organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2075-o2076

5-[1-(3,4-Di­chloro­phen­­oxy)eth­yl]-1,3,4-oxa­diazole-2(3H)-thione hemihydrate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Capital Normal University, Beijing Taiyuan 100037, People's Republic of China
*Correspondence e-mail: shameed@qau.edu.pk

(Received 11 July 2009; accepted 28 July 2009; online 8 August 2009)

In the title compound, C10H8Cl2N2O2S·0.5H2O, the atoms in the oxadiazole ring are essentially coplanar (r.m.s. deviation 0.010 Å). The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds involving the water mol­ecule, which is situated on an a twofold rotation axis, and two organic mol­ecules, leading to a thione tautomer in the solid state. The C atom attached to the oxadiazole ring adopts a typical sp3 hybridization. The dihedral angle between the mean plane of the benzene ring of the dichloro­phenyl group and the mean plane of the oxadiazole ring is 74.18 (4)°. The crystal structure is stabilized by intermolecular N—H⋯O and O—H⋯S hydrogen bonds.

Related literature

For the structures and properties of oxadiazoles, see: Almasirad et al., (2004[Almasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezade, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057-6059.]); Aboraia et al. (2006[Aboraia, A. S., Abdel-Rahman, H. M., Mahfouz, N. M. & El-Gendy, M. A. (2006). Bioorg. Med. Chem. 14, 1236-1246.]); Akhtar, Hameed, Al-Masoudi et al. (2008[Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008a). Acta Pharm. 58, 135-149.]); Khan et al. (2005[Khan, M. T. H., Choudhary, M. I., Khan, K. M., Rani, M. & Rahman, A. (2005). Bioorg. Med. Chem. 13, 3385-3395.]); Akhtar, Hameed et al. (2007[Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316-322.]); Akhtar, Hameed, Khan et al. (2008[Akhtar, T., Hameed, S., Khan, K. M. & Choudhary, M. I. (2008b). Med. Chem. 4, 539-543.]); Akhtar, Rauf et al. (2007[Akhtar, T., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2007). Acta Cryst. E63, o2590-o2592.]); Aydogan et al., 2002[Aydogan, F., Turgut, Z., Ocal, N. & Erdem, S. S. (2002). Turk. J. Chem. pp. 159-163.]). For a related structure, see: Thamotharan et al. (2005[Thamotharan, S., Parthasarathi, V., Anandha Babu, G., Hunnur, R. K., Badami, B. & Linden, A. (2005). Acta Cryst. E61, o3746-o3747.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8Cl2N2O2S·0.5H2O

  • Mr = 300.15

  • Monoclinic, C 2/c

  • a = 11.8725 (2) Å

  • b = 7.89320 (10) Å

  • c = 26.6092 (4) Å

  • β = 92.9130 (10)°

  • V = 2490.38 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 123 K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10568 measured reflections

  • 3088 independent reflections

  • 2490 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.078

  • S = 1.09

  • 3088 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.86 2.06 2.9084 (16) 168
O1W—H1W⋯S1i 0.846 (17) 2.612 (18) 3.3854 (13) 152.5 (17)
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

1,3,4-Oxadiazoles are an important class of five-membered heterocycles. They show diverse biological activities, for example, antifungal, antibacterial (Almasirad et al., 2004), anti-convulsant (Aboraia et al. 2006), antitumour (Akhtar, Hameed, Khan et al., 2008) and enzyme inhibitory activities (Khan et al., 2005). In continuation to our work on five membered heterocycles (Akhtar & Hameed et al., 2007), the title compound was synthesized and evaluated for its biological activities (Akhtar et al., 2008a). Herein, we report on the crystal structure of 5-[1-(3,4-dichlorophenoxy) ethyl]-1,3,4-oxadiazole-2(3H)-thione, derived from 3,4-dichlorophenoxy propionic acid (Akhtar & Rauf et al., 2007).

The molecular structure of the title compound is illustrated in Fig. 1. The dihedral angle between the mean planes of the benzene and 1,3,4-oxadiazole rings is 74.18 (4)°. The bond lengths and angles are in good agreement with the expected values (Allen et al., 1987; Thamotharan et al., 2005). The N1—N2 [1.3817 (16) A°] and C1=S1 [1.6489 (13) A°] bond lengths correspond to the usual single bond N—N distance and C=S distance.

1,3,4-Oxadizole-2-thiones/thiols can exist in two tautomeric forms (Aydogan et al., 2002). In the title compound the thione form is observed. The H-atom of the thiol group has been transferred to the adjacent N atom of the oxadiazole ring (Fig. 1).

The title compound crystallized as a hemihydrate, with the water molecule lieing on a crystallographic two-fold axis. The water molecule O-atom hydrogen bonds to the NH group, while the water H-atom hydrogen bonds to the S-atom of the S=C moiety (see Table 1 and Fig. 2).

Related literature top

For related literature on oxadiazoles, their structures and properties, see: Almasirad et al., (2004); Aboraia et al. (2006); Akhtar, Hameed, Al-Masoudi et al. (2008); Khan et al. (2005); Akhtar, Hameed et al. (2007); Akhtar, Hameed, Khan et al. (2008); Akhtar, Rauf et al. (2007); Aydogan et al., 2002). For related structures, see: Allen et al. (1987); Thamotharan et al. (2005).

Experimental top

3,4-dichlorophenoxy acid hydrazide (10.30 mmol) was stirred with KOH (12.37 mmol) dissolved in methanol (30 ml). Carbon disulfide (0.75 mL, 12.37 mmol) was added slowly with stirring. The yellow solution obtained was refluxed until the evolution of hydrogen sulfide had ceased (18h). The reaction mixture was then cooled to rt and filtered. The filtrate was then poured into ice cooled water and acidified with 6M HCl until the colour turned congo red. The precipitate that formed was filtered off and dried. Recrystallization from ethanol/water (1:1) afforded colorless block-like crystals, suitable for X-ray diffraction analysis.

Refinement top

The water H-atom was located from a difference electron-density map and refined (O-H = 0.846 (17) Å), with Uiso(H) = 1.3Ueq(O). The other H-atoms were placed in idealized positions and treated as riding atoms: N-H = 0.86 Å, C—H = 0.93 - 0.98 Å with Uiso(H) = 1.2Ueq(N,C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial crystal packing diagram of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed pale-blue lines.
5-[1-(3,4-Dichlorophenoxy)ethyl]-1,3,4-oxadiazole-2(3H)- thione hemihydrate top
Crystal data top
C10H8Cl2N2O2S·0.5H2OF(000) = 1224
Mr = 300.15Dx = 1.601 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4427 reflections
a = 11.8725 (2) Åθ = 3.1–28.3°
b = 7.8932 (1) ŵ = 0.68 mm1
c = 26.6092 (4) ÅT = 123 K
β = 92.913 (1)°Block, colorless
V = 2490.38 (6) Å30.40 × 0.30 × 0.25 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2490 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 28.3°, θmin = 3.1°
ϕ and ω scansh = 1515
10568 measured reflectionsk = 1010
3088 independent reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.7008P]
where P = (Fo2 + 2Fc2)/3
3088 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H8Cl2N2O2S·0.5H2OV = 2490.38 (6) Å3
Mr = 300.15Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.8725 (2) ŵ = 0.68 mm1
b = 7.8932 (1) ÅT = 123 K
c = 26.6092 (4) Å0.40 × 0.30 × 0.25 mm
β = 92.913 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2490 reflections with I > 2σ(I)
10568 measured reflectionsRint = 0.019
3088 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.22 e Å3
3088 reflectionsΔρmin = 0.21 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25873 (7)0.32348 (12)0.33123 (4)0.0347 (2)
C10.26630 (11)0.47444 (17)0.30643 (5)0.0321 (3)
S10.15653 (3)0.59419 (5)0.290316 (15)0.04313 (11)
N10.37606 (9)0.49544 (15)0.30057 (4)0.0373 (3)
H10.40400.58140.28570.045*
N20.44029 (9)0.36407 (16)0.32095 (5)0.0379 (3)
C20.36727 (11)0.26539 (17)0.33892 (5)0.0330 (3)
C30.38524 (12)0.09920 (18)0.36521 (5)0.0381 (3)
H30.46300.06120.36160.046*
C40.30442 (15)0.0347 (2)0.34486 (6)0.0495 (4)
H4A0.31870.13930.36250.074*
H4B0.31480.05100.30960.074*
H4C0.22840.00100.34950.074*
O20.36403 (8)0.11531 (14)0.41765 (4)0.0417 (2)
C50.44340 (11)0.18810 (17)0.45029 (5)0.0351 (3)
C60.54468 (11)0.25923 (18)0.43709 (5)0.0374 (3)
H60.56490.25840.40380.045*
C70.61526 (11)0.33147 (19)0.47429 (5)0.0379 (3)
H70.68300.37970.46560.046*
C80.58683 (11)0.33307 (17)0.52386 (5)0.0354 (3)
Cl10.67766 (3)0.42681 (5)0.568937 (14)0.04480 (11)
C90.48523 (12)0.26045 (17)0.53664 (5)0.0360 (3)
Cl20.44427 (3)0.26092 (6)0.598122 (14)0.05328 (13)
C100.41405 (11)0.18835 (18)0.50013 (5)0.0380 (3)
H100.34640.13990.50890.046*
O1W0.50000.75760 (19)0.25000.0457 (4)
H1W0.5445 (15)0.817 (2)0.2687 (7)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0320 (4)0.0336 (5)0.0389 (5)0.0003 (4)0.0056 (4)0.0056 (4)
C10.0360 (6)0.0313 (7)0.0291 (6)0.0000 (5)0.0026 (5)0.0009 (5)
S10.03808 (18)0.0406 (2)0.0504 (2)0.00707 (14)0.00080 (15)0.00403 (16)
N10.0354 (5)0.0342 (6)0.0425 (6)0.0001 (5)0.0062 (5)0.0078 (5)
N20.0337 (5)0.0384 (6)0.0419 (6)0.0037 (5)0.0046 (5)0.0045 (5)
C20.0349 (6)0.0327 (7)0.0315 (6)0.0034 (5)0.0032 (5)0.0013 (5)
C30.0434 (7)0.0358 (7)0.0355 (7)0.0051 (6)0.0045 (6)0.0038 (6)
C40.0664 (10)0.0345 (8)0.0473 (9)0.0019 (7)0.0005 (7)0.0028 (7)
O20.0414 (5)0.0494 (6)0.0344 (5)0.0037 (4)0.0027 (4)0.0062 (4)
C50.0356 (6)0.0341 (7)0.0356 (7)0.0075 (5)0.0025 (5)0.0065 (6)
C60.0361 (7)0.0437 (8)0.0328 (7)0.0066 (6)0.0058 (5)0.0059 (6)
C70.0335 (6)0.0409 (8)0.0400 (7)0.0065 (6)0.0065 (5)0.0052 (6)
C80.0361 (6)0.0332 (7)0.0371 (7)0.0098 (5)0.0019 (5)0.0023 (6)
Cl10.04519 (19)0.0466 (2)0.0423 (2)0.00724 (15)0.00057 (14)0.00463 (16)
C90.0402 (7)0.0363 (7)0.0321 (7)0.0119 (6)0.0074 (5)0.0071 (6)
Cl20.0564 (2)0.0696 (3)0.03508 (19)0.00834 (19)0.01402 (16)0.00641 (18)
C100.0364 (7)0.0380 (8)0.0401 (7)0.0051 (6)0.0078 (6)0.0096 (6)
O1W0.0431 (8)0.0329 (8)0.0612 (10)0.0000.0048 (7)0.000
Geometric parameters (Å, º) top
O1—C11.3672 (16)O2—C51.3745 (17)
O1—C21.3733 (15)C5—C101.3882 (19)
C1—N11.3306 (16)C5—C61.3884 (19)
C1—S11.6489 (13)C6—C71.387 (2)
N1—N21.3817 (16)C6—H60.9300
N1—H10.8600C7—C81.3783 (19)
N2—C21.2763 (18)C7—H70.9300
C2—C31.4967 (19)C8—C91.3931 (19)
C3—O21.4363 (17)C8—Cl11.7371 (15)
C3—C41.509 (2)C9—C101.378 (2)
C3—H30.9800C9—Cl21.7302 (14)
C4—H4A0.9600C10—H100.9300
C4—H4B0.9600O1W—H1W0.846 (17)
C4—H4C0.9600
C1—O1—C2106.18 (10)H4A—C4—H4C109.5
N1—C1—O1104.71 (11)H4B—C4—H4C109.5
N1—C1—S1131.59 (11)C5—O2—C3120.17 (10)
O1—C1—S1123.69 (9)O2—C5—C10114.02 (12)
C1—N1—N2112.63 (11)O2—C5—C6125.73 (12)
C1—N1—H1123.7C10—C5—C6120.25 (14)
N2—N1—H1123.7C7—C6—C5119.04 (13)
C2—N2—N1103.48 (10)C7—C6—H6120.5
N2—C2—O1112.99 (12)C5—C6—H6120.5
N2—C2—C3128.79 (12)C8—C7—C6121.23 (13)
O1—C2—C3118.20 (11)C8—C7—H7119.4
O2—C3—C2110.40 (11)C6—C7—H7119.4
O2—C3—C4105.72 (12)C7—C8—C9119.15 (13)
C2—C3—C4111.92 (12)C7—C8—Cl1119.41 (11)
O2—C3—H3109.6C9—C8—Cl1121.44 (10)
C2—C3—H3109.6C10—C9—C8120.36 (12)
C4—C3—H3109.6C10—C9—Cl2118.41 (11)
C3—C4—H4A109.5C8—C9—Cl2121.22 (11)
C3—C4—H4B109.5C9—C10—C5119.97 (13)
H4A—C4—H4B109.5C9—C10—H10120.0
C3—C4—H4C109.5C5—C10—H10120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.862.062.9084 (16)168
O1W—H1W···S1i0.846 (17)2.612 (18)3.3854 (13)152.5 (17)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H8Cl2N2O2S·0.5H2O
Mr300.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)11.8725 (2), 7.8932 (1), 26.6092 (4)
β (°) 92.913 (1)
V3)2490.38 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10568, 3088, 2490
Rint0.019
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.078, 1.09
No. of reflections3088
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.862.062.9084 (16)168
O1W—H1W···S1i0.846 (17)2.612 (18)3.3854 (13)152.5 (17)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to Professor G. B. Jameson, Institute of Fundamental Sciences, Private Bag 11 222, Massey University, Palmerston North, New Zealand, for fruitful discussions.

References

First citationAboraia, A. S., Abdel-Rahman, H. M., Mahfouz, N. M. & El-Gendy, M. A. (2006). Bioorg. Med. Chem. 14, 1236–1246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322.  Web of Science CrossRef CAS Google Scholar
First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008a). Acta Pharm. 58, 135–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Khan, K. M. & Choudhary, M. I. (2008b). Med. Chem. 4, 539–543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2007). Acta Cryst. E63, o2590–o2592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAlmasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezade, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057–6059.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAydogan, F., Turgut, Z., Ocal, N. & Erdem, S. S. (2002). Turk. J. Chem. pp. 159–163.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhan, M. T. H., Choudhary, M. I., Khan, K. M., Rani, M. & Rahman, A. (2005). Bioorg. Med. Chem. 13, 3385–3395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThamotharan, S., Parthasarathi, V., Anandha Babu, G., Hunnur, R. K., Badami, B. & Linden, A. (2005). Acta Cryst. E61, o3746–o3747.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2075-o2076
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds