metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­fluoridodioxido(1,10-phenanthroline)molybdenum(VI)

aDepartment of Chemistry, Baicheng Normal College, Baicheng, Jiln 137000, People's Republic of China, and bCollege of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People's Republic of China
*Correspondence e-mail: wangwj3309@126.com

(Received 28 July 2009; accepted 11 August 2009; online 19 August 2009)

The title compound, [MoF2O2(C12H8N2)], has non-crystallographic mirror symmetry. The MoVI atom shows a distorted octa­hedral environment, with the phenanthroline N atoms and the two oxide groups forming the equatorial plane and the F atoms occupying the apical positions. Weak C—H⋯O and C—H⋯F hydrogen-bonding contacts and ππ inter­actions [centroid–centroid distance = 3.662 (1) Å] connect the complex mol­ecules into a three-dimensional supra­molecular framework.

Related literature

For the structure and mode of action of the co-factor of oxido-molybdoenzymes, see: Collison et al. (1996[Collison, D., Garner, C. D. & Joule, J. A. (1996). Chem. Soc. Rev. 25, 25-32.]). For the catalyst precursors, see Villata et al. (2000[Villata, L. S., Féliz, M. R. & Capparelli, A. L. (2000). Coord. Chem. Rev., 196, 65-84.]). For the dichlorido­dioxo analogue of the title compound, see: Viossat & Rodier (1979[Viossat, B. & Rodier, N. (1979). Acta Cryst. B35, 2715-2718.]). For other related structures with the chelating phenanthroline ligand, see: Butcher et al. (1979[Butcher, R. J., Penfold, B. R. & Slim, E. (1979). J. Chem. Soc. Dalton Trans. pp. 668-675.]); Bingham et al. (2006[Bingham, A. L., Drake, J. E., Hursthouse, M. B., Light, M. E., Kumar, R. & Ratnani, R. (2006). Polyhedron, 25, 3238-3244.]); Zhou et al. (2000[Zhou, Y. S., Zhang, L. J., Fun, H. K. & You, X. Z. (2000). Inorg. Chem. Commun. pp. 114-116.]).

[Scheme 1]

Experimental

Crystal data
  • [MoF2O2(C12H8N2)]

  • Mr = 346.14

  • Monoclinic, P 21 /c

  • a = 7.5190 (9) Å

  • b = 17.818 (2) Å

  • c = 9.5331 (11) Å

  • β = 110.8560 (10)°

  • V = 1193.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 295 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.711, Tmax = 0.799

  • 6460 measured reflections

  • 2394 independent reflections

  • 2248 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.065

  • S = 1.04

  • 2394 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O2 1.6874 (18)
Mo1—O1 1.6936 (17)
Mo1—F1 1.9017 (14)
Mo1—F2 1.9049 (13)
Mo1—N2 2.3257 (18)
Mo1—N1 2.3295 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2C⋯F1i 0.93 2.45 3.202 (3) 138
C3—H3C⋯O1ii 0.93 2.55 3.376 (3) 148
C7—H7⋯F1iii 0.93 2.44 3.191 (3) 137
C8—H8⋯O2iv 0.93 2.59 3.222 (3) 126
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z-1; (iii) -x+1, -y+1, -z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The high oxidation state oxomolybdenum(VI) can be potentially used as molybdoenzyme, oxo transfer agents, and catalyst precusors [Collison, et al., (1996); Villata, et al., (2000)]. Though some MoO2X2 (X = Cl, Br) complexes have been reported [Butcher, et al. (1979)], these compounds are usually unstable in air. Thus, the air stable dioxomolybdenum(VI) complex remains an intriguing area for chemists [Bingham, et al. (2006)]. In this paper, we reported a new fluorin containing oxomolybdenum(VI) complex that is stable in air.

As shown in Fig. 1, the title complex exhibits non-crystallographic molecular mirror symmetry. The distorted octahedral environment around molybdenum consists of cis terminal oxygen atoms (Ot) and trans fluorin atoms and bidentate 1,10-phenanthroline ligand. One mirror plane can be seen bisecting the atoms F1-Mo1-F2 and extending through the midpoints of the central C—C bonds of the phenanthroline ligand, while another mirror can be imagined within the phenanthroline plane and the Mo and dioxo atoms. The average Mo—Ot bond distance of 1.691 Å (Table 1) is a typical molybdenum-oxygen terminal double bond and is similar to those observed in MoO2X2.2L complexes [Butcher, et al. (1979)]. The Mo—N bond distances (2.326 (2) Å and 2.330 (2) Å) are also similar to those values observed in analogue complexes [Bingham, et al. (2006); Viossat & Rodier, (1979)]. However, the Mo—F bond distances of 1.905 (1) Å and 1.902 (1) Å for the title compound are transparently shorter than the Mo—Cl or Mo—Br bonds determined in other MoO2X2 (X = Cl, Br) complexes [For MoO2Cl2 complex, see: Viossat & Rodier, (1979); for MoO2X2.2L complexes, see: Butcher, et al. (1979)]. This is the main reason that the title compound is stable in air. Furthermore, there also exist weak C—H···F and C—H···O hydrogen bonding interactions between neighboring molecules which plays an important role to consolidate the supramolecular structure of the title compund. The detailed hydrogen bond parameters are shown in Table 2. Molybdenum and 1,10-phenanthroline complexes were substantively reported [Zhou, et al. (2000); Viossat & Rodier, (1979); Butcher, et al. (1979)], but it was quite missing that some references described the distinctive nature or features of ππ interaction. Whereas for the title complex, the 1,10-phenanthroline phenyl ring induced ππ interaction is demonstrated to aid the three-dimensional structure together with the weak hydrogen bonding contacts (Fig. 2). The centroid to centroid distance is 3.6619 (14) Å. (Cg3···Cg3îii^, Cg3 is the centroid of the ring (N2 C9 C8 C7 C6 C10), symmetry code iii = 1 - x, 1 - y, -z). The perpendicular distance of the rings is 3.369 Å and the slippage between the rings is 1.435 Å.

Related literature top

For the structure and mode of action of the co-factor of oxo-molybdoenzymes, see: Collison et al. (1996). For the catalyst precursors, see Villata et al. (2000). For the dichlorodioxo analogue of the title compound, see: Viossat & Rodier (1979). For other related structures with the chelating phenanthroline ligand, see: Butcher et al. (1979); Bingham et al. (2006); Zhou et al. (2000).

Experimental top

A mixture of Molybdenum trioxide (0.2874 g, 2 mmol), HF (2 ml), 1,10-phenanthroline(0.2246 g, 1.1 mmol) and N,N-dimethylformamide (30 ml) was stirring for 7 h under 343 K. After cooling to room temperature, the mixture was adjusted to pH = 6.05 with 6 M H2SO4 solution. The filtration was allowed to stand over several days to give colorless block single crystals in 80% yield. Analysis calculated for C12H8F2MoN2O2: C 41.64, H 2.33, N 8.09, F 10.98%; found: C 41.60, H 2.30, N 8.06, F 10.94%.

Refinement top

H atoms were located from difference Fourier maps, but were subsequently placed in calculated positions and treated as riding, with C—H = 0.93 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq (C,O)]

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The local coordination environment of the Mo(VI) atom in the title compound drawn with 30% probability. H atoms omitted for clarity.
[Figure 2] Fig. 2. The three-dimensional supramolecular network of the title compund produced by hydrogen-bonding and ππ stacking interactions.[Color codes: Mo, pink; O, red; F, yellow; N, blue; C, grey. Symmetry codes: (i) x - 1, -y + 1/2, z - 1/2; (ii) x - 1, y, z - 1; (iii) -x + 1, -y + 1, -z; (iv) -x + 1, y + 1/2, -z + 1/2.]
Difluoridodioxido(1,10-phenanthroline)molybdenum(VI) top
Crystal data top
[MoF2O2(C12H8N2)]F(000) = 680
Mr = 346.14Dx = 1.926 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.5190 (9) Åθ = 7.5–15°
b = 17.818 (2) ŵ = 1.12 mm1
c = 9.5331 (11) ÅT = 295 K
β = 110.856 (1)°Block, colorless
V = 1193.5 (2) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2248 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 26.2°, θmin = 2.6°
ω scansh = 98
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1522
Tmin = 0.711, Tmax = 0.799l = 1111
6460 measured reflections2 standard reflections every 150 reflections
2394 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.04P)2 + 0.45P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2394 reflectionsΔρmax = 0.46 e Å3
173 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0345 (14)
Primary atom site location: structure-invariant direct methods
Crystal data top
[MoF2O2(C12H8N2)]V = 1193.5 (2) Å3
Mr = 346.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5190 (9) ŵ = 1.12 mm1
b = 17.818 (2) ÅT = 295 K
c = 9.5331 (11) Å0.30 × 0.30 × 0.20 mm
β = 110.856 (1)°
Data collection top
Bruker APEXII
diffractometer
2248 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.023
Tmin = 0.711, Tmax = 0.7992 standard reflections every 150 reflections
6460 measured reflections intensity decay: none
2394 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
2394 reflectionsΔρmin = 0.59 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.46789 (2)0.344747 (10)0.354935 (18)0.03131 (11)
F10.62030 (19)0.32745 (9)0.23609 (16)0.0466 (3)
F20.25657 (19)0.38491 (8)0.39576 (15)0.0441 (3)
O10.6429 (3)0.38223 (12)0.50412 (19)0.0548 (5)
O20.4418 (3)0.25454 (10)0.3980 (2)0.0531 (5)
N10.2347 (2)0.32975 (10)0.1180 (2)0.0305 (4)
N20.4234 (2)0.45752 (10)0.22405 (18)0.0299 (4)
C10.1412 (3)0.26638 (13)0.0684 (3)0.0397 (5)
H10.16890.22470.13130.048*
C20.0030 (3)0.25974 (15)0.0746 (3)0.0477 (6)
H2C0.06100.21450.10520.057*
C30.0379 (3)0.31953 (18)0.1689 (3)0.0462 (6)
H3C0.13040.31550.26430.055*
C40.0602 (3)0.38758 (14)0.1221 (2)0.0365 (5)
C50.1962 (3)0.38964 (12)0.0244 (2)0.0282 (4)
C60.2597 (3)0.52244 (13)0.0100 (2)0.0343 (4)
C70.3596 (3)0.58803 (13)0.0530 (3)0.0417 (5)
H70.34140.63170.00370.050*
C80.4833 (4)0.58742 (13)0.1978 (3)0.0442 (5)
H80.54770.63090.24140.053*
C90.5125 (3)0.52088 (13)0.2799 (3)0.0376 (5)
H90.59820.52100.37830.045*
C100.2964 (3)0.45787 (11)0.0808 (2)0.0281 (4)
C110.0272 (3)0.45398 (16)0.2121 (2)0.0456 (6)
H110.06170.45290.30930.055*
C120.1218 (3)0.51780 (15)0.1590 (3)0.0443 (6)
H120.09740.56000.22040.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.03177 (14)0.03595 (15)0.02202 (14)0.00454 (6)0.00442 (9)0.00358 (6)
F10.0367 (7)0.0648 (9)0.0385 (7)0.0141 (6)0.0137 (6)0.0061 (7)
F20.0462 (7)0.0492 (8)0.0420 (7)0.0054 (6)0.0220 (6)0.0004 (6)
O10.0492 (10)0.0685 (13)0.0312 (9)0.0001 (9)0.0045 (8)0.0006 (8)
O20.0691 (12)0.0409 (10)0.0500 (10)0.0100 (8)0.0223 (9)0.0131 (8)
N10.0280 (8)0.0330 (9)0.0283 (9)0.0003 (7)0.0073 (7)0.0023 (7)
N20.0287 (8)0.0329 (9)0.0256 (8)0.0001 (7)0.0067 (7)0.0006 (7)
C10.0349 (11)0.0369 (12)0.0453 (13)0.0036 (9)0.0116 (10)0.0063 (10)
C20.0335 (11)0.0517 (15)0.0535 (15)0.0088 (10)0.0102 (11)0.0207 (12)
C30.0266 (11)0.0688 (17)0.0355 (12)0.0024 (10)0.0016 (9)0.0172 (12)
C40.0240 (9)0.0558 (14)0.0265 (10)0.0064 (9)0.0052 (8)0.0044 (9)
C50.0230 (9)0.0381 (11)0.0223 (9)0.0047 (7)0.0067 (7)0.0017 (8)
C60.0332 (10)0.0396 (11)0.0349 (11)0.0099 (9)0.0181 (9)0.0081 (9)
C70.0499 (13)0.0352 (12)0.0496 (14)0.0079 (10)0.0296 (12)0.0091 (10)
C80.0536 (14)0.0333 (12)0.0537 (15)0.0079 (10)0.0290 (12)0.0064 (10)
C90.0375 (11)0.0396 (12)0.0341 (11)0.0050 (9)0.0109 (9)0.0066 (9)
C100.0252 (9)0.0349 (10)0.0247 (9)0.0060 (7)0.0097 (7)0.0013 (8)
C110.0335 (11)0.0714 (17)0.0265 (11)0.0142 (11)0.0042 (9)0.0071 (11)
C120.0404 (12)0.0587 (15)0.0346 (11)0.0186 (11)0.0142 (10)0.0183 (11)
Geometric parameters (Å, º) top
Mo1—O21.6874 (18)C3—H3C0.9300
Mo1—O11.6936 (17)C4—C51.407 (3)
Mo1—F11.9017 (14)C4—C111.430 (4)
Mo1—F21.9049 (13)C5—C101.431 (3)
Mo1—N22.3257 (18)C6—C71.403 (3)
Mo1—N12.3295 (18)C6—C101.407 (3)
N1—C11.325 (3)C6—C121.432 (3)
N1—C51.355 (3)C7—C81.362 (4)
N2—C91.324 (3)C7—H70.9300
N2—C101.360 (2)C8—C91.395 (3)
C1—C21.394 (3)C8—H80.9300
C1—H10.9300C9—H90.9300
C2—C31.357 (4)C11—C121.341 (4)
C2—H2C0.9300C11—H110.9300
C3—C41.407 (4)C12—H120.9300
O2—Mo1—O1107.12 (10)C4—C3—H3C120.1
O2—Mo1—F197.89 (8)C3—C4—C5116.8 (2)
O1—Mo1—F196.38 (8)C3—C4—C11124.3 (2)
O2—Mo1—F297.50 (8)C5—C4—C11118.9 (2)
O1—Mo1—F297.80 (8)N1—C5—C4122.9 (2)
F1—Mo1—F2154.96 (6)N1—C5—C10117.49 (17)
O2—Mo1—N2161.15 (8)C4—C5—C10119.63 (19)
O1—Mo1—N291.73 (8)C7—C6—C10117.4 (2)
F1—Mo1—N279.77 (6)C7—C6—C12124.1 (2)
F2—Mo1—N279.28 (6)C10—C6—C12118.5 (2)
O2—Mo1—N190.79 (8)C8—C7—C6119.7 (2)
O1—Mo1—N1162.00 (8)C8—C7—H7120.1
F1—Mo1—N178.99 (6)C6—C7—H7120.1
F2—Mo1—N181.17 (6)C7—C8—C9119.3 (2)
N2—Mo1—N170.38 (6)C7—C8—H8120.3
C1—N1—C5118.29 (19)C9—C8—H8120.3
C1—N1—Mo1124.37 (16)N2—C9—C8122.9 (2)
C5—N1—Mo1117.32 (13)N2—C9—H9118.6
C9—N2—C10118.29 (19)C8—C9—H9118.6
C9—N2—Mo1124.43 (14)N2—C10—C6122.38 (19)
C10—N2—Mo1117.28 (13)N2—C10—C5117.45 (17)
N1—C1—C2122.5 (2)C6—C10—C5120.16 (18)
N1—C1—H1118.7C12—C11—C4121.3 (2)
C2—C1—H1118.7C12—C11—H11119.3
C3—C2—C1119.7 (2)C4—C11—H11119.3
C3—C2—H2C120.2C11—C12—C6121.5 (2)
C1—C2—H2C120.2C11—C12—H12119.2
C2—C3—C4119.8 (2)C6—C12—H12119.2
C2—C3—H3C120.1
O2—Mo1—N1—C10.08 (18)Mo1—N1—C5—C102.4 (2)
O1—Mo1—N1—C1174.5 (3)C3—C4—C5—N10.4 (3)
F1—Mo1—N1—C197.96 (18)C11—C4—C5—N1179.07 (19)
F2—Mo1—N1—C197.39 (17)C3—C4—C5—C10177.92 (18)
N2—Mo1—N1—C1179.08 (18)C11—C4—C5—C100.8 (3)
O2—Mo1—N1—C5178.35 (15)C10—C6—C7—C81.2 (3)
O1—Mo1—N1—C53.9 (3)C12—C6—C7—C8177.7 (2)
F1—Mo1—N1—C580.46 (14)C6—C7—C8—C91.6 (3)
F2—Mo1—N1—C584.18 (14)C10—N2—C9—C80.8 (3)
N2—Mo1—N1—C52.49 (13)Mo1—N2—C9—C8179.51 (16)
O2—Mo1—N2—C9174.7 (2)C7—C8—C9—N20.6 (3)
O1—Mo1—N2—C94.66 (18)C9—N2—C10—C61.3 (3)
F1—Mo1—N2—C9100.83 (17)Mo1—N2—C10—C6179.05 (14)
F2—Mo1—N2—C992.95 (17)C9—N2—C10—C5177.63 (18)
N1—Mo1—N2—C9177.31 (18)Mo1—N2—C10—C52.1 (2)
O2—Mo1—N2—C105.0 (3)C7—C6—C10—N20.3 (3)
O1—Mo1—N2—C10175.66 (15)C12—C6—C10—N2179.26 (19)
F1—Mo1—N2—C1079.49 (14)C7—C6—C10—C5178.60 (17)
F2—Mo1—N2—C1086.72 (14)C12—C6—C10—C50.4 (3)
N1—Mo1—N2—C102.37 (13)N1—C5—C10—N20.2 (3)
C5—N1—C1—C21.4 (3)C4—C5—C10—N2178.62 (17)
Mo1—N1—C1—C2179.78 (17)N1—C5—C10—C6178.69 (17)
N1—C1—C2—C30.9 (4)C4—C5—C10—C60.3 (3)
C1—C2—C3—C40.3 (4)C3—C4—C11—C12178.0 (2)
C2—C3—C4—C50.9 (3)C5—C4—C11—C120.6 (3)
C2—C3—C4—C11179.5 (2)C4—C11—C12—C60.2 (3)
C1—N1—C5—C40.7 (3)C7—C6—C12—C11178.3 (2)
Mo1—N1—C5—C4179.25 (14)C10—C6—C12—C110.6 (3)
C1—N1—C5—C10179.07 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···F1i0.932.453.202 (3)138
C3—H3C···O1ii0.932.553.376 (3)148
C7—H7···F1iii0.932.443.191 (3)137
C8—H8···O2iv0.932.593.222 (3)126
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z1; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[MoF2O2(C12H8N2)]
Mr346.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.5190 (9), 17.818 (2), 9.5331 (11)
β (°) 110.856 (1)
V3)1193.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.711, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
6460, 2394, 2248
Rint0.023
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.065, 1.04
No. of reflections2394
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.59

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

Selected bond lengths (Å) top
Mo1—O21.6874 (18)Mo1—F21.9049 (13)
Mo1—O11.6936 (17)Mo1—N22.3257 (18)
Mo1—F11.9017 (14)Mo1—N12.3295 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···F1i0.932.453.202 (3)137.8
C3—H3C···O1ii0.932.553.376 (3)147.9
C7—H7···F1iii0.932.443.191 (3)137.4
C8—H8···O2iv0.932.593.222 (3)125.9
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z1; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Youth Fund of Northeast Normal University.

References

First citationBingham, A. L., Drake, J. E., Hursthouse, M. B., Light, M. E., Kumar, R. & Ratnani, R. (2006). Polyhedron, 25, 3238–3244.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Penfold, B. R. & Slim, E. (1979). J. Chem. Soc. Dalton Trans. pp. 668–675.  CSD CrossRef Web of Science Google Scholar
First citationCollison, D., Garner, C. D. & Joule, J. A. (1996). Chem. Soc. Rev. 25, 25–32.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillata, L. S., Féliz, M. R. & Capparelli, A. L. (2000). Coord. Chem. Rev., 196, 65–84.  Web of Science CrossRef CAS Google Scholar
First citationViossat, B. & Rodier, N. (1979). Acta Cryst. B35, 2715–2718.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZhou, Y. S., Zhang, L. J., Fun, H. K. & You, X. Z. (2000). Inorg. Chem. Commun. pp. 114–116.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds