metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-meth­­oxy-6-[(3-pyrid­yl)methyl­imino­meth­yl]phenolato}copper(II)

aDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China, and bOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 12 July 2009; accepted 24 July 2009; online 12 August 2009)

In the mononuclear title complex, [Cu(C14H13N2O2)2], the CuII atom lies on an inversion centre and adopts a square-planar coordination geometry. The dihedral angle formed by the pyridine and benzene rings is 74.61 (5)°. Intra­molecular C—H⋯O hydrogen bonds are present. The crystal structure is stabilized by weak aromatic ππ stacking inter­actions involving neighbouring pyridine rings [centroid–centroid distance = 3.853 (2) Å].

Related literature

For a related structure, see: Wang et al. (2008[Wang, X.-J., Jian, H.-X., Liu, Z.-P., Ni, Q.-L., Gui, L.-C. & Tang, L.-H. (2008). Polyhedron, 27, 2634-2642.]). For the synthetic procedure, see: Kannappan et al. (2005[Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383-388.]); Zhao et al. (2008[Zhao, Q.-H., Zhang, L., Du, L. & Fang, R.-B. (2008). Acta Cryst. E64, m142.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H13N2O2)2]

  • Mr = 546.07

  • Monoclinic, P 21 /c

  • a = 11.455 (2) Å

  • b = 14.414 (3) Å

  • c = 7.5491 (15) Å

  • β = 102.55 (3)°

  • V = 1216.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.824, Tmax = 0.828

  • 11771 measured reflections

  • 2667 independent reflections

  • 2430 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.102

  • S = 1.41

  • 2667 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2i 0.97 2.28 2.862 (2) 118
Symmetry code: (i) -x+2, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Schiff base metal complexes have been frequently investigated in the past several years, because of their broad range of properties and applications. We herein report the crystal structure of a new complex formed by reaction of Cu(CH3COO)2 and the Schiff base ligand N-(3-pyridylmethyl)-3-methoxy-salicylaldiminato.

As shown in Fig. 1, the mononuclear title complex is centrosymmetric. The copper atom adopts a square planar coordination geometry provided by two trans-arranged phenolate-O and two imine-N atoms from two ligands (Wang et al., 2008). The dihedral angle formed by the pyridine and benzene rings of the same ligand is 74.61 (5)°. An intramolecular C—H···O hydrogen bond (Table 1) stabilizes the molecular conformation. In the crystal structure, weak aromatic ππ stacking interactions involving neighbouring pyridine rings at (x, y, z) and (x, 5/2-y, 1/2+z) are present, with a centroid-to-centroid distance of 3.853 (2) Å.

Related literature top

For a related structure, see: Wang et al. (2008). For the synthetic procedure, see: Kannappan et al. (2005); Zhao et al. (2008).

Experimental top

All chemicals were of reagent grade and were used as received with out further purification. 2-Hydroxy-3-methoxybenzaldehyde (0.152 g, 1 mmol) in ethanol (5 ml) was added to a stirred ethanol solution (5 ml) containing 3-aminomethylpyridine (0.108 g, 1 mmol). The resulting yellow solution was continuously stirred for about 1 h, then Cu(CH3COO)2.H2O (0.100 g, 0.5 mmol) in ethanol (5 ml) was added. The resulting deep green solution was stirred for another 2 h and left to evaporate at room temperature (Kannappan et al.,2005; Zhao et al., 2008). After several days, dark green block crystals suitable for X-ray diffraction analysis were formed.

Refinement top

All H atoms were located geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and all hydrogen atoms. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code A: 2 - x, -y, 1 - z]
Bis{2-methoxy-6-[(3-pyridyl)methyliminomethyl]phenolato}copper(II) top
Crystal data top
[Cu(C14H13N2O2)2]F(000) = 566
Mr = 546.07Dx = 1.491 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10382 reflections
a = 11.455 (2) Åθ = 3.2–27.5°
b = 14.414 (3) ŵ = 0.94 mm1
c = 7.5491 (15) ÅT = 293 K
β = 102.55 (3)°Block, dark green
V = 1216.7 (4) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2667 independent reflections
Radiation source: fine-focus sealed tube2430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.824, Tmax = 0.828l = 99
11771 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.41 w = 1/[σ2(Fo2) + (0.0515P)2]
where P = (Fo2 + 2Fc2)/3
2667 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cu(C14H13N2O2)2]V = 1216.7 (4) Å3
Mr = 546.07Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.455 (2) ŵ = 0.94 mm1
b = 14.414 (3) ÅT = 293 K
c = 7.5491 (15) Å0.20 × 0.20 × 0.20 mm
β = 102.55 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2667 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2430 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.828Rint = 0.035
11771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.41Δρmax = 0.25 e Å3
2667 reflectionsΔρmin = 0.62 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00001.00000.00000.03101 (13)
N10.94828 (11)1.08186 (9)0.22373 (17)0.0269 (3)
C141.04327 (16)1.27619 (11)0.3538 (2)0.0346 (4)
H14A0.96701.27470.42800.041*
C91.02998 (15)1.10214 (10)0.3470 (2)0.0307 (4)
H9A0.98411.10690.47080.037*
H9B1.08671.05170.34170.037*
C111.20928 (16)1.19482 (12)0.1813 (2)0.0359 (4)
H11A1.24871.14030.13750.043*
C70.74950 (13)1.11896 (10)0.1721 (2)0.0294 (4)
O10.67391 (12)1.03058 (10)0.23920 (19)0.0457 (3)
C80.84437 (15)1.11952 (11)0.2697 (2)0.0308 (4)
H8A0.82851.15110.37980.037*
C101.09654 (14)1.19174 (11)0.2930 (2)0.0284 (3)
N21.09381 (14)1.35872 (10)0.3131 (2)0.0413 (4)
C30.65892 (13)1.07713 (11)0.0778 (2)0.0315 (4)
C60.64554 (16)1.17021 (12)0.2470 (3)0.0380 (4)
H6A0.64121.20220.35520.046*
C40.55774 (15)1.12611 (12)0.0004 (3)0.0379 (4)
H4A0.49311.12780.05660.045*
C131.20181 (17)1.35935 (13)0.2044 (3)0.0416 (4)
H13A1.23841.41640.17300.050*
C50.55195 (16)1.17370 (13)0.1642 (3)0.0424 (5)
H5A0.48391.20750.21600.051*
C10.58255 (19)1.03860 (17)0.3375 (3)0.0501 (5)
H1A0.60371.00300.44730.075*
H1B0.50881.01570.26510.075*
H1C0.57311.10260.36700.075*
C121.26288 (17)1.28035 (13)0.1354 (3)0.0426 (4)
H12A1.33851.28430.05950.051*
O20.85152 (11)1.02297 (9)0.07153 (19)0.0383 (3)
C20.75880 (13)1.07128 (10)0.0065 (2)0.0287 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02621 (19)0.03057 (19)0.0384 (2)0.00818 (10)0.01174 (14)0.01467 (11)
N10.0288 (7)0.0212 (6)0.0311 (7)0.0008 (5)0.0075 (6)0.0041 (5)
C140.0332 (9)0.0296 (8)0.0420 (9)0.0005 (7)0.0106 (7)0.0065 (7)
C90.0374 (8)0.0259 (8)0.0310 (8)0.0015 (7)0.0123 (7)0.0027 (6)
C110.0352 (9)0.0339 (9)0.0398 (10)0.0047 (7)0.0110 (8)0.0057 (7)
C70.0267 (8)0.0229 (7)0.0368 (9)0.0024 (6)0.0028 (7)0.0022 (6)
O10.0404 (8)0.0547 (8)0.0475 (8)0.0114 (7)0.0217 (7)0.0147 (7)
C80.0350 (9)0.0236 (8)0.0326 (8)0.0014 (6)0.0045 (7)0.0069 (6)
C100.0329 (8)0.0273 (8)0.0290 (8)0.0006 (6)0.0155 (7)0.0042 (6)
N20.0434 (9)0.0280 (7)0.0529 (10)0.0011 (6)0.0119 (8)0.0028 (7)
C30.0287 (8)0.0272 (8)0.0388 (9)0.0008 (6)0.0076 (7)0.0020 (7)
C60.0384 (9)0.0342 (9)0.0377 (9)0.0084 (7)0.0001 (8)0.0054 (7)
C40.0291 (9)0.0381 (9)0.0466 (10)0.0035 (7)0.0085 (8)0.0074 (8)
C130.0438 (11)0.0318 (9)0.0498 (11)0.0056 (8)0.0116 (9)0.0027 (8)
C50.0311 (9)0.0437 (10)0.0480 (11)0.0134 (8)0.0014 (8)0.0001 (8)
C10.0476 (12)0.0642 (13)0.0443 (11)0.0038 (10)0.0229 (10)0.0025 (10)
C120.0336 (9)0.0505 (11)0.0433 (10)0.0040 (8)0.0074 (8)0.0022 (8)
O20.0295 (7)0.0430 (6)0.0452 (7)0.0136 (5)0.0144 (6)0.0194 (6)
C20.0264 (8)0.0213 (7)0.0375 (9)0.0016 (6)0.0051 (7)0.0017 (6)
Geometric parameters (Å, º) top
Cu1—O2i1.9218 (13)O1—C31.369 (2)
Cu1—O21.9218 (13)O1—C11.413 (2)
Cu1—N12.0399 (13)C8—H8A0.9300
Cu1—N1i2.0399 (13)N2—C131.328 (2)
N1—C81.285 (2)C3—C41.374 (2)
N1—C91.485 (2)C3—C21.427 (2)
C14—N21.329 (2)C6—C51.354 (3)
C14—C101.394 (2)C6—H6A0.9300
C14—H14A0.9300C4—C51.408 (3)
C9—C101.510 (2)C4—H4A0.9300
C9—H9A0.9700C13—C121.378 (3)
C9—H9B0.9700C13—H13A0.9300
C11—C101.381 (2)C5—H5A0.9300
C11—C121.387 (2)C1—H1A0.9600
C11—H11A0.9300C1—H1B0.9600
C7—C61.411 (2)C1—H1C0.9600
C7—C21.411 (2)C12—H12A0.9300
C7—C81.439 (2)O2—C21.2993 (18)
O2i—Cu1—O2180.0C14—C10—C9119.92 (15)
O2i—Cu1—N189.00 (6)C13—N2—C14116.70 (16)
O2—Cu1—N191.00 (6)O1—C3—C4124.16 (16)
O2i—Cu1—N1i91.00 (6)O1—C3—C2114.21 (14)
O2—Cu1—N1i89.00 (6)C4—C3—C2121.63 (16)
N1—Cu1—N1i180.00 (6)C5—C6—C7121.24 (17)
C8—N1—C9114.85 (13)C5—C6—H6A119.4
C8—N1—Cu1123.58 (12)C7—C6—H6A119.4
C9—N1—Cu1121.57 (10)C3—C4—C5119.95 (17)
N2—C14—C10124.60 (17)C3—C4—H4A120.0
N2—C14—H14A117.7C5—C4—H4A120.0
C10—C14—H14A117.7N2—C13—C12123.81 (17)
N1—C9—C10110.44 (12)N2—C13—H13A118.1
N1—C9—H9A109.6C12—C13—H13A118.1
C10—C9—H9A109.6C6—C5—C4119.92 (16)
N1—C9—H9B109.6C6—C5—H5A120.0
C10—C9—H9B109.6C4—C5—H5A120.0
H9A—C9—H9B108.1O1—C1—H1A109.5
C10—C11—C12119.04 (16)O1—C1—H1B109.5
C10—C11—H11A120.5H1A—C1—H1B109.5
C12—C11—H11A120.5O1—C1—H1C109.5
C6—C7—C2120.31 (16)H1A—C1—H1C109.5
C6—C7—C8117.23 (15)H1B—C1—H1C109.5
C2—C7—C8122.44 (14)C13—C12—C11118.62 (17)
C3—O1—C1117.61 (15)C13—C12—H12A120.7
N1—C8—C7128.12 (15)C11—C12—H12A120.7
N1—C8—H8A115.9C2—O2—Cu1130.63 (12)
C7—C8—H8A115.9O2—C2—C7124.05 (15)
C11—C10—C14117.21 (15)O2—C2—C3119.02 (15)
C11—C10—C9122.86 (14)C7—C2—C3116.93 (14)
O2i—Cu1—N1—C8175.74 (14)C8—C7—C6—C5179.88 (16)
O2—Cu1—N1—C84.26 (14)O1—C3—C4—C5178.43 (17)
O2i—Cu1—N1—C94.15 (11)C2—C3—C4—C51.4 (3)
O2—Cu1—N1—C9175.85 (11)C14—N2—C13—C120.8 (3)
C8—N1—C9—C1086.53 (17)C7—C6—C5—C40.4 (3)
Cu1—N1—C9—C1093.57 (13)C3—C4—C5—C60.8 (3)
C9—N1—C8—C7174.86 (15)N2—C13—C12—C110.0 (3)
Cu1—N1—C8—C75.3 (2)C10—C11—C12—C130.5 (3)
C6—C7—C8—N1176.48 (16)N1—Cu1—O2—C21.65 (16)
C2—C7—C8—N12.3 (3)N1i—Cu1—O2—C2178.35 (16)
C12—C11—C10—C140.2 (3)Cu1—O2—C2—C70.5 (3)
C12—C11—C10—C9178.60 (16)Cu1—O2—C2—C3179.78 (12)
N2—C14—C10—C110.7 (3)C6—C7—C2—O2179.72 (16)
N2—C14—C10—C9179.51 (16)C8—C7—C2—O21.0 (3)
N1—C9—C10—C1194.88 (18)C6—C7—C2—C30.5 (2)
N1—C9—C10—C1483.88 (18)C8—C7—C2—C3179.25 (14)
C10—C14—N2—C131.1 (3)O1—C3—C2—O21.1 (2)
C1—O1—C3—C44.3 (3)C4—C3—C2—O2179.07 (16)
C1—O1—C3—C2175.52 (16)O1—C3—C2—C7179.13 (14)
C2—C7—C6—C51.1 (3)C4—C3—C2—C70.7 (2)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.972.282.862 (2)118
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu(C14H13N2O2)2]
Mr546.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.455 (2), 14.414 (3), 7.5491 (15)
β (°) 102.55 (3)
V3)1216.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.824, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
11771, 2667, 2430
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.41
No. of reflections2667
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.62

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.972.282.862 (2)118
Symmetry code: (i) x+2, y+2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (project Nos. 20671019, 20361004) and the Doctoral Fund of the Ministry of Education of China (project No. 20060673015).

References

First citationKannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-J., Jian, H.-X., Liu, Z.-P., Ni, Q.-L., Gui, L.-C. & Tang, L.-H. (2008). Polyhedron, 27, 2634–2642.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, Q.-H., Zhang, L., Du, L. & Fang, R.-B. (2008). Acta Cryst. E64, m142.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds