metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1020-m1021

Di­azido­bis­(5,5′-di­methyl-2,2′-bi­pyridyl-κ2N,N′)nickel(II) monohydrate

aDepartment of Computer Science, Faculty of Engineering, Vongchavalitkul University, Nakornrachasima 30000, Thailand, bDepartment of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand, cDepartment of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakornrachasima 30000, Thailand, and dDepartment of Physics, Faculty of Science and Technology, Thammasat University, Rangsit, Pathumthani 12121, Thailand
*Correspondence e-mail: jaturong_phat@hotmail.com

(Received 26 February 2009; accepted 23 July 2009; online 8 August 2009)

In the crystal structure of the title compound, [Ni(N3)2(C12H12N2)2]·H2O, the NiII atom is situated on a twofold axis and adopts a distorted octa­hedral geometry with the two 5,5′-dimethyl-2,2′-bipyridyl (dmbpy) and the two azide ligands in a cis arrangement. The water solvent mol­ecule is disordered over two positions in a 1:1 ratio.

Related literature

For general background to 2,2′-bipyridine and its derivatives, see: Blau (1888[Blau, F. (1888). Ber. Dtsch Chem. Ges. 21, 1077-1078.]); Constable (1989[Constable, E. C. (1989). Adv. Inorg. Chem. 34, 1-33.]); Constable & Steel (1989[Constable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205-233.]); Juris et al. (1988[Juris, A., Balzani, V., Barigelletti, F., Campagna, S., von Belser, P. & Zelewsky, A. (1988). Coord. Chem. Rev. 84, 85-277.]). For related dmbpy structures, see: van Albada et al. (2004[Albada, G. A. van, Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733-3742.], 2005[Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411-m1412.]); Catalan et al. (1995[Catalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165-2171.]); Kooijman et al. (2002[Kooijman, H., Spek, A. L., van Albada, G. A. & Reedijk, J. (2002). Acta Cryst. C58, m124-m126.]). For Ni–N bond lengths in azido-containing mononuclear nickel(II) complexes, see: Urtiaga et al. (1995[Urtiaga, M. K., Arriortua, M. I., De Muro, I. G. & Cortes, R. (1995). Acta Cryst. C51, 62-65.]). For an NiII complex with 5,5′-dimethyl-2,2′-bipyridyl, see: Hou (2008[Hou, J. (2008). Acta Cryst. E64, m1571.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(N3)2(C12H12N2)2]·H2O

  • Mr = 529.22

  • Orthorhombic, P b c n

  • a = 17.0770 (3) Å

  • b = 8.5350 (5) Å

  • c = 16.6700 (4) Å

  • V = 2429.69 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 293 K

  • 0.53 × 0.45 × 0.40 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.630, Tmax = 0.712

  • 7908 measured reflections

  • 4209 independent reflections

  • 2929 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.03

  • 4209 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 2.0882 (13)
Ni1—N2 2.0897 (13)
Ni1—N3 2.1053 (14)
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT and DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is 121 years since Blau first reported (Blau, 1888) the synthesis of 2,2'-bipyridine (bpy) and described the first metal complexes of this important ligand. Since then bpy and its derivatives have been continuously and extensively used in several aspects of coordination chemistry (Constable, 1989; Constable & Steel, 1989; Juris et al., 1988). However, up to now comparatively few X-ray crystal structures of ligand 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) have been published (Albada et al., 2004; Catalan et al., 1995; Kooijman et al., 2002). In this study, we report the synthesis and characterization of the new Ni(II) complex containing both dmbpy and azido ligands. Although 52 structures containing dmbpy with metals were found in the Cambridge Structural Database (CSD; Version 5.29, November 2008 update; Allen, 2002) there was only one case (CSD refcode POMFAZ; Hou, 2008) where en is present with both NiII and 5,5'-dimethyl-2,2'-bipyridyl.

It is found that the Ni ion is coordinated by four nitrogen atoms from dmbpy and two azido nitrogen atoms, taking on a distorted octahedral geometry. The two bidentate ligands have a cis disposition around the metal ion, forming practically perpendicular planes [N2—Ni1—N2i 89.80 (7), N1—Ni1—N1i 176.19 (7)°] (symmetry codes: i -x + 2, y, -z + 1/2). The rigidity of these ligands causes the bond angles N1— Ni1—N2, 78.26 (5)° to deviate significantly from orthogonality. This causes the geometry about the NiII ion to deviate slightly from that of an ideal octahedron. The Ni(1)—N(dmbpy) bond distances in a related complex [2.0897 (13) and 2.0882 (13) Å] (Urtiaga et al., 1995) are almost the same as those found in the Ni(II) compound of [NiII(bpy)2(N3)2] [2.067 (2)–2.114 (2) Å]. Good agreement is observed between the Ni(1)–N(azido) bond distance of 2.1053 (14) Å and those reported [2.094 (2) and 2.102 (3) Å] (Urtiaga et al., 1995) for azido containing mononuclear nickel(II) complexes.

Related literature top

For general background to 2,2'-bipyridine and its derivatives, see: Blau (1888); Constable (1989); Constable & Steel (1989); Juris et al. (1988). For related dmbpy structures, see: van Albada et al. (2004, 2005); Catalan et al. (1995); Kooijman et al. (2002). For Ni–N bond lengths in azido-containing mononuclear nickel(II) complexes, see: Urtiaga et al. (1995). For an NiII complex with 5,5'-dimethyl-2,2'-bipyridyl, see: Hou (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

All chemicals were obtained commercially and used without further purification. The compound was prepared by adding a warm solution of dmbpy (0.181 g, 1.0 mmol) in methanol (15 ml) to a warming aqueous solution (10 ml) of Ni(CH3COO)2. 4H2O (0.123 g, 0.5 mmol). Afterward a solid of NaN3 (0.065 g, 1.0 mmol) was added. The green solution was slowly evaporated at room temperature and after few days, green plate-shaped crystals of [Ni(dmbpy)2(N3)2].H2O formed. They were filtered off, washed with mother liquid and air-dried. Yield ca 89%. Elemental analysis (%) found (calculated): C 54.4 (54.6), H 4.9 (4.8), N 26.3 (26.5). The IR spectrum shows the band corresponding to the asymmetric stretch of the azido ion, νas(N3), split at 2072 and 2024 cm-1. This indicates that the azido ligand is bonded asymmetrically by its two terminal N atoms.

Refinement top

The water O atom is disordered which site occupancies of 0.5 and 0.5. All non-H atoms were refined anisotropically. H atoms in aromatic were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.96–1.01 Å [Uiso (H) = 1.2Ueq (C)]. H atoms of methyl groups of dmbpy were placed in calculated positions and refined with a riding model C—H = 0.96 Å.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: COLLECT and DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: COLLECT (Nonius, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title structure with the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
Diazidobis(5,5'-dimethyl-2,2'-bipyridyl-κ2N,N')nickel(II) monohydrate top
Crystal data top
[Ni(N3)2(C12H12N2)2]·H2OF(000) = 1096
Mr = 529.22Dx = 1.444 Mg m3
Dm = 1.440 Mg m3
Dm measured by flotation in aqueous KI
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 7908 reflections
a = 17.0770 (3) Åθ = 2.7–27.5°
b = 8.5350 (5) ŵ = 0.84 mm1
c = 16.6700 (4) ÅT = 293 K
V = 2429.69 (16) Å3Plate, green
Z = 40.53 × 0.45 × 0.40 mm
Data collection top
Nonius KappaCCD
diffractometer
4209 independent reflections
Radiation source: fine-focus sealed tube2929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 32.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.630, Tmax = 0.712k = 1212
7908 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.3234P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4209 reflectionsΔρmax = 0.35 e Å3
195 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (3)
Crystal data top
[Ni(N3)2(C12H12N2)2]·H2OV = 2429.69 (16) Å3
Mr = 529.22Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 17.0770 (3) ŵ = 0.84 mm1
b = 8.5350 (5) ÅT = 293 K
c = 16.6700 (4) Å0.53 × 0.45 × 0.40 mm
Data collection top
Nonius KappaCCD
diffractometer
4209 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2929 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.712Rint = 0.031
7908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
4209 reflectionsΔρmin = 0.37 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni11.00000.25758 (3)0.25000.03045 (11)
C10.85037 (9)0.1839 (2)0.15504 (10)0.0394 (4)
C20.77052 (9)0.1813 (2)0.13931 (10)0.0430 (4)
C30.72270 (11)0.2632 (2)0.19237 (13)0.0485 (5)
C40.75485 (10)0.3478 (3)0.25456 (10)0.0444 (4)
C50.83592 (9)0.3501 (2)0.26388 (9)0.0351 (3)
C60.87691 (8)0.44736 (19)0.32433 (9)0.0346 (3)
C70.83951 (10)0.5554 (2)0.37348 (11)0.0455 (4)
C80.88410 (10)0.6520 (2)0.42157 (11)0.0474 (4)
C90.96489 (10)0.6414 (2)0.42151 (9)0.0404 (4)
C100.99748 (9)0.5262 (2)0.37327 (10)0.0378 (3)
C110.73848 (11)0.0947 (3)0.06809 (12)0.0571 (5)
C121.01596 (15)0.7508 (2)0.46878 (14)0.0526 (5)
N10.88262 (7)0.26572 (15)0.21515 (8)0.0341 (3)
N20.95560 (7)0.43102 (16)0.32590 (7)0.0339 (3)
N31.02626 (9)0.08562 (18)0.16354 (8)0.0434 (3)
N41.08684 (8)0.07905 (18)0.12842 (8)0.0402 (3)
N51.14499 (9)0.0716 (3)0.09306 (11)0.0655 (5)
O190.9708 (3)0.7988 (4)0.2398 (3)0.0853 (15)0.50
H10.8876 (10)0.120 (2)0.1214 (11)0.044 (5)*
H30.6660 (14)0.261 (2)0.1832 (13)0.053 (6)*
H40.7209 (11)0.404 (2)0.2906 (12)0.053 (6)*
H70.7824 (12)0.563 (2)0.3731 (11)0.049 (5)*
H80.8591 (13)0.735 (2)0.4557 (14)0.054 (6)*
H101.0548 (12)0.509 (2)0.3715 (11)0.045 (5)*
H11A0.77970.03570.04320.086*
H11B0.71750.16830.03020.086*
H11C0.69780.02470.08530.086*
H12A1.03850.82720.43340.079*
H12B1.05700.69220.49440.079*
H12C0.98500.80280.50880.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02557 (16)0.03435 (17)0.03144 (16)0.0000.00161 (9)0.000
C10.0336 (7)0.0443 (9)0.0403 (8)0.0033 (7)0.0006 (6)0.0012 (7)
C20.0361 (8)0.0476 (10)0.0455 (8)0.0063 (7)0.0043 (6)0.0019 (8)
C30.0302 (8)0.0605 (12)0.0549 (10)0.0022 (7)0.0036 (7)0.0015 (8)
C40.0294 (7)0.0546 (11)0.0492 (9)0.0034 (7)0.0021 (6)0.0002 (8)
C50.0292 (7)0.0377 (8)0.0384 (7)0.0002 (6)0.0018 (5)0.0033 (6)
C60.0304 (7)0.0378 (8)0.0354 (7)0.0030 (6)0.0020 (5)0.0024 (6)
C70.0369 (8)0.0533 (11)0.0462 (9)0.0066 (7)0.0046 (7)0.0081 (8)
C80.0483 (9)0.0506 (11)0.0433 (9)0.0086 (8)0.0059 (7)0.0100 (8)
C90.0477 (9)0.0399 (9)0.0336 (7)0.0002 (7)0.0016 (6)0.0010 (7)
C100.0342 (7)0.0411 (8)0.0381 (8)0.0004 (6)0.0013 (5)0.0009 (7)
C110.0462 (10)0.0693 (14)0.0556 (11)0.0115 (9)0.0091 (8)0.0088 (10)
C120.0645 (12)0.0489 (11)0.0444 (10)0.0032 (8)0.0044 (9)0.0116 (8)
N10.0281 (6)0.0384 (7)0.0360 (7)0.0014 (5)0.0007 (5)0.0000 (5)
N20.0313 (6)0.0357 (7)0.0347 (6)0.0013 (5)0.0017 (4)0.0005 (5)
N30.0424 (7)0.0447 (8)0.0431 (7)0.0017 (6)0.0084 (6)0.0076 (6)
N40.0373 (7)0.0448 (8)0.0383 (7)0.0076 (6)0.0032 (5)0.0040 (6)
N50.0386 (8)0.0938 (15)0.0640 (10)0.0137 (9)0.0085 (7)0.0099 (10)
O190.132 (5)0.0521 (16)0.072 (3)0.021 (2)0.026 (3)0.0070 (18)
Geometric parameters (Å, º) top
Ni1—N1i2.0882 (13)C6—C71.389 (2)
Ni1—N12.0882 (13)C7—C81.379 (3)
Ni1—N2i2.0897 (13)C7—H70.978 (19)
Ni1—N22.0897 (13)C8—C91.383 (2)
Ni1—N32.1053 (14)C8—H81.00 (2)
Ni1—N3i2.1053 (14)C9—C101.387 (2)
C1—N11.340 (2)C9—C121.501 (3)
C1—C21.389 (2)C10—N21.340 (2)
C1—H11.008 (19)C10—H100.99 (2)
C2—C31.392 (3)C11—H11A0.9600
C2—C111.502 (3)C11—H11B0.9600
C3—C41.377 (3)C11—H11C0.9600
C3—H30.98 (2)C12—H12A0.9600
C4—C51.393 (2)C12—H12B0.9600
C4—H40.96 (2)C12—H12C0.9600
C5—N11.347 (2)N3—N41.1901 (19)
C5—C61.481 (2)N4—N51.157 (2)
C6—N21.3512 (18)O19—O19i1.053 (9)
N1i—Ni1—N1176.19 (7)C8—C7—C6119.07 (15)
N1i—Ni1—N2i78.26 (5)C8—C7—H7121.0 (12)
N1—Ni1—N2i98.99 (5)C6—C7—H7119.9 (12)
N1i—Ni1—N298.99 (5)C7—C8—C9120.74 (16)
N1—Ni1—N278.26 (5)C7—C8—H8121.0 (13)
N2i—Ni1—N289.80 (7)C9—C8—H8118.2 (13)
N1i—Ni1—N390.53 (5)C8—C9—C10116.59 (16)
N1—Ni1—N392.13 (5)C8—C9—C12122.57 (17)
N2i—Ni1—N390.12 (6)C10—C9—C12120.81 (17)
N2—Ni1—N3170.26 (5)N2—C10—C9123.88 (15)
N1i—Ni1—N3i92.13 (5)N2—C10—H10114.9 (11)
N1—Ni1—N3i90.53 (5)C9—C10—H10121.2 (11)
N2i—Ni1—N3i170.26 (5)C2—C11—H11A109.5
N2—Ni1—N3i90.12 (6)C2—C11—H11B109.5
N3—Ni1—N3i91.61 (8)H11A—C11—H11B109.5
N1—C1—C2123.57 (16)C2—C11—H11C109.5
N1—C1—H1116.1 (10)H11A—C11—H11C109.5
C2—C1—H1120.3 (10)H11B—C11—H11C109.5
C1—C2—C3116.64 (16)C9—C12—H12A109.5
C1—C2—C11120.97 (17)C9—C12—H12B109.5
C3—C2—C11122.39 (16)H12A—C12—H12B109.5
C4—C3—C2120.49 (16)C9—C12—H12C109.5
C4—C3—H3121.3 (12)H12A—C12—H12C109.5
C2—C3—H3118.2 (12)H12B—C12—H12C109.5
C3—C4—C5119.18 (17)C1—N1—C5119.11 (14)
C3—C4—H4119.4 (12)C1—N1—Ni1125.82 (11)
C5—C4—H4121.4 (12)C5—N1—Ni1114.73 (10)
N1—C5—C4120.87 (15)C10—N2—C6118.67 (13)
N1—C5—C6115.47 (13)C10—N2—Ni1126.35 (10)
C4—C5—C6123.61 (15)C6—N2—Ni1114.97 (10)
N2—C6—C7120.95 (15)N4—N3—Ni1123.70 (12)
N2—C6—C5115.17 (13)N5—N4—N3178.73 (18)
C7—C6—C5123.77 (14)
N1—C1—C2—C33.3 (3)N2—Ni1—N1—C1176.04 (14)
N1—C1—C2—C11176.43 (18)N3—Ni1—N1—C12.32 (14)
C1—C2—C3—C43.1 (3)N3i—Ni1—N1—C193.95 (14)
C11—C2—C3—C4176.62 (19)N2i—Ni1—N1—C598.70 (11)
C2—C3—C4—C50.2 (3)N2—Ni1—N1—C510.79 (11)
C3—C4—C5—N12.9 (3)N3—Ni1—N1—C5170.84 (11)
C3—C4—C5—C6174.78 (17)N3i—Ni1—N1—C579.22 (12)
N1—C5—C6—N24.0 (2)C9—C10—N2—C60.2 (2)
C4—C5—C6—N2178.28 (16)C9—C10—N2—Ni1178.82 (12)
N1—C5—C6—C7172.35 (16)C7—C6—N2—C103.0 (2)
C4—C5—C6—C75.4 (3)C5—C6—N2—C10173.45 (14)
N2—C6—C7—C83.1 (3)C7—C6—N2—Ni1178.23 (13)
C5—C6—C7—C8173.01 (16)C5—C6—N2—Ni15.34 (17)
C6—C7—C8—C90.4 (3)N1i—Ni1—N2—C107.22 (14)
C7—C8—C9—C102.2 (3)N1—Ni1—N2—C10170.09 (14)
C7—C8—C9—C12175.99 (19)N2i—Ni1—N2—C1070.86 (13)
C8—C9—C10—N22.4 (3)N3i—Ni1—N2—C1099.40 (14)
C12—C9—C10—N2175.83 (16)N1i—Ni1—N2—C6174.10 (10)
C2—C1—N1—C50.4 (3)N1—Ni1—N2—C68.59 (10)
C2—C1—N1—Ni1173.26 (13)N2i—Ni1—N2—C6107.82 (11)
C4—C5—N1—C12.8 (2)N3i—Ni1—N2—C681.92 (11)
C6—C5—N1—C1175.05 (14)N1i—Ni1—N3—N432.56 (15)
C4—C5—N1—Ni1170.89 (13)N1—Ni1—N3—N4144.70 (14)
C6—C5—N1—Ni111.29 (17)N2i—Ni1—N3—N445.70 (14)
N2i—Ni1—N1—C188.14 (14)N3i—Ni1—N3—N4124.71 (16)
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(N3)2(C12H12N2)2]·H2O
Mr529.22
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)17.0770 (3), 8.5350 (5), 16.6700 (4)
V3)2429.69 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.53 × 0.45 × 0.40
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.630, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
7908, 4209, 2929
Rint0.031
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.03
No. of reflections4209
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.37

Computer programs: COLLECT (Nonius, 2002), COLLECT and DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N12.0882 (13)Ni1—N32.1053 (14)
Ni1—N22.0897 (13)
N1i—Ni1—N1176.19 (7)N1—Ni1—N392.13 (5)
N1—Ni1—N2i98.99 (5)N2—Ni1—N3170.26 (5)
N1i—Ni1—N298.99 (5)N1—Ni1—N3i90.53 (5)
N1—Ni1—N278.26 (5)N2—Ni1—N3i90.12 (6)
N2i—Ni1—N289.80 (7)N3—Ni1—N3i91.61 (8)
Symmetry code: (i) x+2, y, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology, for their support. Special thanks go to Assoc. Dr Sujittra Youngme, Department of Chemistry, Khon Kaen University, for her kindness.

References

First citationAlbada, G. A. van, Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733–3742.  Google Scholar
First citationAlbada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411–m1412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlau, F. (1888). Ber. Dtsch Chem. Ges. 21, 1077–1078.  CrossRef Google Scholar
First citationCatalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165–2171.  CSD CrossRef CAS Web of Science Google Scholar
First citationConstable, E. C. (1989). Adv. Inorg. Chem. 34, 1–33.  CrossRef CAS Web of Science Google Scholar
First citationConstable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205–233.  CAS Google Scholar
First citationHou, J. (2008). Acta Cryst. E64, m1571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJuris, A., Balzani, V., Barigelletti, F., Campagna, S., von Belser, P. & Zelewsky, A. (1988). Coord. Chem. Rev. 84, 85–277.  CrossRef CAS Web of Science Google Scholar
First citationKooijman, H., Spek, A. L., van Albada, G. A. & Reedijk, J. (2002). Acta Cryst. C58, m124–m126.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrtiaga, M. K., Arriortua, M. I., De Muro, I. G. & Cortes, R. (1995). Acta Cryst. C51, 62–65.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1020-m1021
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds