organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Acetonylsaccharin

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bInstitute of Biochemistry, University of Balochistan, Quetta, Pakistan, cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 14 July 2009; accepted 3 August 2009; online 19 August 2009)

In the title compound [systematic name: 2-(2-oxoprop­yl)-1,2-benzothia­zol-3(2H)-one 1,1-dioxide], C10H9NO4S, the benzo­thia­zole unit is essentially planar [maximum deviation = 0.0490 (9) Å for the S atom] and the oxopropyl group is inclined at an angle 75.61 (8)° with respect to its mean plane. In the crystal, mol­ecules are held together by weak inter­molecular C—H⋯O non-classical hydrogen bonds, resulting in centrosymmetric dimeric units, forming 14-membered ring systems which may be described as R22(14) ring motifs. Moreover, mol­ecules lying about inversion centers show ππ inter­actions, with centroid–centroid separations between the benzene rings of 3.676 (2) Å.

Related literature

For the crystal structure of a benzothia­zine, see: Ahmad et al. (2008[Ahmad, M., Siddiqui, H. L., Ahmad, S., Farooq, S. U. & Parvez, M. (2008). Acta Cryst. E64, o1213-o1214.]). For the biological activity of sacharine derivatives, see: Kapui et al. (2003[Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 1-9.]); Singh et al. (2007[Singh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). Eur. J. Med. Chem. 42, 456-462.]); Vaccarino et al. (2007[Vaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheselli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). Bioorg. Med. Chem. 15, 2206-2215.]). For graph-set notation of ring motifs, see: Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H. -B. Bürgi & J. D. Dunitz, Vol. 2. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO4S

  • Mr = 239.24

  • Monoclinic, P 21 /c

  • a = 7.475 (3) Å

  • b = 8.975 (4) Å

  • c = 15.923 (7) Å

  • β = 101.028 (18)°

  • V = 1048.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 200 K

  • 0.12 × 0.12 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.964, Tmax = 0.982

  • 3984 measured reflections

  • 2382 independent reflections

  • 2106 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.04

  • 2382 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.98 2.57 3.324 (3) 134
Symmetry code: (i) -x, -y, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Saccharine derivatives are extensively reported in the literature for their diverse range of biological activities like cyclooxygenase-2 (COX-2) inhibitors (Singh et al. 2007), analgesic (Vaccarino et al. 2007), human leucocyte elastase (HLE) inhibitors (Kapui et al. 2003). In continuation to our project to explore potentially biologically active derivatives of benzothiazines (Ahmad et al. 2008), we herein report the crystal structure of the title compound, (I), in this paper.

The structure of the title compound is depicted in Figure 1. The benzothiazol moiety (C1—C7/N1/S1) is essentailly planar with maximum deviation observed for S1 (0.0490 (9) Å) and the oxopropyl group (C8/C9/C10/O4) forms an angle 75.61 (8)° with the mean-plane of the former. The molecular dimensions in (I) agree with the corresponding molecular dimensions reported for a closely related compound (Ahmad et al. 2008). In the crystal structure, the molecules of (I) are held together by rather weak intermolecular C—H···O type non-classical hydrogen bonds resulting in dimeric units about inversion centers, forming fourteen membered ring systems which may be described in terms of graph set notation (Bernstein et al. 1994) as R22(14) ring motif; details are given in Table 1 and Figure 2. The molecules lying about inversion centers show π-π interactions with the separation between the centroids of the benzene rings (C1–C6) which are related by the symmetry operation: 1-x, 1-y, 1-z, is 3.676 (2) Å (Spek, 2009); with perpendicular distance being 3.354 Å and the slippage of 1.504 Å.

Related literature top

For the crystal structure of a benzothiazine, see: Ahmad et al. (2008). For the biological activity of sacharine derivatives, see: Kapui et al. (2003); Singh et al. (2007); Vaccarino et al. (2007). For graph-set notation of ring motifs, see: Bernstein et al. (1994).

Experimental top

Sodium saccharin (73.2 mmoles, 15.0 g) and chloroacetone (87.8 mmole, 7.0 ml) were added in a round bottom flask containing 30 ml of anhydrous DMF. The mixture was stirred under inert atmosphere for one hour at 393 K. The contents of the flask were poured in ice cold water. Brownish ppts. formed were filtered and washed with excess of water. Crystals suitable for XRD were grown in chloroform. Yield: 15.2 g, 87%; m.p. 386–387 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C). The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. Unit cell of (I) showing dimers of molecules formed by C—H···O interactions; H-atoms not involved in H-bonding interactions have been excluded.
2-(2-oxopropyl)-1,2-benzothiazol-3(2H)-one 1,1-dioxide top
Crystal data top
C10H9NO4SF(000) = 496
Mr = 239.24Dx = 1.516 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3984 reflections
a = 7.475 (3) Åθ = 3.4–27.5°
b = 8.975 (4) ŵ = 0.31 mm1
c = 15.923 (7) ÅT = 200 K
β = 101.028 (18)°Block, colorless
V = 1048.5 (8) Å30.12 × 0.12 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2382 independent reflections
Radiation source: fine-focus sealed tube2106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.964, Tmax = 0.982k = 811
3984 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.8524P]
where P = (Fo2 + 2Fc2)/3
2382 reflections(Δ/σ)max = 0.005
146 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C10H9NO4SV = 1048.5 (8) Å3
Mr = 239.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.475 (3) ŵ = 0.31 mm1
b = 8.975 (4) ÅT = 200 K
c = 15.923 (7) Å0.12 × 0.12 × 0.06 mm
β = 101.028 (18)°
Data collection top
Nonius KappaCCD
diffractometer
2382 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2106 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.982Rint = 0.023
3984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
2382 reflectionsΔρmin = 0.41 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26215 (6)0.14487 (5)0.47133 (3)0.02833 (15)
O10.09274 (19)0.22262 (17)0.44859 (10)0.0401 (4)
O20.2659 (2)0.00422 (16)0.44012 (10)0.0406 (4)
O30.5536 (2)0.25086 (18)0.68078 (9)0.0397 (4)
O40.1159 (2)0.30470 (18)0.66321 (11)0.0504 (4)
N10.3345 (2)0.14693 (19)0.57704 (10)0.0319 (4)
C10.7056 (3)0.3839 (2)0.53131 (12)0.0306 (4)
H10.78060.41390.58370.037*
C20.7458 (3)0.4271 (2)0.45301 (13)0.0335 (4)
H20.84820.48940.45200.040*
C30.6389 (3)0.3809 (2)0.37630 (13)0.0355 (4)
H30.67020.41130.32380.043*
C40.4873 (3)0.2911 (2)0.37500 (12)0.0317 (4)
H40.41480.25790.32270.038*
C50.4466 (2)0.2519 (2)0.45337 (12)0.0267 (4)
C60.5534 (2)0.29595 (19)0.53062 (11)0.0263 (4)
C70.4875 (3)0.2339 (2)0.60579 (12)0.0295 (4)
C80.2358 (3)0.0693 (2)0.63437 (13)0.0350 (4)
H8A0.32430.01700.67880.042*
H8B0.15570.00680.60140.042*
C90.1209 (3)0.1729 (2)0.67757 (13)0.0346 (4)
C100.0182 (3)0.1008 (3)0.73859 (14)0.0500 (6)
H10A0.07300.00390.75640.060*
H10B0.10920.08670.71040.060*
H10C0.02350.16460.78900.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0268 (2)0.0309 (2)0.0263 (2)0.00255 (17)0.00270 (17)0.00209 (17)
O10.0271 (7)0.0465 (8)0.0446 (9)0.0070 (6)0.0015 (6)0.0000 (7)
O20.0477 (9)0.0311 (7)0.0415 (8)0.0004 (6)0.0049 (7)0.0067 (6)
O30.0419 (8)0.0536 (9)0.0221 (7)0.0003 (7)0.0024 (6)0.0009 (6)
O40.0612 (11)0.0388 (8)0.0582 (11)0.0046 (8)0.0288 (9)0.0006 (7)
N10.0303 (8)0.0411 (9)0.0252 (8)0.0019 (7)0.0077 (6)0.0004 (6)
C10.0278 (9)0.0337 (9)0.0289 (9)0.0050 (7)0.0021 (7)0.0009 (7)
C20.0286 (9)0.0344 (10)0.0393 (11)0.0029 (8)0.0105 (8)0.0018 (8)
C30.0367 (10)0.0430 (11)0.0291 (10)0.0065 (8)0.0124 (8)0.0051 (8)
C40.0334 (9)0.0382 (10)0.0230 (9)0.0071 (8)0.0043 (7)0.0016 (7)
C50.0251 (8)0.0287 (8)0.0259 (9)0.0051 (7)0.0040 (7)0.0006 (7)
C60.0278 (9)0.0280 (8)0.0229 (8)0.0061 (7)0.0043 (7)0.0008 (7)
C70.0290 (9)0.0345 (9)0.0249 (9)0.0052 (7)0.0045 (7)0.0005 (7)
C80.0389 (10)0.0345 (10)0.0330 (10)0.0006 (8)0.0103 (8)0.0053 (8)
C90.0322 (10)0.0435 (11)0.0288 (10)0.0055 (9)0.0075 (8)0.0006 (8)
C100.0500 (13)0.0703 (16)0.0330 (12)0.0204 (12)0.0159 (10)0.0010 (11)
Geometric parameters (Å, º) top
S1—O21.4295 (15)C3—C41.388 (3)
S1—O11.4305 (15)C3—H30.9500
S1—N11.6667 (18)C4—C51.385 (3)
S1—C51.7485 (19)C4—H40.9500
O3—C71.211 (2)C5—C61.389 (3)
O4—C91.204 (3)C6—C71.487 (3)
N1—C71.388 (3)C8—C91.517 (3)
N1—C81.456 (2)C8—H8A0.9900
C1—C61.383 (3)C8—H8B0.9900
C1—C21.392 (3)C9—C101.496 (3)
C1—H10.9500C10—H10A0.9800
C2—C31.389 (3)C10—H10B0.9800
C2—H20.9500C10—H10C0.9800
O2—S1—O1116.35 (9)C6—C5—S1110.42 (14)
O2—S1—N1109.71 (9)C1—C6—C5120.11 (17)
O1—S1—N1110.53 (9)C1—C6—C7127.31 (17)
O2—S1—C5112.90 (9)C5—C6—C7112.55 (16)
O1—S1—C5112.22 (9)O3—C7—N1123.44 (18)
N1—S1—C592.60 (8)O3—C7—C6127.64 (18)
C7—N1—C8123.13 (17)N1—C7—C6108.91 (16)
C7—N1—S1115.29 (13)N1—C8—C9112.95 (16)
C8—N1—S1121.49 (14)N1—C8—H8A109.0
C6—C1—C2118.03 (18)C9—C8—H8A109.0
C6—C1—H1121.0N1—C8—H8B109.0
C2—C1—H1121.0C9—C8—H8B109.0
C3—C2—C1121.19 (19)H8A—C8—H8B107.8
C3—C2—H2119.4O4—C9—C10123.2 (2)
C1—C2—H2119.4O4—C9—C8121.05 (18)
C4—C3—C2121.16 (18)C10—C9—C8115.78 (19)
C4—C3—H3119.4C9—C10—H10A109.5
C2—C3—H3119.4C9—C10—H10B109.5
C5—C4—C3116.97 (18)H10A—C10—H10B109.5
C5—C4—H4121.5C9—C10—H10C109.5
C3—C4—H4121.5H10A—C10—H10C109.5
C4—C5—C6122.52 (18)H10B—C10—H10C109.5
C4—C5—S1127.07 (15)
O2—S1—N1—C7120.12 (15)C2—C1—C6—C7178.29 (17)
O1—S1—N1—C7110.26 (15)C4—C5—C6—C10.9 (3)
C5—S1—N1—C74.66 (15)S1—C5—C6—C1179.02 (13)
O2—S1—N1—C863.36 (17)C4—C5—C6—C7177.06 (16)
O1—S1—N1—C866.26 (17)S1—C5—C6—C73.04 (19)
C5—S1—N1—C8178.83 (15)C8—N1—C7—O31.2 (3)
C6—C1—C2—C31.4 (3)S1—N1—C7—O3177.61 (15)
C1—C2—C3—C40.6 (3)C8—N1—C7—C6179.96 (16)
C2—C3—C4—C50.9 (3)S1—N1—C7—C63.59 (19)
C3—C4—C5—C61.7 (3)C1—C6—C7—O31.1 (3)
C3—C4—C5—S1178.21 (14)C5—C6—C7—O3178.91 (18)
O2—S1—C5—C463.10 (19)C1—C6—C7—N1177.59 (17)
O1—S1—C5—C470.77 (19)C5—C6—C7—N10.2 (2)
N1—S1—C5—C4175.78 (17)C7—N1—C8—C974.6 (2)
O2—S1—C5—C6117.01 (13)S1—N1—C8—C9101.65 (19)
O1—S1—C5—C6109.12 (14)N1—C8—C9—O40.4 (3)
N1—S1—C5—C64.32 (14)N1—C8—C9—C10178.98 (18)
C2—C1—C6—C50.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.982.573.324 (3)134
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H9NO4S
Mr239.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)7.475 (3), 8.975 (4), 15.923 (7)
β (°) 101.028 (18)
V3)1048.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.12 × 0.12 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.964, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3984, 2382, 2106
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.04
No. of reflections2382
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.41

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.982.573.324 (3)134
Symmetry code: (i) x, y, z+1.
 

References

First citationAhmad, M., Siddiqui, H. L., Ahmad, S., Farooq, S. U. & Parvez, M. (2008). Acta Cryst. E64, o1213–o1214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H. -B. Bürgi & J. D. Dunitz, Vol. 2. 431–507. New York: VCH.  Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 1–9.  Web of Science CrossRef PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). Eur. J. Med. Chem. 42, 456–462.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheselli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). Bioorg. Med. Chem. 15, 2206–2215.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds