metal-organic compounds
Diazidobis(5,5′-dimethyl-2,2′-bipyridyl-κ2N,N′)nickel(II) monohydrate
aDepartment of Computer Science, Faculty of Engineering, Vongchavalitkul University, Nakornrachasima 30000, Thailand, bDepartment of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand, cDepartment of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakornrachasima 30000, Thailand, and dDepartment of Physics, Faculty of Science and Technology, Thammasat University, Rangsit, Pathumthani 12121, Thailand
*Correspondence e-mail: jaturong_phat@hotmail.com
In the 3)2(C12H12N2)2]·H2O, the NiII atom is situated on a twofold axis and adopts a distorted octahedral geometry with the two 5,5′-dimethyl-2,2′-bipyridyl (dmbpy) and the two azide ligands in a cis arrangement. The water solvent molecule is disordered over two positions in a 1:1 ratio.
of the title compound, [Ni(NRelated literature
For general background to 2,2′-bipyridine and its derivatives, see: Blau (1888); Constable (1989); Constable & Steel (1989); Juris et al. (1988). For related dmbpy structures, see: van Albada et al. (2004, 2005); Catalan et al. (1995); Kooijman et al. (2002). For Ni–N bond lengths in azido-containing mononuclear nickel(II) complexes, see: Urtiaga et al. (1995). For an NiII complex with 5,5′-dimethyl-2,2′-bipyridyl, see: Hou (2008). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2002); cell COLLECT and DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809029407/rn2055sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809029407/rn2055Isup2.hkl
All chemicals were obtained commercially and used without further purification. The compound was prepared by adding a warm solution of dmbpy (0.181 g, 1.0 mmol) in methanol (15 ml) to a warming aqueous solution (10 ml) of Ni(CH3COO)2. 4H2O (0.123 g, 0.5 mmol). Afterward a solid of NaN3 (0.065 g, 1.0 mmol) was added. The green solution was slowly evaporated at room temperature and after few days, green plate-shaped crystals of [Ni(dmbpy)2(N3)2].H2O formed. They were filtered off, washed with mother liquid and air-dried. Yield ca 89%. Elemental analysis (%) found (calculated): C 54.4 (54.6), H 4.9 (4.8), N 26.3 (26.5). The IR spectrum shows the band corresponding to the asymmetric stretch of the azido ion, νas(N3), split at 2072 and 2024 cm-1. This indicates that the azido ligand is bonded asymmetrically by its two terminal N atoms.
The water O atom is disordered which site occupancies of 0.5 and 0.5. All non-H atoms were refined anisotropically. H atoms in aromatic were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.96–1.01 Å [Uiso (H) = 1.2Ueq (C)]. H atoms of methyl groups of dmbpy were placed in calculated positions and refined with a riding model C—H = 0.96 Å.
Data collection: COLLECT (Nonius, 2002); cell
COLLECT and DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: COLLECT (Nonius, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the title structure with the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. |
[Ni(N3)2(C12H12N2)2]·H2O | F(000) = 1096 |
Mr = 529.22 | Dx = 1.444 Mg m−3 Dm = 1.440 Mg m−3 Dm measured by flotation in aqueous KI |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 7908 reflections |
a = 17.0770 (3) Å | θ = 2.7–27.5° |
b = 8.5350 (5) Å | µ = 0.84 mm−1 |
c = 16.6700 (4) Å | T = 293 K |
V = 2429.69 (16) Å3 | Plate, green |
Z = 4 | 0.53 × 0.45 × 0.40 mm |
Nonius KappaCCD diffractometer | 4209 independent reflections |
Radiation source: fine-focus sealed tube | 2929 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 32.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −25→25 |
Tmin = 0.630, Tmax = 0.712 | k = −12→12 |
7908 measured reflections | l = −24→24 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0689P)2 + 0.3234P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4209 reflections | Δρmax = 0.35 e Å−3 |
195 parameters | Δρmin = −0.37 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.023 (3) |
[Ni(N3)2(C12H12N2)2]·H2O | V = 2429.69 (16) Å3 |
Mr = 529.22 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 17.0770 (3) Å | µ = 0.84 mm−1 |
b = 8.5350 (5) Å | T = 293 K |
c = 16.6700 (4) Å | 0.53 × 0.45 × 0.40 mm |
Nonius KappaCCD diffractometer | 4209 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2929 reflections with I > 2σ(I) |
Tmin = 0.630, Tmax = 0.712 | Rint = 0.031 |
7908 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.127 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.35 e Å−3 |
4209 reflections | Δρmin = −0.37 e Å−3 |
195 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 1.0000 | 0.25758 (3) | 0.2500 | 0.03045 (11) | |
C1 | 0.85037 (9) | 0.1839 (2) | 0.15504 (10) | 0.0394 (4) | |
C2 | 0.77052 (9) | 0.1813 (2) | 0.13931 (10) | 0.0430 (4) | |
C3 | 0.72270 (11) | 0.2632 (2) | 0.19237 (13) | 0.0485 (5) | |
C4 | 0.75485 (10) | 0.3478 (3) | 0.25456 (10) | 0.0444 (4) | |
C5 | 0.83592 (9) | 0.3501 (2) | 0.26388 (9) | 0.0351 (3) | |
C6 | 0.87691 (8) | 0.44736 (19) | 0.32433 (9) | 0.0346 (3) | |
C7 | 0.83951 (10) | 0.5554 (2) | 0.37348 (11) | 0.0455 (4) | |
C8 | 0.88410 (10) | 0.6520 (2) | 0.42157 (11) | 0.0474 (4) | |
C9 | 0.96489 (10) | 0.6414 (2) | 0.42151 (9) | 0.0404 (4) | |
C10 | 0.99748 (9) | 0.5262 (2) | 0.37327 (10) | 0.0378 (3) | |
C11 | 0.73848 (11) | 0.0947 (3) | 0.06809 (12) | 0.0571 (5) | |
C12 | 1.01596 (15) | 0.7508 (2) | 0.46878 (14) | 0.0526 (5) | |
N1 | 0.88262 (7) | 0.26572 (15) | 0.21515 (8) | 0.0341 (3) | |
N2 | 0.95560 (7) | 0.43102 (16) | 0.32590 (7) | 0.0339 (3) | |
N3 | 1.02626 (9) | 0.08562 (18) | 0.16354 (8) | 0.0434 (3) | |
N4 | 1.08684 (8) | 0.07905 (18) | 0.12842 (8) | 0.0402 (3) | |
N5 | 1.14499 (9) | 0.0716 (3) | 0.09306 (11) | 0.0655 (5) | |
O19 | 0.9708 (3) | 0.7988 (4) | 0.2398 (3) | 0.0853 (15) | 0.50 |
H1 | 0.8876 (10) | 0.120 (2) | 0.1214 (11) | 0.044 (5)* | |
H3 | 0.6660 (14) | 0.261 (2) | 0.1832 (13) | 0.053 (6)* | |
H4 | 0.7209 (11) | 0.404 (2) | 0.2906 (12) | 0.053 (6)* | |
H7 | 0.7824 (12) | 0.563 (2) | 0.3731 (11) | 0.049 (5)* | |
H8 | 0.8591 (13) | 0.735 (2) | 0.4557 (14) | 0.054 (6)* | |
H10 | 1.0548 (12) | 0.509 (2) | 0.3715 (11) | 0.045 (5)* | |
H11A | 0.7797 | 0.0357 | 0.0432 | 0.086* | |
H11B | 0.7175 | 0.1683 | 0.0302 | 0.086* | |
H11C | 0.6978 | 0.0247 | 0.0853 | 0.086* | |
H12A | 1.0385 | 0.8272 | 0.4334 | 0.079* | |
H12B | 1.0570 | 0.6922 | 0.4944 | 0.079* | |
H12C | 0.9850 | 0.8028 | 0.5088 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02557 (16) | 0.03435 (17) | 0.03144 (16) | 0.000 | 0.00161 (9) | 0.000 |
C1 | 0.0336 (7) | 0.0443 (9) | 0.0403 (8) | −0.0033 (7) | −0.0006 (6) | −0.0012 (7) |
C2 | 0.0361 (8) | 0.0476 (10) | 0.0455 (8) | −0.0063 (7) | −0.0043 (6) | 0.0019 (8) |
C3 | 0.0302 (8) | 0.0605 (12) | 0.0549 (10) | −0.0022 (7) | −0.0036 (7) | 0.0015 (8) |
C4 | 0.0294 (7) | 0.0546 (11) | 0.0492 (9) | 0.0034 (7) | 0.0021 (6) | −0.0002 (8) |
C5 | 0.0292 (7) | 0.0377 (8) | 0.0384 (7) | −0.0002 (6) | 0.0018 (5) | 0.0033 (6) |
C6 | 0.0304 (7) | 0.0378 (8) | 0.0354 (7) | 0.0030 (6) | 0.0020 (5) | 0.0024 (6) |
C7 | 0.0369 (8) | 0.0533 (11) | 0.0462 (9) | 0.0066 (7) | 0.0046 (7) | −0.0081 (8) |
C8 | 0.0483 (9) | 0.0506 (11) | 0.0433 (9) | 0.0086 (8) | 0.0059 (7) | −0.0100 (8) |
C9 | 0.0477 (9) | 0.0399 (9) | 0.0336 (7) | −0.0002 (7) | −0.0016 (6) | −0.0010 (7) |
C10 | 0.0342 (7) | 0.0411 (8) | 0.0381 (8) | −0.0004 (6) | −0.0013 (5) | −0.0009 (7) |
C11 | 0.0462 (10) | 0.0693 (14) | 0.0556 (11) | −0.0115 (9) | −0.0091 (8) | −0.0088 (10) |
C12 | 0.0645 (12) | 0.0489 (11) | 0.0444 (10) | −0.0032 (8) | −0.0044 (9) | −0.0116 (8) |
N1 | 0.0281 (6) | 0.0384 (7) | 0.0360 (7) | −0.0014 (5) | 0.0007 (5) | 0.0000 (5) |
N2 | 0.0313 (6) | 0.0357 (7) | 0.0347 (6) | 0.0013 (5) | 0.0017 (4) | −0.0005 (5) |
N3 | 0.0424 (7) | 0.0447 (8) | 0.0431 (7) | −0.0017 (6) | 0.0084 (6) | −0.0076 (6) |
N4 | 0.0373 (7) | 0.0448 (8) | 0.0383 (7) | 0.0076 (6) | −0.0032 (5) | −0.0040 (6) |
N5 | 0.0386 (8) | 0.0938 (15) | 0.0640 (10) | 0.0137 (9) | 0.0085 (7) | −0.0099 (10) |
O19 | 0.132 (5) | 0.0521 (16) | 0.072 (3) | −0.021 (2) | 0.026 (3) | −0.0070 (18) |
Ni1—N1i | 2.0882 (13) | C6—C7 | 1.389 (2) |
Ni1—N1 | 2.0882 (13) | C7—C8 | 1.379 (3) |
Ni1—N2i | 2.0897 (13) | C7—H7 | 0.978 (19) |
Ni1—N2 | 2.0897 (13) | C8—C9 | 1.383 (2) |
Ni1—N3 | 2.1053 (14) | C8—H8 | 1.00 (2) |
Ni1—N3i | 2.1053 (14) | C9—C10 | 1.387 (2) |
C1—N1 | 1.340 (2) | C9—C12 | 1.501 (3) |
C1—C2 | 1.389 (2) | C10—N2 | 1.340 (2) |
C1—H1 | 1.008 (19) | C10—H10 | 0.99 (2) |
C2—C3 | 1.392 (3) | C11—H11A | 0.9600 |
C2—C11 | 1.502 (3) | C11—H11B | 0.9600 |
C3—C4 | 1.377 (3) | C11—H11C | 0.9600 |
C3—H3 | 0.98 (2) | C12—H12A | 0.9600 |
C4—C5 | 1.393 (2) | C12—H12B | 0.9600 |
C4—H4 | 0.96 (2) | C12—H12C | 0.9600 |
C5—N1 | 1.347 (2) | N3—N4 | 1.1901 (19) |
C5—C6 | 1.481 (2) | N4—N5 | 1.157 (2) |
C6—N2 | 1.3512 (18) | O19—O19i | 1.053 (9) |
N1i—Ni1—N1 | 176.19 (7) | C8—C7—C6 | 119.07 (15) |
N1i—Ni1—N2i | 78.26 (5) | C8—C7—H7 | 121.0 (12) |
N1—Ni1—N2i | 98.99 (5) | C6—C7—H7 | 119.9 (12) |
N1i—Ni1—N2 | 98.99 (5) | C7—C8—C9 | 120.74 (16) |
N1—Ni1—N2 | 78.26 (5) | C7—C8—H8 | 121.0 (13) |
N2i—Ni1—N2 | 89.80 (7) | C9—C8—H8 | 118.2 (13) |
N1i—Ni1—N3 | 90.53 (5) | C8—C9—C10 | 116.59 (16) |
N1—Ni1—N3 | 92.13 (5) | C8—C9—C12 | 122.57 (17) |
N2i—Ni1—N3 | 90.12 (6) | C10—C9—C12 | 120.81 (17) |
N2—Ni1—N3 | 170.26 (5) | N2—C10—C9 | 123.88 (15) |
N1i—Ni1—N3i | 92.13 (5) | N2—C10—H10 | 114.9 (11) |
N1—Ni1—N3i | 90.53 (5) | C9—C10—H10 | 121.2 (11) |
N2i—Ni1—N3i | 170.26 (5) | C2—C11—H11A | 109.5 |
N2—Ni1—N3i | 90.12 (6) | C2—C11—H11B | 109.5 |
N3—Ni1—N3i | 91.61 (8) | H11A—C11—H11B | 109.5 |
N1—C1—C2 | 123.57 (16) | C2—C11—H11C | 109.5 |
N1—C1—H1 | 116.1 (10) | H11A—C11—H11C | 109.5 |
C2—C1—H1 | 120.3 (10) | H11B—C11—H11C | 109.5 |
C1—C2—C3 | 116.64 (16) | C9—C12—H12A | 109.5 |
C1—C2—C11 | 120.97 (17) | C9—C12—H12B | 109.5 |
C3—C2—C11 | 122.39 (16) | H12A—C12—H12B | 109.5 |
C4—C3—C2 | 120.49 (16) | C9—C12—H12C | 109.5 |
C4—C3—H3 | 121.3 (12) | H12A—C12—H12C | 109.5 |
C2—C3—H3 | 118.2 (12) | H12B—C12—H12C | 109.5 |
C3—C4—C5 | 119.18 (17) | C1—N1—C5 | 119.11 (14) |
C3—C4—H4 | 119.4 (12) | C1—N1—Ni1 | 125.82 (11) |
C5—C4—H4 | 121.4 (12) | C5—N1—Ni1 | 114.73 (10) |
N1—C5—C4 | 120.87 (15) | C10—N2—C6 | 118.67 (13) |
N1—C5—C6 | 115.47 (13) | C10—N2—Ni1 | 126.35 (10) |
C4—C5—C6 | 123.61 (15) | C6—N2—Ni1 | 114.97 (10) |
N2—C6—C7 | 120.95 (15) | N4—N3—Ni1 | 123.70 (12) |
N2—C6—C5 | 115.17 (13) | N5—N4—N3 | 178.73 (18) |
C7—C6—C5 | 123.77 (14) | ||
N1—C1—C2—C3 | −3.3 (3) | N2—Ni1—N1—C1 | 176.04 (14) |
N1—C1—C2—C11 | 176.43 (18) | N3—Ni1—N1—C1 | −2.32 (14) |
C1—C2—C3—C4 | 3.1 (3) | N3i—Ni1—N1—C1 | −93.95 (14) |
C11—C2—C3—C4 | −176.62 (19) | N2i—Ni1—N1—C5 | −98.70 (11) |
C2—C3—C4—C5 | −0.2 (3) | N2—Ni1—N1—C5 | −10.79 (11) |
C3—C4—C5—N1 | −2.9 (3) | N3—Ni1—N1—C5 | 170.84 (11) |
C3—C4—C5—C6 | 174.78 (17) | N3i—Ni1—N1—C5 | 79.22 (12) |
N1—C5—C6—N2 | −4.0 (2) | C9—C10—N2—C6 | 0.2 (2) |
C4—C5—C6—N2 | 178.28 (16) | C9—C10—N2—Ni1 | 178.82 (12) |
N1—C5—C6—C7 | 172.35 (16) | C7—C6—N2—C10 | −3.0 (2) |
C4—C5—C6—C7 | −5.4 (3) | C5—C6—N2—C10 | 173.45 (14) |
N2—C6—C7—C8 | 3.1 (3) | C7—C6—N2—Ni1 | 178.23 (13) |
C5—C6—C7—C8 | −173.01 (16) | C5—C6—N2—Ni1 | −5.34 (17) |
C6—C7—C8—C9 | −0.4 (3) | N1i—Ni1—N2—C10 | 7.22 (14) |
C7—C8—C9—C10 | −2.2 (3) | N1—Ni1—N2—C10 | −170.09 (14) |
C7—C8—C9—C12 | 175.99 (19) | N2i—Ni1—N2—C10 | −70.86 (13) |
C8—C9—C10—N2 | 2.4 (3) | N3i—Ni1—N2—C10 | 99.40 (14) |
C12—C9—C10—N2 | −175.83 (16) | N1i—Ni1—N2—C6 | −174.10 (10) |
C2—C1—N1—C5 | 0.4 (3) | N1—Ni1—N2—C6 | 8.59 (10) |
C2—C1—N1—Ni1 | 173.26 (13) | N2i—Ni1—N2—C6 | 107.82 (11) |
C4—C5—N1—C1 | 2.8 (2) | N3i—Ni1—N2—C6 | −81.92 (11) |
C6—C5—N1—C1 | −175.05 (14) | N1i—Ni1—N3—N4 | −32.56 (15) |
C4—C5—N1—Ni1 | −170.89 (13) | N1—Ni1—N3—N4 | 144.70 (14) |
C6—C5—N1—Ni1 | 11.29 (17) | N2i—Ni1—N3—N4 | 45.70 (14) |
N2i—Ni1—N1—C1 | 88.14 (14) | N3i—Ni1—N3—N4 | −124.71 (16) |
Symmetry code: (i) −x+2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(N3)2(C12H12N2)2]·H2O |
Mr | 529.22 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 293 |
a, b, c (Å) | 17.0770 (3), 8.5350 (5), 16.6700 (4) |
V (Å3) | 2429.69 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.53 × 0.45 × 0.40 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.630, 0.712 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7908, 4209, 2929 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.746 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.127, 1.03 |
No. of reflections | 4209 |
No. of parameters | 195 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.35, −0.37 |
Computer programs: COLLECT (Nonius, 2002), COLLECT and DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ni1—N1 | 2.0882 (13) | Ni1—N3 | 2.1053 (14) |
Ni1—N2 | 2.0897 (13) | ||
N1i—Ni1—N1 | 176.19 (7) | N1—Ni1—N3 | 92.13 (5) |
N1—Ni1—N2i | 98.99 (5) | N2—Ni1—N3 | 170.26 (5) |
N1i—Ni1—N2 | 98.99 (5) | N1—Ni1—N3i | 90.53 (5) |
N1—Ni1—N2 | 78.26 (5) | N2—Ni1—N3i | 90.12 (6) |
N2i—Ni1—N2 | 89.80 (7) | N3—Ni1—N3i | 91.61 (8) |
Symmetry code: (i) −x+2, y, −z+1/2. |
Acknowledgements
The authors gratefully acknowledge the Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology, for their support. Special thanks go to Assoc. Dr Sujittra Youngme, Department of Chemistry, Khon Kaen University, for her kindness.
References
Albada, G. A. van, Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733–3742. Google Scholar
Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411–m1412. Web of Science CSD CrossRef IUCr Journals Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blau, F. (1888). Ber. Dtsch Chem. Ges. 21, 1077–1078. CrossRef Google Scholar
Catalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165–2171. CSD CrossRef CAS Web of Science Google Scholar
Constable, E. C. (1989). Adv. Inorg. Chem. 34, 1–33. CrossRef CAS Web of Science Google Scholar
Constable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205–233. CAS Google Scholar
Hou, J. (2008). Acta Cryst. E64, m1571. Web of Science CSD CrossRef IUCr Journals Google Scholar
Juris, A., Balzani, V., Barigelletti, F., Campagna, S., von Belser, P. & Zelewsky, A. (1988). Coord. Chem. Rev. 84, 85–277. CrossRef CAS Web of Science Google Scholar
Kooijman, H., Spek, A. L., van Albada, G. A. & Reedijk, J. (2002). Acta Cryst. C58, m124–m126. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Urtiaga, M. K., Arriortua, M. I., De Muro, I. G. & Cortes, R. (1995). Acta Cryst. C51, 62–65. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is 121 years since Blau first reported (Blau, 1888) the synthesis of 2,2'-bipyridine (bpy) and described the first metal complexes of this important ligand. Since then bpy and its derivatives have been continuously and extensively used in several aspects of coordination chemistry (Constable, 1989; Constable & Steel, 1989; Juris et al., 1988). However, up to now comparatively few X-ray crystal structures of ligand 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) have been published (Albada et al., 2004; Catalan et al., 1995; Kooijman et al., 2002). In this study, we report the synthesis and characterization of the new Ni(II) complex containing both dmbpy and azido ligands. Although 52 structures containing dmbpy with metals were found in the Cambridge Structural Database (CSD; Version 5.29, November 2008 update; Allen, 2002) there was only one case (CSD refcode POMFAZ; Hou, 2008) where en is present with both NiII and 5,5'-dimethyl-2,2'-bipyridyl.
It is found that the Ni ion is coordinated by four nitrogen atoms from dmbpy and two azido nitrogen atoms, taking on a distorted octahedral geometry. The two bidentate ligands have a cis disposition around the metal ion, forming practically perpendicular planes [N2—Ni1—N2i 89.80 (7), N1—Ni1—N1i 176.19 (7)°] (symmetry codes: i -x + 2, y, -z + 1/2). The rigidity of these ligands causes the bond angles N1— Ni1—N2, 78.26 (5)° to deviate significantly from orthogonality. This causes the geometry about the NiII ion to deviate slightly from that of an ideal octahedron. The Ni(1)—N(dmbpy) bond distances in a related complex [2.0897 (13) and 2.0882 (13) Å] (Urtiaga et al., 1995) are almost the same as those found in the Ni(II) compound of [NiII(bpy)2(N3)2] [2.067 (2)–2.114 (2) Å]. Good agreement is observed between the Ni(1)–N(azido) bond distance of 2.1053 (14) Å and those reported [2.094 (2) and 2.102 (3) Å] (Urtiaga et al., 1995) for azido containing mononuclear nickel(II) complexes.