organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-chloro-2-hydr­­oxy-3-(4-meth­oxy­phen­yl)-4,6-di­methyl­benzoate

aGomal University, Department of Chemistry, Dera Ismail Khan (NWFP), Pakistan, bUniversität Rostock, Institut für Chemie, Abteilung für Anorganische Chemie, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany, and cLeibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: muhammad_adeel2000@yahoo.com

(Received 23 July 2009; accepted 11 August 2009; online 19 August 2009)

In the title compound, C17H17ClO4, the dihedral angle between the mean planes of the two benzene rings is 65.92 (5)°. The methyl ester group lies within the ring plane [deviations of O atoms from the plane = −0.051 (2) and 0.151 (2) Å] due to an intra­molecular O—H⋯O hydrogen bond. In the crystal, mol­ecules are held together by rather weak non-classical inter­molecular C—H⋯O hydrogen bonds, resulting in dimeric units about inversion centers, forming eight- and ten-membered ring systems as R22(8) and R22(10) motifs.

Related literature

For the pharmacological relevance of 3-aryl­salicylates, see: Buchanan et al. (1997[Buchanan, M. S., Gill, M. & Yu, J. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 919-926.]); Huang et al. (1999[Huang, P.-L., Won, S.-J., Day, S.-H. & Lin, C.-N. (1999). Helv. Chim. Acta, 82, 1716-1720.]); Lin, Lin & Kuo (1997[Lin, Y.-L., Lin, T.-C. & Kuo, Y.-H. (1997). J. Nat. Prod. 60, 368-370.]); Lin, Wu & Kuo (1997[Lin, Y.-L., Wu, Y.-M. & Kuo, Y.-H. (1997). Phytochemistry, 45, 1057-1061.]). For the synthesis, see: Adeel et al. (2009[Adeel, M., Rashid, M. A., Rasool, N., Ahmad, R., Villinger, A., Reinke, H., Fischer, C. & Langer, P. (2009). Synthesis, pp. 243-250.]); For hydrogen-bond motifs, see: Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17ClO4

  • Mr = 320.76

  • Triclinic, [P \overline 1]

  • a = 6.534 (4) Å

  • b = 9.574 (6) Å

  • c = 12.694 (8) Å

  • α = 97.420 (15)°

  • β = 100.56 (2)°

  • γ = 96.042 (14)°

  • V = 767.3 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.55 × 0.27 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.868, Tmax = 0.997

  • 14947 measured reflections

  • 3964 independent reflections

  • 3091 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.125

  • S = 1.09

  • 3964 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.94 (2) 1.63 (2) 2.5061 (18) 153 (2)
C10—H10A⋯Cl1 0.98 2.45 3.003 (2) 115
C9—H9A⋯O2i 0.98 2.73 3.242 (3) 113
C15—H15⋯O4ii 0.95 2.50 3.437 (2) 170
Symmetry codes: (i) -x-1, -y+2, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Functionalized biaryls containing a 3-arylsalicylate substructure occur in a variety of pharmacologically relevant natural products. The simple biaryls cynandione A—C have been isolated from many plant sources and show a considerable in vitro activity against hepatocytes, human bladder carcinoma T-24 cells, epidermoid carcinoma KB cells, and human hepatoma PLC/PRF/5 cells. For data on the pharmacological relevance of 3-arylsalicylates, see: Buchanan et al., (1997), Huang et al., (1999), Lin, Lin & Kuo (1997) and Lin, Wu & Kuo (1997). The sterically encumbered and functionalized biaryl, the title compound (I), was synthesized from 4-(4-methoxyphenyl)-1,3-bis(trimethylsilyloxy)-1,3-butadiene which is not readily available by other methods. In this paper, the crystal structure of (I) has been presented.

In the title compound (Fig. 1), the the dihedral angle between the mean planes of the two benzene rings is 65.92 (5)°. The methoxy group and the methylester group lie within the planes of the benzene rings to which they are bonded (deviation from mean planes: O2, -0.051 (2); O3, 0.151 (2); (??), 0.143 (2) Å; the torsion angles are: C2—C3—C8—O2 -174.47 (12) and C17—O4—C14—C15 -176.38 (12)°). There is an intramolecular hydrogen bond between the hydroxyl group and the carbonyl O atom of the methylester group. There are weak intramolecular interactions of the types C—H···O between atom O3 of the ester group and the adjacent methyl group (C10) and C—H···Cl between Cl1 and the adjacent methyl groups (C7/C10).

In the crystal structure, the molecules of (I) are held together by rather weak intermolecular C—H···O type non-classical hydrogen bonds resulting in dimeric units about inversion centers, forming eight and ten membered ring systems which may be described in terms of graph set notations (Bernstein et al. 1994) as R22(8) and R22(10) motifs for the hydrogen bonds: C15–H15···O4ii and C9–H9A···O2i, respectively (details are given in Table 1 and Figure 2); leading to a zigzag chain arrangement.

Related literature top

For the pharmacological relevance of 3-arylsalicylates, see: Buchanan et al. (1997); Huang et al. (1999); Lin, Lin & Kuo (1997); Lin, Wu & Kuo (1997). For the synthesis, see: Adeel et al. (2009); For hydrogen-bond motifs, see: Bernstein et al. (1994).

Experimental top

The title compound was prepared according to a previously published procedure (Adeel et al., 2009) using 3-chloro-4-trimethylsiloxy-pent-3-en-2-one (450 mg, 2.2 mmol), 4-(4-methoxyphenyl)-1,3-bis(silyloxy)-1,3-diene (806 mg, 2.2 mmol), and TiCl4 (0.241 ml, 2.2 mmol). (I) was isolated as a colourless crystalline solid. Re-crystallization from a saturated dichloromethane/methanol (9:1) solution at ambient temperature gave colourless crystals suitable for crystallographic studies.

Refinement top

The H atom bonded to O1 was located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (methyl groups) or 0.95 Å (aryl CH) and with Uiso(H) = 1.5 times Ueq(C) (methyl groups) or with Uiso(H) = 1.2 times Ueq(C) (aryl CH). Torsion angles of all methyl groups were allowed to refine.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the packing diagram of (I). Unique O—H···O, C—H···O and C—H···Cl interactions represented by dashed lines are shown.
Methyl 5-chloro-2-hydroxy-3-(4-methoxyphenyl)-4,6-dimethylbenzoate top
Crystal data top
C17H17ClO4Z = 2
Mr = 320.76F(000) = 336
Triclinic, P1Dx = 1.388 Mg m3
Hall symbol: -P 1Melting point: 367 K
a = 6.534 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.574 (6) ÅCell parameters from 7750 reflections
c = 12.694 (8) Åθ = 6.4–59.5°
α = 97.420 (15)°µ = 0.26 mm1
β = 100.56 (2)°T = 173 K
γ = 96.042 (14)°Plate, colourless
V = 767.3 (8) Å30.55 × 0.27 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
3964 independent reflections
Radiation source: sealed tube3091 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 29.0°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 88
Tmin = 0.868, Tmax = 0.997k = 1313
14947 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.073P)2 + 0.0592P]
where P = (Fo2 + 2Fc2)/3
3964 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H17ClO4γ = 96.042 (14)°
Mr = 320.76V = 767.3 (8) Å3
Triclinic, P1Z = 2
a = 6.534 (4) ÅMo Kα radiation
b = 9.574 (6) ŵ = 0.26 mm1
c = 12.694 (8) ÅT = 173 K
α = 97.420 (15)°0.55 × 0.27 × 0.01 mm
β = 100.56 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3964 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3091 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.997Rint = 0.024
14947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.31 e Å3
3964 reflectionsΔρmin = 0.23 e Å3
207 parameters
Special details top

Experimental. Yield: 241 mg, 38%. m.p. = 367 (2) K. 1H NMR (250 MHz, CDCl3): δ = 2.10 (s, 3H, CH3), 2.56 (s, 3H, CH3), 3.77 (s, 3H, OCH3), 3.89 (s, 3H, OCH3), 6.89 (d, 2H, J = 8.8 Hz, ArH), 7.03 (d, 2H, J = 8.8 Hz, ArH), 10.54 (s, 1 H, OH). 13C NMR (62 MHz, CDCl3): δ = 19.0, 19.4 (CH3), 51.4, 54.2 (OCH3), 111.5 (C), 112.9 (2 C, CH), 126.8, 127.6, 128.3 (C), 129.9 (2 C, CH), 135.3, 140.8, 156.1, 157.8 (C), 170.5 (C=O). IR (KBr, cm -1): ~ν = 3430 (m), 3050 (w), 3002 (w), 2959 (m), 2931 (m), 2837 (m), 1653 (s), 1607 (m), 1572 (w), 1514 (s), 1444 (s), 1373 (m), 1361 (s), 1297 (s), 1253 (s), 1220 (s), 1176 (m), 1092 (m), 1036 (m) 810 (m), 686 (m). GC—MS (EI, 70 eV): m/z (%): 322 (M+, 37Cl, 16), 320 (M+, 47), 288 (100), 260 (11), 245 (27), 225 (29), 181 (7), 152 (12). HRMS (EI, 70 eV): calcd for C17H17O4Cl [M, 35Cl]: 320.08099; found 320.08088.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 3.7416 (0.0035) x + 4.8249 (0.0051) y - 7.9961 (0.0069) z = 2.4746 (0.0052)

* 0.0019 (0.0009) C1 * -0.0098 (0.0009) C2 * 0.0101 (0.0008) C3 * -0.0023 (0.0008) C4 * -0.0059 (0.0008) C5 * 0.0061 (0.0008) C6 0.0307 (0.0018) C8 - 0.0505 (0.0021) O2 0.1508 (0.0021) O3 0.1865 (0.0030) C9

Rms deviation of fitted atoms = 0.0068

3.1094 (0.0040) x + 6.1432 (0.0055) y - 9.0638 (0.0075) z = 4.7524 (0.0041)

Angle to previous plane (with approximate su) = 65.92 (0.05)

* 0.0117 (0.0009) C11 * -0.0089 (0.0009) C12 * -0.0016 (0.0009) C13 * 0.0091 (0.0009) C14 * -0.0060 (0.0010) C15 * -0.0043 (0.0010) C16 0.0476 (0.0018) O4 0.1434 (0.0024) C17

Rms deviation of fitted atoms = 0.0077

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09153 (15)0.87698 (10)0.26779 (8)0.0377 (2)
H10.175 (3)0.892 (2)0.3196 (17)0.067 (6)*
O20.25708 (18)0.99014 (12)0.41459 (9)0.0505 (3)
O30.16796 (18)1.21628 (12)0.48417 (9)0.0491 (3)
O40.23627 (16)0.52864 (10)0.09022 (8)0.0405 (2)
Cl10.48249 (6)1.39934 (4)0.30599 (3)0.05110 (15)
C10.3067 (2)1.24545 (14)0.29830 (10)0.0313 (3)
C20.1636 (2)1.24546 (14)0.36668 (10)0.0310 (3)
C30.02086 (19)1.11978 (13)0.35519 (9)0.0279 (3)
C40.03415 (19)1.00141 (13)0.27908 (10)0.0272 (3)
C50.18323 (18)1.00544 (13)0.21221 (9)0.0265 (3)
C60.32076 (19)1.12961 (13)0.22127 (9)0.0282 (3)
C70.4785 (2)1.14192 (16)0.14895 (11)0.0386 (3)
H7A0.45381.05720.09370.058*
H7B0.62071.15010.19250.058*
H7C0.46371.22650.11360.058*
C80.1451 (2)1.10217 (14)0.41965 (10)0.0318 (3)
C90.3311 (3)1.20118 (19)0.54694 (14)0.0515 (4)
H9A0.46731.17100.49780.077*
H9B0.33461.29250.59100.077*
H9C0.30181.12980.59450.077*
C100.1683 (3)1.37309 (18)0.45028 (13)0.0513 (4)
H10A0.29951.43670.45760.077*
H10B0.15991.34210.52020.077*
H10C0.04871.42350.42750.077*
C110.18957 (19)0.87662 (13)0.13357 (9)0.0277 (3)
C120.0254 (2)0.82784 (14)0.04645 (10)0.0310 (3)
H120.09620.87500.03890.037*
C130.0333 (2)0.71183 (14)0.03026 (10)0.0320 (3)
H130.08050.68110.08990.038*
C140.2094 (2)0.64160 (13)0.01864 (10)0.0312 (3)
C150.3732 (2)0.68633 (15)0.06955 (11)0.0366 (3)
H150.49270.63720.07850.044*
C160.3628 (2)0.80242 (15)0.14448 (11)0.0348 (3)
H160.47600.83220.20460.042*
C170.0787 (3)0.48428 (16)0.18492 (11)0.0427 (3)
H17A0.05370.45160.16440.064*
H17B0.12130.40640.23060.064*
H17C0.05960.56420.22520.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (5)0.0332 (5)0.0465 (5)0.0037 (4)0.0149 (4)0.0005 (4)
O20.0459 (6)0.0494 (7)0.0592 (7)0.0045 (5)0.0307 (5)0.0012 (5)
O30.0522 (7)0.0473 (6)0.0545 (6)0.0061 (5)0.0337 (5)0.0003 (5)
O40.0479 (6)0.0350 (5)0.0402 (5)0.0133 (4)0.0143 (4)0.0022 (4)
Cl10.0526 (3)0.0427 (2)0.0526 (2)0.01755 (17)0.02060 (18)0.00782 (16)
C10.0298 (6)0.0316 (7)0.0294 (6)0.0037 (5)0.0050 (5)0.0013 (5)
C20.0305 (7)0.0336 (7)0.0270 (6)0.0029 (5)0.0054 (5)0.0007 (5)
C30.0247 (6)0.0327 (6)0.0268 (6)0.0058 (5)0.0056 (5)0.0045 (5)
C40.0221 (6)0.0296 (6)0.0289 (6)0.0029 (5)0.0032 (4)0.0039 (4)
C50.0236 (6)0.0299 (6)0.0256 (5)0.0056 (5)0.0030 (4)0.0034 (4)
C60.0246 (6)0.0345 (7)0.0246 (5)0.0022 (5)0.0042 (4)0.0040 (5)
C70.0358 (7)0.0452 (8)0.0354 (7)0.0010 (6)0.0149 (6)0.0024 (6)
C80.0274 (6)0.0408 (7)0.0293 (6)0.0080 (6)0.0074 (5)0.0075 (5)
C90.0509 (9)0.0617 (11)0.0531 (9)0.0171 (8)0.0336 (8)0.0092 (7)
C100.0572 (10)0.0446 (9)0.0485 (8)0.0076 (7)0.0249 (7)0.0150 (7)
C110.0268 (6)0.0287 (6)0.0282 (6)0.0045 (5)0.0072 (5)0.0032 (5)
C120.0291 (6)0.0308 (6)0.0325 (6)0.0086 (5)0.0040 (5)0.0023 (5)
C130.0337 (7)0.0318 (7)0.0292 (6)0.0058 (5)0.0038 (5)0.0016 (5)
C140.0370 (7)0.0267 (6)0.0336 (6)0.0071 (5)0.0152 (5)0.0046 (5)
C150.0317 (7)0.0418 (8)0.0401 (7)0.0154 (6)0.0108 (6)0.0061 (6)
C160.0274 (7)0.0412 (8)0.0348 (6)0.0082 (6)0.0038 (5)0.0027 (5)
C170.0569 (9)0.0345 (7)0.0368 (7)0.0054 (6)0.0154 (6)0.0030 (5)
Geometric parameters (Å, º) top
O1—C41.3495 (17)C7—H7C0.9800
O1—H10.94 (2)C9—H9A0.9800
O2—C81.2205 (18)C9—H9B0.9800
O3—C81.3170 (18)C9—H9C0.9800
O3—C91.4496 (19)C10—H10A0.9800
O4—C141.3678 (16)C10—H10B0.9800
O4—C171.4169 (19)C10—H10C0.9800
Cl1—C11.7510 (16)C11—C121.3850 (18)
C1—C21.3870 (19)C11—C161.3937 (19)
C1—C61.4033 (18)C12—C131.3914 (18)
C2—C31.417 (2)C12—H120.9500
C2—C101.505 (2)C13—C141.3869 (19)
C3—C41.4121 (18)C13—H130.9500
C3—C81.4821 (19)C14—C151.387 (2)
C4—C51.4052 (18)C15—C161.382 (2)
C5—C61.3913 (19)C15—H150.9500
C5—C111.4925 (18)C16—H160.9500
C6—C71.5061 (19)C17—H17A0.9800
C7—H7A0.9800C17—H17B0.9800
C7—H7B0.9800C17—H17C0.9800
C4—O1—H1104.4 (13)O3—C9—H9C109.5
C8—O3—C9116.73 (12)H9A—C9—H9C109.5
C14—O4—C17118.03 (11)H9B—C9—H9C109.5
C2—C1—C6124.48 (12)C2—C10—H10A109.5
C2—C1—Cl1118.94 (10)C2—C10—H10B109.5
C6—C1—Cl1116.58 (10)H10A—C10—H10B109.5
C1—C2—C3116.76 (12)C2—C10—H10C109.5
C1—C2—C10120.28 (13)H10A—C10—H10C109.5
C3—C2—C10122.94 (12)H10B—C10—H10C109.5
C4—C3—C2119.62 (12)C12—C11—C16117.68 (12)
C4—C3—C8116.31 (12)C12—C11—C5121.30 (11)
C2—C3—C8124.06 (12)C16—C11—C5121.01 (11)
O1—C4—C5115.99 (11)C11—C12—C13121.91 (12)
O1—C4—C3122.28 (12)C11—C12—H12119.0
C5—C4—C3121.72 (12)C13—C12—H12119.0
C6—C5—C4118.97 (11)C14—C13—C12119.20 (12)
C6—C5—C11121.90 (11)C14—C13—H13120.4
C4—C5—C11119.13 (11)C12—C13—H13120.4
C5—C6—C1118.42 (12)O4—C14—C15115.94 (12)
C5—C6—C7121.32 (12)O4—C14—C13124.23 (12)
C1—C6—C7120.25 (12)C15—C14—C13119.83 (12)
C6—C7—H7A109.5C16—C15—C14120.05 (12)
C6—C7—H7B109.5C16—C15—H15120.0
H7A—C7—H7B109.5C14—C15—H15120.0
C6—C7—H7C109.5C15—C16—C11121.29 (12)
H7A—C7—H7C109.5C15—C16—H16119.4
H7B—C7—H7C109.5C11—C16—H16119.4
O2—C8—O3120.57 (12)O4—C17—H17A109.5
O2—C8—C3123.38 (12)O4—C17—H17B109.5
O3—C8—C3116.05 (12)H17A—C17—H17B109.5
O3—C9—H9A109.5O4—C17—H17C109.5
O3—C9—H9B109.5H17A—C17—H17C109.5
H9A—C9—H9B109.5H17B—C17—H17C109.5
C6—C1—C2—C31.3 (2)Cl1—C1—C6—C71.06 (16)
Cl1—C1—C2—C3178.26 (9)C9—O3—C8—O20.3 (2)
C6—C1—C2—C10177.07 (13)C9—O3—C8—C3179.38 (12)
Cl1—C1—C2—C103.41 (19)C4—C3—C8—O24.94 (19)
C1—C2—C3—C41.98 (18)C2—C3—C8—O2174.47 (12)
C10—C2—C3—C4176.30 (12)C4—C3—C8—O3174.73 (10)
C1—C2—C3—C8178.63 (11)C2—C3—C8—O35.86 (19)
C10—C2—C3—C83.1 (2)C6—C5—C11—C12113.50 (15)
C2—C3—C4—O1177.11 (11)C4—C5—C11—C1266.49 (17)
C8—C3—C4—O12.32 (17)C6—C5—C11—C1665.53 (17)
C2—C3—C4—C51.34 (18)C4—C5—C11—C16114.48 (14)
C8—C3—C4—C5179.22 (10)C16—C11—C12—C132.1 (2)
O1—C4—C5—C6178.70 (10)C5—C11—C12—C13176.99 (12)
C3—C4—C5—C60.15 (18)C11—C12—C13—C140.9 (2)
O1—C4—C5—C111.31 (16)C17—O4—C14—C15176.38 (12)
C3—C4—C5—C11179.86 (10)C17—O4—C14—C132.97 (19)
C4—C5—C6—C10.91 (17)C12—C13—C14—O4178.45 (11)
C11—C5—C6—C1179.10 (10)C12—C13—C14—C150.87 (19)
C4—C5—C6—C7177.74 (11)O4—C14—C15—C16178.07 (12)
C11—C5—C6—C72.25 (18)C13—C14—C15—C161.3 (2)
C2—C1—C6—C50.19 (19)C14—C15—C16—C110.0 (2)
Cl1—C1—C6—C5179.72 (9)C12—C11—C16—C151.6 (2)
C2—C1—C6—C7178.47 (12)C5—C11—C16—C15177.44 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.94 (2)1.63 (2)2.5061 (18)153 (2)
C7—H7C···Cl10.982.742.957 (2)93
C10—H10A···Cl10.982.453.003 (2)115
C10—H10B···O30.982.282.662 (2)102
C10—H10C···O30.982.572.662 (2)85
C9—H9A···O2i0.982.733.242 (3)113
C9—H9C···O2i0.982.963.242 (3)98
C15—H15···O4ii0.952.503.437 (2)170
Symmetry codes: (i) x1, y+2, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H17ClO4
Mr320.76
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.534 (4), 9.574 (6), 12.694 (8)
α, β, γ (°)97.420 (15), 100.56 (2), 96.042 (14)
V3)767.3 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.55 × 0.27 × 0.01
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.868, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
14947, 3964, 3091
Rint0.024
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.125, 1.09
No. of reflections3964
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.94 (2)1.63 (2)2.5061 (18)153 (2)
C7—H7C···Cl10.982.742.957 (2)93
C10—H10A···Cl10.982.453.003 (2)115
C10—H10B···O30.982.282.662 (2)102
C10—H10C···O30.982.572.662 (2)85
C9—H9A···O2i0.982.733.242 (3)113
C9—H9C···O2i0.982.963.242 (3)98
C15—H15···O4ii0.952.503.437 (2)170
Symmetry codes: (i) x1, y+2, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

Financial support for MA from the Higher Education Commission of Pakistan (HEC) under the IPFP programe is gratefully acknowledged.

References

First citationAdeel, M., Rashid, M. A., Rasool, N., Ahmad, R., Villinger, A., Reinke, H., Fischer, C. & Langer, P. (2009). Synthesis, pp. 243–250.  Google Scholar
First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 431–507. New York: VCH.  Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchanan, M. S., Gill, M. & Yu, J. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 919–926.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, P.-L., Won, S.-J., Day, S.-H. & Lin, C.-N. (1999). Helv. Chim. Acta, 82, 1716–1720.  CrossRef CAS Google Scholar
First citationLin, Y.-L., Lin, T.-C. & Kuo, Y.-H. (1997). J. Nat. Prod. 60, 368–370.  CrossRef CAS Web of Science Google Scholar
First citationLin, Y.-L., Wu, Y.-M. & Kuo, Y.-H. (1997). Phytochemistry, 45, 1057–1061.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds