organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[5-(2-Fur­yl)-6-nitro-1,2,3,5,6,7-hexa­hydro­imidazo[1,2-a]pyridin-8-yl](phen­yl)methanone

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
*Correspondence e-mail: mayaqub2@yahoo.com

(Received 27 July 2009; accepted 24 August 2009; online 29 August 2009)

In the title compound, C18H17N3O4, the furyl and phenyl rings are inclined at almost right angles [85.77 (7) and 63.25 (7)°, respectively] to the central imidazo[1,2-a]pyridinyl unit. The structure displays both inter- and intra­molecular N—H⋯O hydrogen bonding.

Related literature

For cyclic 1,1-enediamines as inter­mediates for the construction of heterocyclic compounds, see: Yu et al. (2006[Yu, C.-Y., Yang, P.-H., Zhao, M.-X. & Huang, Z.-T. (2006). Synlett, pp. 1835-1840.]); Yaqub et al. (2008[Yaqub, M., Yu, C.-Y., Jia, Y.-M. & Huang, Z.-T. (2008). Synlett, pp. 1357-1360.]); Wang et al. (1999[Wang, M.-X., Miao, W.-S., Cheng, Y. & Huang, Z.-T. (1999). Tetrahedron, 55, 14611-14622.]). For related structures, see: Yu et al. (2007[Yu, C.-Y., Yuan, X.-N. & Huang, Z.-T. (2007). Acta Cryst. E63, o3186.]); Yaqub et al. (2009[Yaqub, M., Shafiq, Z., Qureshi, A. M. & Najam-ul-Haq, M. (2009). Acta Cryst. E65, o1869.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3O4

  • Mr = 339.35

  • Monoclinic, C 2/c

  • a = 11.980 (2) Å

  • b = 15.047 (3) Å

  • c = 17.932 (4) Å

  • β = 101.94 (3)°

  • V = 3162.7 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.45 × 0.33 × 0.32 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 0.968

  • 5401 measured reflections

  • 2801 independent reflections

  • 2426 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.128

  • S = 1.14

  • 2801 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.88 2.17 2.714 (2) 119
N1—H1A⋯O4i 0.88 2.40 3.025 (3) 128
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The significance of cyclic 1,1-enediamines known as heterocyclic ketene aminals (HKAs) is obvious as a building block in many synthetic operations especially as intermediates for the construction of novel heterocyclic compound (Yaqub et al., 2008; Yu et al., 2006). The condensation through β-carbon and secondary nitrogen with bis-electrophile to form heterocyclic ring is one of the most favorable features of HKAs, (Yaqub et al., 2009; Yu, et al., 2007; Wang et al., 1999) which was utilized to synthesize the title compound (I) by treating nitro derivative of Baylis-Hillman acetates with five membered analogue of heterocyclic ketene aminal. In this paper, we describe the crystal structure of (I).

In the title compound (Fig. 1), the pyridyl ring of the nitroimidazo-pyridinyl moiety adopts a half-chair conformation with C4 lying 0.666 (3) Å out of the plane formed by the atoms N1/N2/C1/C2/C3/C5/C6/C7; N2 showing the maximum deviation of 0.069 (2) Å from this plane. The mean-planes of the furanyl and benzyl rings lie at angles 85.77 (7) and 0.63.25 (7)°, respectively, with respect to the mean-plane formed by the atoms N1/N2/C1/C2/C3/C5/C6/C7 of the nitroimidazo-pyridinyl moiety. The structure is stabilized by both inter- and intra-molecular hydrogen bonding of the type N—H···O (details have been provided in Table 1).

Related literature top

For cyclic 1,1-enediamines as intermediates for the construction of heterocyclic compounds, see: Yu et al. (2006); Yaqub et al. (2008); Wang et al. (1999). For related structures, see: Yu et al. (2007); Yaqub et al. (2009).

Experimental top

Heterocyclic ketene aminal (0.13 g, 0.71 mmol) and (E)-2-nitro-3-(2-furanyl)allylacetate (0.15 g, 0.71 mmol) were stirred in 30 ml of dichloromethane at 273 K for one hour, followed by stirring at room temperature for 6 h (Scheme 2). Solvent was evaporated and residue was passed through short chromatographic column. The elution was carried out by petroleum ether: ethyl acetate (4:1) mixture to get the title compound (I) as a light yellow solid. The single crystals were grown in dichloromethane - petroleum ether (1:5) system at room temperature by slow evaporation. Yield: 75% (0.18 g), m.p. 440–441 K (lit. m. p. 441–442 K) (Yaqub et al., 2008).

Refinement top

The H atoms were positioned geometrically and refined in riding mode, with N–H = 0.88 Å, C—H = 0.95, 0.99 and 1.00 Å, for aryl, methylene and methine type H-atoms and Uiso(H) = 1.2 Ueq(parent atoms).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.
[Figure 2] Fig. 2. The formation of the title compound.
[5-(2-Furyl)-6-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridin- 8-yl](phenyl)methanone top
Crystal data top
C18H17N3O4F(000) = 1424
Mr = 339.35Dx = 1.425 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 989 reflections
a = 11.980 (2) Åθ = 2.2–27.5°
b = 15.047 (3) ŵ = 0.10 mm1
c = 17.932 (4) ÅT = 173 K
β = 101.94 (3)°Block, yellow
V = 3162.7 (11) Å30.45 × 0.33 × 0.32 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2801 independent reflections
Radiation source: rotating anode2426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.955, Tmax = 0.968k = 1717
5401 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0499P)2 + 3.4672P]
where P = (Fo2 + 2Fc2)/3
2801 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C18H17N3O4V = 3162.7 (11) Å3
Mr = 339.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.980 (2) ŵ = 0.10 mm1
b = 15.047 (3) ÅT = 173 K
c = 17.932 (4) Å0.45 × 0.33 × 0.32 mm
β = 101.94 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2801 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2426 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.968Rint = 0.031
5401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.14Δρmax = 0.37 e Å3
2801 reflectionsΔρmin = 0.36 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43109 (14)0.20626 (10)0.91996 (10)0.0384 (4)
O20.2016 (2)0.3319 (2)0.63070 (12)0.0835 (8)
O30.12099 (18)0.35426 (18)0.72302 (12)0.0722 (7)
O40.11567 (13)0.00988 (10)0.71141 (9)0.0319 (4)
N10.10262 (16)0.11596 (13)0.83171 (10)0.0327 (5)
H1A0.07800.06260.81630.039*
N20.21072 (15)0.23408 (12)0.84736 (11)0.0302 (5)
N30.20184 (17)0.32982 (14)0.69714 (12)0.0370 (5)
C10.05883 (19)0.16761 (16)0.88815 (13)0.0329 (5)
H1B0.06520.13410.93630.039*
H1C0.02190.18440.86890.039*
C20.1352 (2)0.2487 (2)0.89931 (15)0.0473 (7)
H2A0.09020.30380.88630.057*
H2B0.17850.25270.95260.057*
C30.18456 (17)0.15910 (14)0.80613 (12)0.0244 (5)
C70.29353 (18)0.29889 (14)0.83329 (13)0.0280 (5)
H7A0.26460.35960.84190.034*
C40.30665 (18)0.29262 (15)0.75038 (13)0.0289 (5)
H4A0.37420.32900.74460.035*
C50.32660 (18)0.19731 (14)0.72796 (13)0.0286 (5)
H5A0.32650.19490.67280.034*
H5B0.40240.17730.75600.034*
C60.23556 (17)0.13503 (14)0.74538 (12)0.0247 (5)
C80.40885 (18)0.28698 (14)0.88525 (12)0.0254 (5)
C90.5402 (2)0.21114 (16)0.96169 (14)0.0359 (6)
H9A0.57810.16440.99250.043*
C100.58593 (19)0.28997 (15)0.95339 (13)0.0312 (5)
H10A0.66070.30940.97610.037*
C110.50011 (19)0.33953 (15)0.90356 (13)0.0318 (5)
H11A0.50670.39870.88660.038*
C120.19701 (17)0.05876 (14)0.70164 (12)0.0240 (5)
C130.25482 (18)0.03347 (13)0.63770 (12)0.0243 (5)
C140.37074 (19)0.01371 (15)0.65132 (14)0.0327 (5)
H14A0.41590.02100.70110.039*
C150.4210 (2)0.01643 (16)0.59321 (16)0.0402 (6)
H15A0.49970.03140.60360.048*
C160.3569 (2)0.02476 (15)0.52020 (15)0.0396 (6)
H16A0.39160.04490.48020.047*
C170.2425 (2)0.00372 (16)0.50545 (14)0.0360 (6)
H17A0.19870.00800.45490.043*
C180.19096 (19)0.02370 (14)0.56414 (13)0.0296 (5)
H18A0.11140.03590.55390.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0377 (9)0.0257 (8)0.0469 (11)0.0042 (7)0.0025 (8)0.0091 (7)
O20.0725 (15)0.145 (2)0.0326 (12)0.0368 (16)0.0095 (10)0.0255 (13)
O30.0543 (13)0.109 (2)0.0460 (13)0.0391 (13)0.0055 (10)0.0096 (12)
O40.0336 (9)0.0286 (8)0.0354 (9)0.0075 (7)0.0116 (7)0.0056 (7)
N10.0386 (11)0.0359 (11)0.0264 (10)0.0111 (9)0.0133 (9)0.0063 (8)
N20.0266 (10)0.0309 (10)0.0345 (11)0.0049 (8)0.0098 (8)0.0099 (8)
N30.0362 (11)0.0383 (12)0.0333 (12)0.0004 (9)0.0006 (9)0.0010 (9)
C10.0270 (11)0.0424 (13)0.0301 (12)0.0030 (10)0.0077 (9)0.0023 (10)
C20.0517 (16)0.0595 (18)0.0352 (15)0.0184 (14)0.0196 (12)0.0203 (13)
C30.0224 (10)0.0259 (11)0.0223 (11)0.0008 (9)0.0013 (8)0.0001 (9)
C70.0284 (11)0.0224 (11)0.0315 (12)0.0015 (9)0.0021 (9)0.0052 (9)
C40.0260 (11)0.0277 (12)0.0309 (12)0.0036 (9)0.0010 (9)0.0002 (9)
C50.0269 (11)0.0302 (12)0.0294 (12)0.0043 (9)0.0069 (9)0.0038 (9)
C60.0229 (10)0.0274 (11)0.0236 (11)0.0023 (8)0.0042 (9)0.0018 (9)
C80.0313 (12)0.0212 (10)0.0239 (11)0.0008 (9)0.0064 (9)0.0007 (9)
C90.0341 (13)0.0347 (13)0.0341 (14)0.0052 (10)0.0038 (10)0.0043 (10)
C100.0277 (12)0.0322 (12)0.0314 (13)0.0004 (9)0.0010 (10)0.0056 (10)
C110.0330 (12)0.0226 (11)0.0373 (13)0.0044 (9)0.0013 (10)0.0009 (10)
C120.0232 (11)0.0233 (11)0.0247 (11)0.0016 (8)0.0032 (9)0.0025 (9)
C130.0285 (11)0.0174 (10)0.0278 (12)0.0002 (8)0.0078 (9)0.0013 (8)
C140.0286 (12)0.0327 (12)0.0360 (13)0.0024 (10)0.0049 (10)0.0049 (10)
C150.0364 (13)0.0335 (13)0.0562 (17)0.0082 (11)0.0226 (13)0.0089 (12)
C160.0561 (16)0.0248 (12)0.0469 (16)0.0038 (11)0.0316 (13)0.0007 (11)
C170.0514 (15)0.0284 (12)0.0297 (13)0.0041 (11)0.0118 (11)0.0044 (10)
C180.0314 (12)0.0253 (11)0.0313 (13)0.0001 (9)0.0048 (10)0.0014 (9)
Geometric parameters (Å, º) top
O1—C81.366 (3)C5—C61.519 (3)
O1—C91.367 (3)C5—H5A0.9900
O2—N31.191 (3)C5—H5B0.9900
O3—N31.214 (3)C6—C121.413 (3)
O4—C121.262 (3)C8—C111.334 (3)
N1—C31.335 (3)C9—C101.328 (3)
N1—C11.457 (3)C9—H9A0.9500
N1—H1A0.8800C10—C111.425 (3)
N2—C31.350 (3)C10—H10A0.9500
N2—C21.443 (3)C11—H11A0.9500
N2—C71.450 (3)C12—C131.506 (3)
N3—C41.518 (3)C13—C181.389 (3)
C1—C21.513 (3)C13—C141.392 (3)
C1—H1B0.9900C14—C151.384 (3)
C1—H1C0.9900C14—H14A0.9500
C2—H2A0.9900C15—C161.380 (4)
C2—H2B0.9900C15—H15A0.9500
C3—C61.402 (3)C16—C171.378 (4)
C7—C81.509 (3)C16—H16A0.9500
C7—C41.530 (3)C17—C181.389 (3)
C7—H7A1.0000C17—H17A0.9500
C4—C51.522 (3)C18—H18A0.9500
C4—H4A1.0000
C8—O1—C9106.02 (17)C6—C5—H5B109.3
C3—N1—C1112.05 (19)C4—C5—H5B109.3
C3—N1—H1A124.0H5A—C5—H5B108.0
C1—N1—H1A124.0C3—C6—C12119.75 (19)
C3—N2—C2112.04 (18)C3—C6—C5116.57 (19)
C3—N2—C7123.81 (18)C12—C6—C5123.59 (19)
C2—N2—C7123.56 (19)C11—C8—O1110.01 (19)
O2—N3—O3122.5 (2)C11—C8—C7132.9 (2)
O2—N3—C4117.9 (2)O1—C8—C7117.03 (18)
O3—N3—C4119.5 (2)C10—C9—O1110.9 (2)
N1—C1—C2103.13 (18)C10—C9—H9A124.5
N1—C1—H1B111.1O1—C9—H9A124.5
C2—C1—H1B111.1C9—C10—C11106.0 (2)
N1—C1—H1C111.1C9—C10—H10A127.0
C2—C1—H1C111.1C11—C10—H10A127.0
H1B—C1—H1C109.1C8—C11—C10107.0 (2)
N2—C2—C1103.57 (19)C8—C11—H11A126.5
N2—C2—H2A111.0C10—C11—H11A126.5
C1—C2—H2A111.0O4—C12—C6124.7 (2)
N2—C2—H2B111.0O4—C12—C13116.65 (18)
C1—C2—H2B111.0C6—C12—C13118.62 (18)
H2A—C2—H2B109.0C18—C13—C14118.5 (2)
N1—C3—N2108.79 (19)C18—C13—C12120.01 (19)
N1—C3—C6127.7 (2)C14—C13—C12121.3 (2)
N2—C3—C6123.53 (19)C15—C14—C13120.8 (2)
N2—C7—C8112.63 (18)C15—C14—H14A119.6
N2—C7—C4109.83 (17)C13—C14—H14A119.6
C8—C7—C4109.13 (18)C16—C15—C14120.1 (2)
N2—C7—H7A108.4C16—C15—H15A120.0
C8—C7—H7A108.4C14—C15—H15A120.0
C4—C7—H7A108.4C17—C16—C15119.8 (2)
N3—C4—C5109.63 (18)C17—C16—H16A120.1
N3—C4—C7110.51 (18)C15—C16—H16A120.1
C5—C4—C7111.60 (18)C16—C17—C18120.2 (2)
N3—C4—H4A108.3C16—C17—H17A119.9
C5—C4—H4A108.3C18—C17—H17A119.9
C7—C4—H4A108.3C17—C18—C13120.5 (2)
C6—C5—C4111.62 (18)C17—C18—H18A119.8
C6—C5—H5A109.3C13—C18—H18A119.8
C4—C5—H5A109.3
C3—N1—C1—C24.9 (3)C4—C5—C6—C12148.1 (2)
C3—N2—C2—C13.0 (3)C9—O1—C8—C110.8 (3)
C7—N2—C2—C1174.5 (2)C9—O1—C8—C7178.42 (19)
N1—C1—C2—N21.0 (3)N2—C7—C8—C11163.8 (2)
C1—N1—C3—N26.9 (3)C4—C7—C8—C1174.0 (3)
C1—N1—C3—C6171.3 (2)N2—C7—C8—O119.2 (3)
C2—N2—C3—N16.2 (3)C4—C7—C8—O1103.0 (2)
C7—N2—C3—N1177.64 (19)C8—O1—C9—C100.9 (3)
C2—N2—C3—C6172.1 (2)O1—C9—C10—C110.6 (3)
C7—N2—C3—C60.7 (3)O1—C8—C11—C100.4 (3)
C3—N2—C7—C897.8 (2)C7—C8—C11—C10177.5 (2)
C2—N2—C7—C891.7 (3)C9—C10—C11—C80.1 (3)
C3—N2—C7—C424.0 (3)C3—C6—C12—O42.1 (3)
C2—N2—C7—C4146.4 (2)C5—C6—C12—O4174.3 (2)
O2—N3—C4—C558.9 (3)C3—C6—C12—C13178.84 (19)
O3—N3—C4—C5119.4 (3)C5—C6—C12—C134.7 (3)
O2—N3—C4—C7177.6 (2)O4—C12—C13—C1855.0 (3)
O3—N3—C4—C74.0 (3)C6—C12—C13—C18124.1 (2)
N2—C7—C4—N372.3 (2)O4—C12—C13—C14120.7 (2)
C8—C7—C4—N3163.80 (17)C6—C12—C13—C1460.2 (3)
N2—C7—C4—C550.0 (2)C18—C13—C14—C151.1 (3)
C8—C7—C4—C573.9 (2)C12—C13—C14—C15174.7 (2)
N3—C4—C5—C669.8 (2)C13—C14—C15—C161.9 (4)
C7—C4—C5—C653.0 (2)C14—C15—C16—C170.6 (4)
N1—C3—C6—C122.7 (3)C15—C16—C17—C181.6 (4)
N2—C3—C6—C12175.3 (2)C16—C17—C18—C132.5 (3)
N1—C3—C6—C5179.4 (2)C14—C13—C18—C171.1 (3)
N2—C3—C6—C51.4 (3)C12—C13—C18—C17176.9 (2)
C4—C5—C6—C328.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.882.172.714 (2)119
N1—H1A···O4i0.882.403.025 (3)128
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H17N3O4
Mr339.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)11.980 (2), 15.047 (3), 17.932 (4)
β (°) 101.94 (3)
V3)3162.7 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.33 × 0.32
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.955, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
5401, 2801, 2426
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.128, 1.14
No. of reflections2801
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.36

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.882.172.714 (2)119.2
N1—H1A···O4i0.882.403.025 (3)127.8
Symmetry code: (i) x, y, z+3/2.
 

Acknowledgements

We thank the Institute of Chemistry Chinese Academy of Science, Beijing, China for providing X-ray single-crystal facilities and the Higher Education Commission, Islamabad, Pakistan for providing financial support.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M.-X., Miao, W.-S., Cheng, Y. & Huang, Z.-T. (1999). Tetrahedron, 55, 14611–14622.  Web of Science CrossRef CAS Google Scholar
First citationYaqub, M., Shafiq, Z., Qureshi, A. M. & Najam-ul-Haq, M. (2009). Acta Cryst. E65, o1869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYaqub, M., Yu, C.-Y., Jia, Y.-M. & Huang, Z.-T. (2008). Synlett, pp. 1357–1360.  Google Scholar
First citationYu, C.-Y., Yang, P.-H., Zhao, M.-X. & Huang, Z.-T. (2006). Synlett, pp. 1835–1840.  Web of Science CrossRef Google Scholar
First citationYu, C.-Y., Yuan, X.-N. & Huang, Z.-T. (2007). Acta Cryst. E63, o3186.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds