Song, Y. L., Yang, J. Y., Humphrey, M. G. & Zhang, C. (2008). Cryst. Growth Des. 8, 387–390.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds