metal-organic compounds
Difluoridodioxido(1,10-phenanthroline)molybdenum(VI)
aDepartment of Chemistry, Baicheng Normal College, Baicheng, Jiln 137000, People's Republic of China, and bCollege of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People's Republic of China
*Correspondence e-mail: wangwj3309@126.com
The title compound, [MoF2O2(C12H8N2)], has non-crystallographic mirror symmetry. The MoVI atom shows a distorted octahedral environment, with the phenanthroline N atoms and the two oxide groups forming the equatorial plane and the F atoms occupying the apical positions. Weak C—H⋯O and C—H⋯F hydrogen-bonding contacts and π–π interactions [centroid–centroid distance = 3.662 (1) Å] connect the complex molecules into a three-dimensional supramolecular framework.
Related literature
For the structure and mode of action of the co-factor of oxido-molybdoenzymes, see: Collison et al. (1996). For the catalyst precursors, see Villata et al. (2000). For the dichloridodioxo analogue of the title compound, see: Viossat & Rodier (1979). For other related structures with the chelating phenanthroline ligand, see: Butcher et al. (1979); Bingham et al. (2006); Zhou et al. (2000).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809031626/si2192sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809031626/si2192Isup2.hkl
A mixture of Molybdenum trioxide (0.2874 g, 2 mmol), HF (2 ml), 1,10-phenanthroline(0.2246 g, 1.1 mmol) and N,N-dimethylformamide (30 ml) was stirring for 7 h under 343 K. After cooling to room temperature, the mixture was adjusted to pH = 6.05 with 6 M H2SO4 solution. The filtration was allowed to stand over several days to give colorless block single crystals in 80% yield. Analysis calculated for C12H8F2MoN2O2: C 41.64, H 2.33, N 8.09, F 10.98%; found: C 41.60, H 2.30, N 8.06, F 10.94%.
H atoms were located from difference Fourier maps, but were subsequently placed in calculated positions and treated as riding, with C—H = 0.93 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq (C,O)]
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[MoF2O2(C12H8N2)] | F(000) = 680 |
Mr = 346.14 | Dx = 1.926 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 7.5190 (9) Å | θ = 7.5–15° |
b = 17.818 (2) Å | µ = 1.12 mm−1 |
c = 9.5331 (11) Å | T = 295 K |
β = 110.856 (1)° | Block, colorless |
V = 1193.5 (2) Å3 | 0.30 × 0.30 × 0.20 mm |
Z = 4 |
Bruker APEXII diffractometer | 2248 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 26.2°, θmin = 2.6° |
ω scans | h = −9→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −15→22 |
Tmin = 0.711, Tmax = 0.799 | l = −11→11 |
6460 measured reflections | 2 standard reflections every 150 reflections |
2394 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.04P)2 + 0.45P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2394 reflections | Δρmax = 0.46 e Å−3 |
173 parameters | Δρmin = −0.59 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.0345 (14) |
Primary atom site location: structure-invariant direct methods |
[MoF2O2(C12H8N2)] | V = 1193.5 (2) Å3 |
Mr = 346.14 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.5190 (9) Å | µ = 1.12 mm−1 |
b = 17.818 (2) Å | T = 295 K |
c = 9.5331 (11) Å | 0.30 × 0.30 × 0.20 mm |
β = 110.856 (1)° |
Bruker APEXII diffractometer | 2248 reflections with I > 2σ(I) |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | Rint = 0.023 |
Tmin = 0.711, Tmax = 0.799 | 2 standard reflections every 150 reflections |
6460 measured reflections | intensity decay: none |
2394 independent reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.46 e Å−3 |
2394 reflections | Δρmin = −0.59 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.46789 (2) | 0.344747 (10) | 0.354935 (18) | 0.03131 (11) | |
F1 | 0.62030 (19) | 0.32745 (9) | 0.23609 (16) | 0.0466 (3) | |
F2 | 0.25657 (19) | 0.38491 (8) | 0.39576 (15) | 0.0441 (3) | |
O1 | 0.6429 (3) | 0.38223 (12) | 0.50412 (19) | 0.0548 (5) | |
O2 | 0.4418 (3) | 0.25454 (10) | 0.3980 (2) | 0.0531 (5) | |
N1 | 0.2347 (2) | 0.32975 (10) | 0.1180 (2) | 0.0305 (4) | |
N2 | 0.4234 (2) | 0.45752 (10) | 0.22405 (18) | 0.0299 (4) | |
C1 | 0.1412 (3) | 0.26638 (13) | 0.0684 (3) | 0.0397 (5) | |
H1 | 0.1689 | 0.2247 | 0.1313 | 0.048* | |
C2 | 0.0030 (3) | 0.25974 (15) | −0.0746 (3) | 0.0477 (6) | |
H2C | −0.0610 | 0.2145 | −0.1052 | 0.057* | |
C3 | −0.0379 (3) | 0.31953 (18) | −0.1689 (3) | 0.0462 (6) | |
H3C | −0.1304 | 0.3155 | −0.2643 | 0.055* | |
C4 | 0.0602 (3) | 0.38758 (14) | −0.1221 (2) | 0.0365 (5) | |
C5 | 0.1962 (3) | 0.38964 (12) | 0.0244 (2) | 0.0282 (4) | |
C6 | 0.2597 (3) | 0.52244 (13) | −0.0100 (2) | 0.0343 (4) | |
C7 | 0.3596 (3) | 0.58803 (13) | 0.0530 (3) | 0.0417 (5) | |
H7 | 0.3414 | 0.6317 | −0.0037 | 0.050* | |
C8 | 0.4833 (4) | 0.58742 (13) | 0.1978 (3) | 0.0442 (5) | |
H8 | 0.5477 | 0.6309 | 0.2414 | 0.053* | |
C9 | 0.5125 (3) | 0.52088 (13) | 0.2799 (3) | 0.0376 (5) | |
H9 | 0.5982 | 0.5210 | 0.3783 | 0.045* | |
C10 | 0.2964 (3) | 0.45787 (11) | 0.0808 (2) | 0.0281 (4) | |
C11 | 0.0272 (3) | 0.45398 (16) | −0.2121 (2) | 0.0456 (6) | |
H11 | −0.0617 | 0.4529 | −0.3093 | 0.055* | |
C12 | 0.1218 (3) | 0.51780 (15) | −0.1590 (3) | 0.0443 (6) | |
H12 | 0.0974 | 0.5600 | −0.2204 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.03177 (14) | 0.03595 (15) | 0.02202 (14) | 0.00454 (6) | 0.00442 (9) | 0.00358 (6) |
F1 | 0.0367 (7) | 0.0648 (9) | 0.0385 (7) | 0.0141 (6) | 0.0137 (6) | 0.0061 (7) |
F2 | 0.0462 (7) | 0.0492 (8) | 0.0420 (7) | 0.0054 (6) | 0.0220 (6) | −0.0004 (6) |
O1 | 0.0492 (10) | 0.0685 (13) | 0.0312 (9) | −0.0001 (9) | −0.0045 (8) | −0.0006 (8) |
O2 | 0.0691 (12) | 0.0409 (10) | 0.0500 (10) | 0.0100 (8) | 0.0223 (9) | 0.0131 (8) |
N1 | 0.0280 (8) | 0.0330 (9) | 0.0283 (9) | 0.0003 (7) | 0.0073 (7) | −0.0023 (7) |
N2 | 0.0287 (8) | 0.0329 (9) | 0.0256 (8) | −0.0001 (7) | 0.0067 (7) | −0.0006 (7) |
C1 | 0.0349 (11) | 0.0369 (12) | 0.0453 (13) | −0.0036 (9) | 0.0116 (10) | −0.0063 (10) |
C2 | 0.0335 (11) | 0.0517 (15) | 0.0535 (15) | −0.0088 (10) | 0.0102 (11) | −0.0207 (12) |
C3 | 0.0266 (11) | 0.0688 (17) | 0.0355 (12) | 0.0024 (10) | 0.0016 (9) | −0.0172 (12) |
C4 | 0.0240 (9) | 0.0558 (14) | 0.0265 (10) | 0.0064 (9) | 0.0052 (8) | −0.0044 (9) |
C5 | 0.0230 (9) | 0.0381 (11) | 0.0223 (9) | 0.0047 (7) | 0.0067 (7) | −0.0017 (8) |
C6 | 0.0332 (10) | 0.0396 (11) | 0.0349 (11) | 0.0099 (9) | 0.0181 (9) | 0.0081 (9) |
C7 | 0.0499 (13) | 0.0352 (12) | 0.0496 (14) | 0.0079 (10) | 0.0296 (12) | 0.0091 (10) |
C8 | 0.0536 (14) | 0.0333 (12) | 0.0537 (15) | −0.0079 (10) | 0.0290 (12) | −0.0064 (10) |
C9 | 0.0375 (11) | 0.0396 (12) | 0.0341 (11) | −0.0050 (9) | 0.0109 (9) | −0.0066 (9) |
C10 | 0.0252 (9) | 0.0349 (10) | 0.0247 (9) | 0.0060 (7) | 0.0097 (7) | 0.0013 (8) |
C11 | 0.0335 (11) | 0.0714 (17) | 0.0265 (11) | 0.0142 (11) | 0.0042 (9) | 0.0071 (11) |
C12 | 0.0404 (12) | 0.0587 (15) | 0.0346 (11) | 0.0186 (11) | 0.0142 (10) | 0.0183 (11) |
Mo1—O2 | 1.6874 (18) | C3—H3C | 0.9300 |
Mo1—O1 | 1.6936 (17) | C4—C5 | 1.407 (3) |
Mo1—F1 | 1.9017 (14) | C4—C11 | 1.430 (4) |
Mo1—F2 | 1.9049 (13) | C5—C10 | 1.431 (3) |
Mo1—N2 | 2.3257 (18) | C6—C7 | 1.403 (3) |
Mo1—N1 | 2.3295 (18) | C6—C10 | 1.407 (3) |
N1—C1 | 1.325 (3) | C6—C12 | 1.432 (3) |
N1—C5 | 1.355 (3) | C7—C8 | 1.362 (4) |
N2—C9 | 1.324 (3) | C7—H7 | 0.9300 |
N2—C10 | 1.360 (2) | C8—C9 | 1.395 (3) |
C1—C2 | 1.394 (3) | C8—H8 | 0.9300 |
C1—H1 | 0.9300 | C9—H9 | 0.9300 |
C2—C3 | 1.357 (4) | C11—C12 | 1.341 (4) |
C2—H2C | 0.9300 | C11—H11 | 0.9300 |
C3—C4 | 1.407 (4) | C12—H12 | 0.9300 |
O2—Mo1—O1 | 107.12 (10) | C4—C3—H3C | 120.1 |
O2—Mo1—F1 | 97.89 (8) | C3—C4—C5 | 116.8 (2) |
O1—Mo1—F1 | 96.38 (8) | C3—C4—C11 | 124.3 (2) |
O2—Mo1—F2 | 97.50 (8) | C5—C4—C11 | 118.9 (2) |
O1—Mo1—F2 | 97.80 (8) | N1—C5—C4 | 122.9 (2) |
F1—Mo1—F2 | 154.96 (6) | N1—C5—C10 | 117.49 (17) |
O2—Mo1—N2 | 161.15 (8) | C4—C5—C10 | 119.63 (19) |
O1—Mo1—N2 | 91.73 (8) | C7—C6—C10 | 117.4 (2) |
F1—Mo1—N2 | 79.77 (6) | C7—C6—C12 | 124.1 (2) |
F2—Mo1—N2 | 79.28 (6) | C10—C6—C12 | 118.5 (2) |
O2—Mo1—N1 | 90.79 (8) | C8—C7—C6 | 119.7 (2) |
O1—Mo1—N1 | 162.00 (8) | C8—C7—H7 | 120.1 |
F1—Mo1—N1 | 78.99 (6) | C6—C7—H7 | 120.1 |
F2—Mo1—N1 | 81.17 (6) | C7—C8—C9 | 119.3 (2) |
N2—Mo1—N1 | 70.38 (6) | C7—C8—H8 | 120.3 |
C1—N1—C5 | 118.29 (19) | C9—C8—H8 | 120.3 |
C1—N1—Mo1 | 124.37 (16) | N2—C9—C8 | 122.9 (2) |
C5—N1—Mo1 | 117.32 (13) | N2—C9—H9 | 118.6 |
C9—N2—C10 | 118.29 (19) | C8—C9—H9 | 118.6 |
C9—N2—Mo1 | 124.43 (14) | N2—C10—C6 | 122.38 (19) |
C10—N2—Mo1 | 117.28 (13) | N2—C10—C5 | 117.45 (17) |
N1—C1—C2 | 122.5 (2) | C6—C10—C5 | 120.16 (18) |
N1—C1—H1 | 118.7 | C12—C11—C4 | 121.3 (2) |
C2—C1—H1 | 118.7 | C12—C11—H11 | 119.3 |
C3—C2—C1 | 119.7 (2) | C4—C11—H11 | 119.3 |
C3—C2—H2C | 120.2 | C11—C12—C6 | 121.5 (2) |
C1—C2—H2C | 120.2 | C11—C12—H12 | 119.2 |
C2—C3—C4 | 119.8 (2) | C6—C12—H12 | 119.2 |
C2—C3—H3C | 120.1 | ||
O2—Mo1—N1—C1 | 0.08 (18) | Mo1—N1—C5—C10 | −2.4 (2) |
O1—Mo1—N1—C1 | 174.5 (3) | C3—C4—C5—N1 | 0.4 (3) |
F1—Mo1—N1—C1 | 97.96 (18) | C11—C4—C5—N1 | 179.07 (19) |
F2—Mo1—N1—C1 | −97.39 (17) | C3—C4—C5—C10 | −177.92 (18) |
N2—Mo1—N1—C1 | −179.08 (18) | C11—C4—C5—C10 | 0.8 (3) |
O2—Mo1—N1—C5 | −178.35 (15) | C10—C6—C7—C8 | −1.2 (3) |
O1—Mo1—N1—C5 | −3.9 (3) | C12—C6—C7—C8 | 177.7 (2) |
F1—Mo1—N1—C5 | −80.46 (14) | C6—C7—C8—C9 | 1.6 (3) |
F2—Mo1—N1—C5 | 84.18 (14) | C10—N2—C9—C8 | −0.8 (3) |
N2—Mo1—N1—C5 | 2.49 (13) | Mo1—N2—C9—C8 | 179.51 (16) |
O2—Mo1—N2—C9 | 174.7 (2) | C7—C8—C9—N2 | −0.6 (3) |
O1—Mo1—N2—C9 | −4.66 (18) | C9—N2—C10—C6 | 1.3 (3) |
F1—Mo1—N2—C9 | −100.83 (17) | Mo1—N2—C10—C6 | −179.05 (14) |
F2—Mo1—N2—C9 | 92.95 (17) | C9—N2—C10—C5 | −177.63 (18) |
N1—Mo1—N2—C9 | 177.31 (18) | Mo1—N2—C10—C5 | 2.1 (2) |
O2—Mo1—N2—C10 | −5.0 (3) | C7—C6—C10—N2 | −0.3 (3) |
O1—Mo1—N2—C10 | 175.66 (15) | C12—C6—C10—N2 | −179.26 (19) |
F1—Mo1—N2—C10 | 79.49 (14) | C7—C6—C10—C5 | 178.60 (17) |
F2—Mo1—N2—C10 | −86.72 (14) | C12—C6—C10—C5 | −0.4 (3) |
N1—Mo1—N2—C10 | −2.37 (13) | N1—C5—C10—N2 | 0.2 (3) |
C5—N1—C1—C2 | −1.4 (3) | C4—C5—C10—N2 | 178.62 (17) |
Mo1—N1—C1—C2 | −179.78 (17) | N1—C5—C10—C6 | −178.69 (17) |
N1—C1—C2—C3 | 0.9 (4) | C4—C5—C10—C6 | −0.3 (3) |
C1—C2—C3—C4 | 0.3 (4) | C3—C4—C11—C12 | 178.0 (2) |
C2—C3—C4—C5 | −0.9 (3) | C5—C4—C11—C12 | −0.6 (3) |
C2—C3—C4—C11 | −179.5 (2) | C4—C11—C12—C6 | −0.2 (3) |
C1—N1—C5—C4 | 0.7 (3) | C7—C6—C12—C11 | −178.3 (2) |
Mo1—N1—C5—C4 | 179.25 (14) | C10—C6—C12—C11 | 0.6 (3) |
C1—N1—C5—C10 | 179.07 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2C···F1i | 0.93 | 2.45 | 3.202 (3) | 138 |
C3—H3C···O1ii | 0.93 | 2.55 | 3.376 (3) | 148 |
C7—H7···F1iii | 0.93 | 2.44 | 3.191 (3) | 137 |
C8—H8···O2iv | 0.93 | 2.59 | 3.222 (3) | 126 |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x−1, y, z−1; (iii) −x+1, −y+1, −z; (iv) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [MoF2O2(C12H8N2)] |
Mr | 346.14 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 7.5190 (9), 17.818 (2), 9.5331 (11) |
β (°) | 110.856 (1) |
V (Å3) | 1193.5 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.12 |
Crystal size (mm) | 0.30 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.711, 0.799 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6460, 2394, 2248 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.621 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.065, 1.04 |
No. of reflections | 2394 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.59 |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).
Mo1—O2 | 1.6874 (18) | Mo1—F2 | 1.9049 (13) |
Mo1—O1 | 1.6936 (17) | Mo1—N2 | 2.3257 (18) |
Mo1—F1 | 1.9017 (14) | Mo1—N1 | 2.3295 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2C···F1i | 0.93 | 2.45 | 3.202 (3) | 137.8 |
C3—H3C···O1ii | 0.93 | 2.55 | 3.376 (3) | 147.9 |
C7—H7···F1iii | 0.93 | 2.44 | 3.191 (3) | 137.4 |
C8—H8···O2iv | 0.93 | 2.59 | 3.222 (3) | 125.9 |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x−1, y, z−1; (iii) −x+1, −y+1, −z; (iv) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors gratefully acknowledge financial support from the Youth Fund of Northeast Normal University.
References
Bingham, A. L., Drake, J. E., Hursthouse, M. B., Light, M. E., Kumar, R. & Ratnani, R. (2006). Polyhedron, 25, 3238–3244. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butcher, R. J., Penfold, B. R. & Slim, E. (1979). J. Chem. Soc. Dalton Trans. pp. 668–675. CSD CrossRef Web of Science Google Scholar
Collison, D., Garner, C. D. & Joule, J. A. (1996). Chem. Soc. Rev. 25, 25–32. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Villata, L. S., Féliz, M. R. & Capparelli, A. L. (2000). Coord. Chem. Rev., 196, 65–84. Web of Science CrossRef CAS Google Scholar
Viossat, B. & Rodier, N. (1979). Acta Cryst. B35, 2715–2718. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Zhou, Y. S., Zhang, L. J., Fun, H. K. & You, X. Z. (2000). Inorg. Chem. Commun. pp. 114–116. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The high oxidation state oxomolybdenum(VI) can be potentially used as molybdoenzyme, oxo transfer agents, and catalyst precusors [Collison, et al., (1996); Villata, et al., (2000)]. Though some MoO2X2 (X = Cl, Br) complexes have been reported [Butcher, et al. (1979)], these compounds are usually unstable in air. Thus, the air stable dioxomolybdenum(VI) complex remains an intriguing area for chemists [Bingham, et al. (2006)]. In this paper, we reported a new fluorin containing oxomolybdenum(VI) complex that is stable in air.
As shown in Fig. 1, the title complex exhibits non-crystallographic molecular mirror symmetry. The distorted octahedral environment around molybdenum consists of cis terminal oxygen atoms (Ot) and trans fluorin atoms and bidentate 1,10-phenanthroline ligand. One mirror plane can be seen bisecting the atoms F1-Mo1-F2 and extending through the midpoints of the central C—C bonds of the phenanthroline ligand, while another mirror can be imagined within the phenanthroline plane and the Mo and dioxo atoms. The average Mo—Ot bond distance of 1.691 Å (Table 1) is a typical molybdenum-oxygen terminal double bond and is similar to those observed in MoO2X2.2L complexes [Butcher, et al. (1979)]. The Mo—N bond distances (2.326 (2) Å and 2.330 (2) Å) are also similar to those values observed in analogue complexes [Bingham, et al. (2006); Viossat & Rodier, (1979)]. However, the Mo—F bond distances of 1.905 (1) Å and 1.902 (1) Å for the title compound are transparently shorter than the Mo—Cl or Mo—Br bonds determined in other MoO2X2 (X = Cl, Br) complexes [For MoO2Cl2 complex, see: Viossat & Rodier, (1979); for MoO2X2.2L complexes, see: Butcher, et al. (1979)]. This is the main reason that the title compound is stable in air. Furthermore, there also exist weak C—H···F and C—H···O hydrogen bonding interactions between neighboring molecules which plays an important role to consolidate the supramolecular structure of the title compund. The detailed hydrogen bond parameters are shown in Table 2. Molybdenum and 1,10-phenanthroline complexes were substantively reported [Zhou, et al. (2000); Viossat & Rodier, (1979); Butcher, et al. (1979)], but it was quite missing that some references described the distinctive nature or features of π–π interaction. Whereas for the title complex, the 1,10-phenanthroline phenyl ring induced π–π interaction is demonstrated to aid the three-dimensional structure together with the weak hydrogen bonding contacts (Fig. 2). The centroid to centroid distance is 3.6619 (14) Å. (Cg3···Cg3îii^, Cg3 is the centroid of the ring (N2 C9 C8 C7 C6 C10), symmetry code iii = 1 - x, 1 - y, -z). The perpendicular distance of the rings is 3.369 Å and the slippage between the rings is 1.435 Å.