metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(3,4-disulfanylphen­yl)acetato]bis­­(2-methyl-1H-imidazole-κN3)zinc(II)

aEngineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China
*Correspondence e-mail: Qiangqiang_wang@163.com

(Received 2 August 2009; accepted 24 August 2009; online 29 August 2009)

In the title mononuclear zinc(II) complex, [Zn(C8H7O2S2)2(C4H6N2)2], the ZnII atom, lying on a twofold axis, is coordinated by two O atoms from two 2-(3,4-disulfanylphen­yl)acetate anions and by two N atoms from 2-methyl­imidazole ligands in a distorted tetra­hdral coordination. The crystal structure is stabilized by inter­molecular C—H⋯O and N—H⋯O hydrogen bonds and ππ inter­actions with a centroid–centroid distance of 3.6136 (16) Å.

Related literature

For general background to organometallic complexes and their applications, see: Sommerfeldt et al. (2008[Sommerfeldt, H. M., Meermann, C., Tornroos, K. W. & Anwander, R. (2008). Inorg. Chem. 47, 4696-4705.]); Huang et al. (2007[Huang, Y.-L., Huang, M.-Y., Chan, T.-H., Chang, B. C. & Lii, K. L. (2007). Chem. Mater. 19, 3232-3237.]); Neville et al. (2008[Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc. 130, 2869-2876.]). Zinc derivatives are of particular inter­est owing to their unique photosensitizing properties for photodynamic therapy, see: You et al. (2006[You, Z.-L., Shi, D.-H. & Zhu, H.-L. (2006). Inorg. Chem. Commun. 9, 642-644.]); Shi et al. (2008[Shi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 288-296.]); Xiao et al. (2008[Xiao, Z.-P., Fang, F.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828-1836.], 2009[Xiao, Z.-P., Yan, W.-B., Peng, X.-C., Zhang, A.-H. & Li, Z.-P. (2009). Z. Kristallogr. New Cryst. Struct. 224, 297-298.]). For related structures, see: Yang et al. (2004[Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213-m1214.]); You et al. (2003[You, Z.-L., Lin, Y.-S., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1025-m1027.], 2004[You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m560-m562.]); Qiu et al. (2004[Qiu, X.-Y., Liu, Q.-X., Wang, Z.-G., Lin, Y.-S., Zeng, W.-J., Fun, H.-K. & Zhu, H.-L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 150-152.], 2007[Qiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2007). Z. Anorg. Allg. Chem. 633, 1480-1484.]); Halcrow et al. (2000[Halcrow, M. A., Kilner, C. A. & Thornton-Pett, M. (2000). Acta Cryst. C56, 1425-1426.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H7O2S2)2(C4H6N2)2]

  • Mr = 628.16

  • Monoclinic, C 2/c

  • a = 12.9599 (9) Å

  • b = 9.3909 (6) Å

  • c = 21.5549 (12) Å

  • β = 91.579 (2)°

  • V = 2622.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.697, Tmax = 0.782

  • 15712 measured reflections

  • 3260 independent reflections

  • 3102 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.12

  • 3260 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O1i 0.96 2.46 3.381 (4) 161
N2—H2⋯O2ii 0.85 (4) 1.94 (4) 2.785 (3) 176 (4)
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Numerous organometallic complexes have been designed for a number of potential applications, such as in synthetic chemistry (Sommerfeldt et al., 2008), as luminescence materials (Huang et al., 2007) and as magnetic materials (Neville et al., 2008). Zinc derivatives are particularly interesting owing to their unique photosensitizing properties for photodynamic therapy (You et al., 2006; Shi et al., 2008; Xiao et al., 2008; Xiao et al., 2009), magnetic circularly polarized luminescence and magnetic circular dichroism spectra. We have reported the structures of a few zinc(II) complexes (Yang et al., 2004; You et al., 2003, 2004; Qiu et al., 2007). As an extension of our work on the structural characterization of zinc compounds, we report the crystal structure of the title compound, (I), which has been determined in an attempt to understand the structural behaviour of sulfur containing ligands when coordinating to zinc carboxylates.

The present X-ray single-crystal diffraction study reveals that I, bis(3,4-dimercaptophenylaceto)-bis(2-methylimidazole-kappaN3)-zinc, consists of a Zn atom, two 3,4-dimercaptophenylaceto ligands and two 2-methylimidazole ligands. As shown on Fig. 1, the central Zn atom exhibits 4-coordination by two N atoms of position 3 from two imidazole molecules respectively and two O atoms from two 2-(3,4-disulfanylphenyl)acetate anions, forming a slightly distorted square plane. The distortion arises from the N1–Zn1–O1i axis, which is not perfectly standing in a line. The Zn–O distances is 1.9858 (18)Å is in accord with similar distance reported previously (You et al., 2004; Qiu et al., 2004). The Zn–N distance of 1.972 (2)Å is slightly shorter than other reported distances (Halcrow et al., 2000).

The H-bonding interactions occur between the N–H in imidazole as well as the methyl group (C12–H12B) as donors and O2 together with O1 atom of the carboxyl group as acceptors (Fig. 2, Table 1). These intermolecular H-bonds construct an infinite network. Concurrently, the network are solidated by weak intermolecular π-π interactions between C1-C6 ring and N1/C9/C10/N2/C11 rings with centre to centre distance of 3.6136 (16)Å.

Related literature top

For general background to organometallic complexes and their applications, see: Sommerfeldt et al. (2008); Huang et al. (2007); Neville et al. (2008). Zinc derivatives are of particular interest owing to their unique photosensitizing properties for photodynamic therapy, see: You et al. (2006); Shi et al. (2008); Xiao et al. (2008, 2009). For related structures, see: Yang et al. (2004); You et al. (2003, 2004); Qiu et al. (2004, 2007); Halcrow et al. (2000).

Experimental top

The 0.5 mmol of zinc oxide, 1 mmol of 3,4-dimercaptophenylacetic acid and 1 mmol of 2-methylimidazole were dissolved in 10 ml methanol. The result solution was heated to 423 K for 12 h. The reactor was cooled to room temperature at a rate of 10 K h-1. The mixture was filtered and held at room temperature for 8 d. Colourless block crystals were isolated in 32% yield.

Refinement top

The H atom bonded to N1 was located in a difference Fourier map and refined freely. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H of 0.93Å for the aromatic H atoms, 0.96Å for the CH3 groups and S–H of 1.20Å. Uiso(H) values were set at 1.2 times Ueq(C) for aromatic H, 1.5 times Ueq(C) for CH3 and 1.5 times Ueq(S) for S–H groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A network is formed through C–H···O and N–H···O intermolecular hydrogen bonds. Dashed lines indicate hydrogen bonds.
Bis[2-(3,4-disulfanylphenyl)acetato]bis(2-methyl-1H- imidazole-κN3)zinc(II) top
Crystal data top
[Zn(C8H7O2S2)2(C4H6N2)2]F(000) = 1296
Mr = 628.16Dx = 1.591 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3063 reflections
a = 12.9599 (9) Åθ = 2.3–26.7°
b = 9.3909 (6) ŵ = 1.30 mm1
c = 21.5549 (12) ÅT = 298 K
β = 91.579 (2)°Block, colourless
V = 2622.4 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3260 independent reflections
Radiation source: fine-focus sealed tube3102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.697, Tmax = 0.782k = 1212
15712 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0644P)2 + 4.9284P]
where P = (Fo2 + 2Fc2)/3
3260 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Zn(C8H7O2S2)2(C4H6N2)2]V = 2622.4 (3) Å3
Mr = 628.16Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.9599 (9) ŵ = 1.30 mm1
b = 9.3909 (6) ÅT = 298 K
c = 21.5549 (12) Å0.30 × 0.20 × 0.20 mm
β = 91.579 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3260 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3102 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.782Rint = 0.020
15712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.70 e Å3
3260 reflectionsΔρmin = 0.60 e Å3
175 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2396 (2)0.5043 (3)0.48533 (12)0.0379 (5)
N10.07005 (15)0.0094 (2)0.29964 (10)0.0336 (4)
O10.05381 (13)0.28914 (19)0.30382 (8)0.0365 (4)
S10.28934 (7)0.42402 (10)0.55206 (4)0.0571 (2)
H3A0.28720.29700.54590.086*
Zn10.00000.13605 (4)0.25000.03067 (13)
C20.2944 (2)0.6098 (3)0.45584 (13)0.0364 (5)
H20.251 (3)0.178 (4)0.3375 (18)0.058 (10)*
N20.18947 (19)0.1506 (2)0.33454 (12)0.0412 (5)
O20.10600 (13)0.25971 (19)0.33887 (9)0.0366 (4)
S20.41436 (6)0.66341 (9)0.48428 (4)0.0489 (2)
H3B0.43100.78290.46760.073*
C30.2536 (2)0.6715 (3)0.40205 (13)0.0403 (6)
H30.28960.74310.38210.048*
C40.1594 (2)0.6260 (3)0.37831 (13)0.0415 (6)
H40.13170.66890.34270.050*
C50.10476 (19)0.5171 (3)0.40649 (12)0.0361 (5)
C60.1456 (2)0.4587 (3)0.46066 (12)0.0393 (5)
H60.10930.38770.48080.047*
C70.0069 (2)0.4586 (3)0.37719 (14)0.0422 (6)
H7A0.02510.53200.35150.051*
H7B0.04060.43560.40970.051*
C80.02273 (18)0.3261 (3)0.33751 (11)0.0312 (4)
C90.0334 (2)0.0732 (3)0.35314 (13)0.0417 (6)
H90.03160.05870.37140.050*
C100.1071 (2)0.1607 (3)0.37499 (15)0.0449 (6)
H100.10240.21660.41060.054*
C110.16510 (19)0.0582 (3)0.28945 (12)0.0370 (5)
C120.2349 (2)0.0175 (4)0.23679 (16)0.0590 (9)
H12A0.25730.07910.24200.088*
H12B0.29380.07950.23550.088*
H12C0.19870.02570.19870.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0419 (13)0.0362 (12)0.0355 (12)0.0028 (10)0.0015 (10)0.0026 (10)
N10.0279 (9)0.0342 (10)0.0390 (10)0.0042 (8)0.0047 (8)0.0016 (8)
O10.0281 (8)0.0389 (9)0.0421 (9)0.0006 (7)0.0039 (7)0.0082 (7)
S10.0623 (5)0.0593 (5)0.0487 (4)0.0145 (4)0.0168 (4)0.0159 (4)
Zn10.0238 (2)0.0328 (2)0.0354 (2)0.0000.00027 (14)0.000
C20.0337 (12)0.0335 (11)0.0419 (13)0.0027 (9)0.0013 (10)0.0070 (10)
N20.0345 (11)0.0364 (11)0.0533 (13)0.0079 (9)0.0095 (10)0.0012 (9)
O20.0286 (8)0.0360 (9)0.0449 (9)0.0012 (7)0.0033 (7)0.0036 (7)
S20.0354 (4)0.0513 (4)0.0595 (4)0.0100 (3)0.0046 (3)0.0066 (3)
C30.0433 (14)0.0345 (12)0.0433 (14)0.0051 (10)0.0040 (11)0.0005 (10)
C40.0476 (15)0.0379 (13)0.0387 (13)0.0003 (11)0.0022 (11)0.0006 (10)
C50.0334 (11)0.0335 (12)0.0413 (12)0.0001 (9)0.0012 (10)0.0105 (10)
C60.0409 (13)0.0356 (12)0.0416 (13)0.0060 (10)0.0032 (10)0.0028 (10)
C70.0337 (12)0.0407 (13)0.0519 (15)0.0020 (10)0.0028 (11)0.0135 (12)
C80.0306 (11)0.0303 (10)0.0327 (11)0.0026 (9)0.0011 (9)0.0005 (9)
C90.0318 (12)0.0472 (15)0.0461 (14)0.0008 (10)0.0006 (10)0.0051 (12)
C100.0420 (14)0.0423 (14)0.0507 (15)0.0018 (11)0.0056 (12)0.0103 (12)
C110.0317 (11)0.0370 (12)0.0424 (13)0.0046 (9)0.0055 (10)0.0045 (10)
C120.0418 (16)0.081 (2)0.0540 (18)0.0166 (16)0.0088 (13)0.0081 (17)
Geometric parameters (Å, º) top
C1—C61.384 (4)C3—C41.379 (4)
C1—C21.384 (4)C3—H30.9300
C1—S11.732 (3)C4—C51.392 (4)
N1—C111.327 (3)C4—H40.9300
N1—C91.373 (3)C5—C61.382 (4)
N1—Zn11.972 (2)C5—C71.506 (3)
O1—C81.262 (3)C6—H60.9300
O1—Zn11.9858 (18)C7—C81.527 (3)
S1—H3A1.2000C7—H7A0.9700
Zn1—N1i1.972 (2)C7—H7B0.9700
Zn1—O1i1.9858 (18)C9—C101.354 (4)
C2—C31.388 (4)C9—H90.9300
C2—S21.730 (3)C10—H100.9300
N2—C111.347 (4)C11—C121.482 (4)
N2—C101.363 (4)C12—H12A0.9600
N2—H20.85 (4)C12—H12B0.9600
O2—C81.246 (3)C12—H12C0.9600
S2—H3B1.2000
C6—C1—C2120.2 (2)C4—C5—C7121.2 (3)
C6—C1—S1119.2 (2)C5—C6—C1121.0 (2)
C2—C1—S1120.6 (2)C5—C6—H6119.5
C11—N1—C9106.7 (2)C1—C6—H6119.5
C11—N1—Zn1126.04 (18)C5—C7—C8114.0 (2)
C9—N1—Zn1127.18 (17)C5—C7—H7A108.7
C8—O1—Zn1104.61 (15)C8—C7—H7A108.7
C1—S1—H3A109.5C5—C7—H7B108.7
N1—Zn1—N1i92.29 (12)C8—C7—H7B108.7
N1—Zn1—O190.59 (8)H7A—C7—H7B107.6
N1i—Zn1—O1173.13 (8)O2—C8—O1122.9 (2)
N1—Zn1—O1i173.13 (8)O2—C8—C7121.6 (2)
N1i—Zn1—O1i90.59 (8)O1—C8—C7115.5 (2)
O1—Zn1—O1i87.23 (11)C10—C9—N1109.0 (2)
C1—C2—C3119.6 (2)C10—C9—H9125.5
C1—C2—S2120.9 (2)N1—C9—H9125.5
C3—C2—S2119.5 (2)C9—C10—N2106.4 (3)
C11—N2—C10108.1 (2)C9—C10—H10126.8
C11—N2—H2120 (3)N2—C10—H10126.8
C10—N2—H2131 (3)N1—C11—N2109.8 (2)
C2—S2—H3B109.5N1—C11—C12125.6 (3)
C4—C3—C2119.6 (2)N2—C11—C12124.6 (2)
C4—C3—H3120.2C11—C12—H12A109.5
C2—C3—H3120.2C11—C12—H12B109.5
C3—C4—C5121.4 (3)H12A—C12—H12B109.5
C3—C4—H4119.3C11—C12—H12C109.5
C5—C4—H4119.3H12A—C12—H12C109.5
C6—C5—C4118.2 (2)H12B—C12—H12C109.5
C6—C5—C7120.5 (2)
C11—N1—Zn1—N1i96.2 (2)C6—C5—C7—C881.8 (3)
C9—N1—Zn1—N1i88.2 (2)C4—C5—C7—C894.8 (3)
C8—O1—Zn1—O1i82.04 (15)Zn1—O1—C8—O28.8 (3)
C6—C1—C2—C31.2 (4)Zn1—O1—C8—C7171.33 (18)
S1—C1—C2—C3179.3 (2)C5—C7—C8—O212.1 (4)
C6—C1—C2—S2177.5 (2)C5—C7—C8—O1168.1 (2)
S1—C1—C2—S20.6 (3)C11—N1—C9—C100.1 (3)
C1—C2—C3—C40.6 (4)Zn1—N1—C9—C10176.3 (2)
S2—C2—C3—C4178.1 (2)N1—C9—C10—N20.1 (3)
C2—C3—C4—C51.2 (4)C11—N2—C10—C90.2 (3)
C3—C4—C5—C62.4 (4)C9—N1—C11—N20.2 (3)
C3—C4—C5—C7174.3 (2)Zn1—N1—C11—N2176.49 (17)
C4—C5—C6—C11.8 (4)C9—N1—C11—C12179.6 (3)
C7—C5—C6—C1174.9 (2)Zn1—N1—C11—C123.3 (4)
C2—C1—C6—C50.0 (4)C10—N2—C11—N10.2 (3)
S1—C1—C6—C5178.1 (2)C10—N2—C11—C12179.6 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O1ii0.962.463.381 (4)161
N2—H2···O2iii0.85 (4)1.94 (4)2.785 (3)176 (4)
Symmetry codes: (ii) x1/2, y1/2, z+1/2; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C8H7O2S2)2(C4H6N2)2]
Mr628.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.9599 (9), 9.3909 (6), 21.5549 (12)
β (°) 91.579 (2)
V3)2622.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.697, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
15712, 3260, 3102
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.12
No. of reflections3260
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.60

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O1i0.962.463.381 (4)160.8
N2—H2···O2ii0.85 (4)1.94 (4)2.785 (3)176 (4)
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x1/2, y1/2, z.
 

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHalcrow, M. A., Kilner, C. A. & Thornton-Pett, M. (2000). Acta Cryst. C56, 1425–1426.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuang, Y.-L., Huang, M.-Y., Chan, T.-H., Chang, B. C. & Lii, K. L. (2007). Chem. Mater. 19, 3232–3237.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc. 130, 2869–2876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQiu, X.-Y., Liu, Q.-X., Wang, Z.-G., Lin, Y.-S., Zeng, W.-J., Fun, H.-K. & Zhu, H.-L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 150–152.  CAS Google Scholar
First citationQiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2007). Z. Anorg. Allg. Chem. 633, 1480-1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 288–296.  Web of Science CSD CrossRef CAS Google Scholar
First citationSommerfeldt, H. M., Meermann, C., Tornroos, K. W. & Anwander, R. (2008). Inorg. Chem. 47, 4696–4705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Fang, F.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828–1836.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Yan, W.-B., Peng, X.-C., Zhang, A.-H. & Li, Z.-P. (2009). Z. Kristallogr. New Cryst. Struct. 224, 297–298.  CAS Google Scholar
First citationYang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213–m1214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Lin, Y.-S., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1025–m1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Shi, D.-H. & Zhu, H.-L. (2006). Inorg. Chem. Commun. 9, 642–644.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m560–m562.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds