organic compounds
(Z)-2-Phenyl-3-pivaloyl-1,1-dipropylguanidine
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bUniversity of Zürich, Institute of Inorganic Chemistry, Winterthurerstrasse 190, 8057-Zürich, Switzerland, cDepartment of Chemistry, Abdul Wali Khan University, Mardan, Pakistan, and dDepartment of Chemistry, Islamia University of Bahawalpur, Pakistan
*Correspondence e-mail: msaidqau@yahoo.com
In the title compound, C18H29N3O, a polysubstituted guanidine, the torsion angles indicate that the guanidine unit and the carbonyl group are almost perpendicular to one another [O—C—N—C= −7.40 (18), C—N—C—N= −97.21 (15) and 86.41 (13)°]. The crystal packing is stablized by intermolecular N—H⋯O hydrogen bonds, which link the molecules into a chain.
Related literature
For the biological and chemical properties of guanidine derivatives, see: Ohara et al. (2007); Berlinck (2002); Ma et al. (2008); Brzozowski et al. (2007); Gomez et al. (2000); Kovacevic & Maksic (2001); Ishikawa & Isobe (2002); Rauf et al. (2009). For related structures, see: Cunha et al. (2005); Murtaza et al. (2007, 2008, 2009).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680902978X/su2130sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680902978X/su2130Isup2.hkl
1-phenyl-3-(pivaloyl)thiourea (0.236 g, 1 mmol) [Rauf et al., 2009], dissolved in 10 ml of DMF, was placed in a two neck round bottom flask. Dipropylamine (0.14 g, 1 mmol) and triethylamine (0.28 ml, 2 mmol) were added and the mixture was stirred well at a temperature below 278 K. Mercuric chloride (0.272 g, 1 mmol) was then added and the mixture was stirred vigorously for 20 h. The progress of the reaction was monitored by TLC, untill the completion of reaction. When all the thiourea had been consumed, 20 ml of CH2Cl2 was added and the suspension was filtered through a cintered glass funnel to remove residual HgS, formed as a byproduct during the reaction. The solvent was then evaporated under reduced pressure and the residue dissolved in 20 ml of CH2Cl2. Other byproducts were extracted out with water (4×30 ml). The organic phase was dried over anhydrous MgSO4 and then filtered. The solvent was evaporated and the product was further purified by
The target guanidine was recrystallized using ethanol.The NH H-atom was located in a different electron-density map and freely refined: N-H = 0.837 (17) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 - 0.98 Å with Uiso(H) = k × Ueq(C), where k = 1.2 for H-aromatic, and 1.5 for H-methyl.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C18H29N3O | F(000) = 664 |
Mr = 303.44 | Dx = 1.064 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 31051 reflections |
a = 9.898 (5) Å | θ = 2.5–33.1° |
b = 12.648 (5) Å | µ = 0.07 mm−1 |
c = 15.126 (5) Å | T = 183 K |
V = 1893.6 (14) Å3 | Block, colourless |
Z = 4 | 0.42 × 0.42 × 0.32 mm |
Oxford diffraction Xcalibur R diffractometer | 7202 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5107 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 10.4498 pixels mm-1 | θmax = 33.1°, θmin = 2.5° |
Profile data from ω scans | h = −14→15 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −19→19 |
Tmin = 0.973, Tmax = 0.979 | l = −23→23 |
31051 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0786P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
7202 reflections | Δρmax = 0.30 e Å−3 |
211 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 3174 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.20 (12) |
C18H29N3O | V = 1893.6 (14) Å3 |
Mr = 303.44 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.898 (5) Å | µ = 0.07 mm−1 |
b = 12.648 (5) Å | T = 183 K |
c = 15.126 (5) Å | 0.42 × 0.42 × 0.32 mm |
Oxford diffraction Xcalibur R diffractometer | 7202 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | 5107 reflections with I > 2σ(I) |
Tmin = 0.973, Tmax = 0.979 | Rint = 0.029 |
31051 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.134 | Δρmax = 0.30 e Å−3 |
S = 0.97 | Δρmin = −0.18 e Å−3 |
7202 reflections | Absolute structure: Flack (1983), 3174 Friedel pairs |
211 parameters | Absolute structure parameter: 0.20 (12) |
0 restraints |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm CrysAlis RED (Oxford Diffraction, 2006) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.64742 (9) | 0.28579 (7) | 0.00092 (7) | 0.02445 (18) | |
H1 | 0.5657 (17) | 0.2689 (11) | 0.0027 (9) | 0.031 (3)* | |
N3 | 0.67372 (13) | 0.43416 (8) | 0.09671 (7) | 0.0375 (3) | |
N11 | 0.71989 (11) | 0.45147 (7) | −0.05199 (7) | 0.0299 (2) | |
C11A | 0.74991 (15) | 0.56368 (9) | −0.03790 (10) | 0.0386 (3) | |
H11A | 0.8100 | 0.5889 | −0.0858 | 0.080* | |
H11B | 0.7988 | 0.5719 | 0.0188 | 0.080* | |
C12A | 0.62283 (18) | 0.63189 (11) | −0.03603 (12) | 0.0520 (4) | |
H12A | 0.5797 | 0.6314 | −0.0951 | 0.080* | |
H12B | 0.5578 | 0.6023 | 0.0070 | 0.080* | |
C13A | 0.6579 (2) | 0.74502 (11) | −0.01020 (13) | 0.0614 (5) | |
H13A | 0.7048 | 0.7450 | 0.0469 | 0.0803 (17)* | |
H13B | 0.5748 | 0.7867 | −0.0055 | 0.0803 (17)* | |
H13C | 0.7166 | 0.7761 | −0.0554 | 0.0803 (17)* | |
C11B | 0.72858 (13) | 0.40828 (10) | −0.14124 (8) | 0.0331 (3) | |
H11C | 0.7649 | 0.3355 | −0.1376 | 0.080* | |
H11D | 0.7938 | 0.4511 | −0.1755 | 0.080* | |
C12B | 0.59584 (17) | 0.40521 (13) | −0.19124 (10) | 0.0459 (3) | |
H12C | 0.5610 | 0.4780 | −0.1986 | 0.080* | |
H12D | 0.5286 | 0.3644 | −0.1569 | 0.080* | |
C13B | 0.6147 (2) | 0.35420 (16) | −0.28203 (11) | 0.0632 (5) | |
H13D | 0.6810 | 0.3948 | −0.3161 | 0.0803 (17)* | |
H13E | 0.5282 | 0.3536 | −0.3136 | 0.0803 (17)* | |
H13F | 0.6471 | 0.2815 | −0.2746 | 0.0803 (17)* | |
O1 | 0.86233 (8) | 0.23044 (7) | 0.00147 (7) | 0.0390 (2) | |
C2 | 0.68297 (11) | 0.39354 (8) | 0.01936 (8) | 0.0265 (2) | |
C3 | 0.74191 (11) | 0.20881 (8) | −0.00239 (8) | 0.0271 (2) | |
C21 | 0.68941 (12) | 0.09564 (9) | −0.01267 (10) | 0.0366 (3) | |
C22 | 0.6283 (2) | 0.08507 (15) | −0.10465 (14) | 0.0698 (6) | |
H22A | 0.5525 | 0.1344 | −0.1107 | 0.0803 (17)* | |
H22B | 0.5960 | 0.0126 | −0.1133 | 0.0803 (17)* | |
H22C | 0.6971 | 0.1015 | −0.1491 | 0.0803 (17)* | |
C23 | 0.80917 (14) | 0.02055 (10) | −0.00221 (14) | 0.0550 (4) | |
H23A | 0.8782 | 0.0377 | −0.0464 | 0.0803 (17)* | |
H23B | 0.7787 | −0.0525 | −0.0107 | 0.0803 (17)* | |
H23C | 0.8475 | 0.0283 | 0.0572 | 0.0803 (17)* | |
C24 | 0.58315 (17) | 0.07004 (12) | 0.05771 (15) | 0.0597 (5) | |
H24A | 0.6207 | 0.0838 | 0.1166 | 0.0803 (17)* | |
H24B | 0.5574 | −0.0046 | 0.0532 | 0.0803 (17)* | |
H24C | 0.5033 | 0.1145 | 0.0484 | 0.0803 (17)* | |
C31 | 0.64035 (15) | 0.36809 (11) | 0.16887 (8) | 0.0377 (3) | |
C32 | 0.51984 (17) | 0.38671 (15) | 0.21422 (10) | 0.0513 (4) | |
H32 | 0.4640 | 0.4448 | 0.1983 | 0.070 (3)* | |
C33 | 0.4819 (2) | 0.31964 (17) | 0.28296 (11) | 0.0613 (5) | |
H33 | 0.3985 | 0.3310 | 0.3124 | 0.070 (3)* | |
C34 | 0.5638 (2) | 0.23707 (16) | 0.30876 (11) | 0.0648 (5) | |
H34 | 0.5363 | 0.1906 | 0.3547 | 0.070 (3)* | |
C35 | 0.6853 (2) | 0.22300 (16) | 0.26725 (10) | 0.0650 (5) | |
H35 | 0.7439 | 0.1679 | 0.2860 | 0.070 (3)* | |
C36 | 0.72416 (19) | 0.28850 (15) | 0.19788 (11) | 0.0530 (4) | |
H36 | 0.8093 | 0.2782 | 0.1703 | 0.070 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0163 (4) | 0.0234 (4) | 0.0336 (5) | −0.0025 (3) | 0.0004 (4) | 0.0011 (4) |
N3 | 0.0474 (7) | 0.0315 (5) | 0.0335 (5) | −0.0081 (5) | 0.0063 (5) | −0.0019 (4) |
N11 | 0.0322 (5) | 0.0245 (4) | 0.0329 (5) | −0.0028 (4) | 0.0041 (4) | 0.0026 (4) |
C11A | 0.0450 (8) | 0.0240 (5) | 0.0469 (7) | −0.0079 (5) | 0.0106 (6) | 0.0021 (5) |
C12A | 0.0585 (10) | 0.0288 (6) | 0.0687 (10) | 0.0005 (6) | 0.0091 (8) | −0.0044 (6) |
C13A | 0.0930 (13) | 0.0275 (6) | 0.0637 (10) | −0.0057 (7) | 0.0275 (10) | −0.0062 (6) |
C11B | 0.0347 (6) | 0.0330 (5) | 0.0316 (6) | −0.0006 (5) | 0.0067 (5) | 0.0056 (5) |
C12B | 0.0480 (8) | 0.0471 (8) | 0.0427 (7) | 0.0090 (6) | −0.0081 (7) | 0.0005 (7) |
C13B | 0.0798 (13) | 0.0689 (11) | 0.0409 (9) | 0.0042 (10) | −0.0133 (9) | −0.0021 (8) |
O1 | 0.0181 (4) | 0.0343 (4) | 0.0647 (6) | −0.0013 (3) | 0.0010 (4) | 0.0017 (5) |
C2 | 0.0207 (5) | 0.0247 (5) | 0.0340 (6) | −0.0016 (4) | 0.0005 (4) | 0.0011 (4) |
C3 | 0.0194 (5) | 0.0260 (4) | 0.0358 (6) | −0.0018 (4) | 0.0006 (5) | 0.0030 (5) |
C21 | 0.0234 (5) | 0.0243 (5) | 0.0621 (8) | −0.0007 (4) | −0.0032 (6) | 0.0000 (5) |
C22 | 0.0741 (13) | 0.0471 (9) | 0.0882 (14) | −0.0103 (8) | −0.0347 (11) | −0.0170 (9) |
C23 | 0.0337 (7) | 0.0287 (6) | 0.1028 (14) | 0.0057 (5) | −0.0018 (9) | −0.0006 (8) |
C24 | 0.0383 (8) | 0.0322 (7) | 0.1086 (15) | −0.0060 (6) | 0.0181 (9) | 0.0162 (8) |
C31 | 0.0472 (8) | 0.0387 (7) | 0.0271 (6) | −0.0112 (6) | 0.0022 (5) | −0.0056 (5) |
C32 | 0.0471 (9) | 0.0683 (11) | 0.0384 (8) | −0.0075 (8) | 0.0036 (7) | 0.0031 (7) |
C33 | 0.0550 (10) | 0.0903 (14) | 0.0387 (8) | −0.0193 (10) | 0.0083 (8) | 0.0046 (8) |
C34 | 0.0904 (14) | 0.0744 (12) | 0.0296 (7) | −0.0249 (11) | 0.0002 (9) | 0.0103 (8) |
C35 | 0.0958 (15) | 0.0657 (11) | 0.0334 (7) | 0.0116 (11) | −0.0007 (9) | 0.0094 (7) |
C36 | 0.0615 (10) | 0.0613 (9) | 0.0364 (7) | 0.0057 (8) | 0.0063 (7) | 0.0039 (7) |
N1—C3 | 1.3510 (14) | O1—C3 | 1.2243 (15) |
N1—C2 | 1.4348 (15) | C3—C21 | 1.5307 (16) |
N1—H1 | 0.837 (17) | C21—C22 | 1.522 (2) |
N3—C2 | 1.2812 (16) | C21—C23 | 1.5270 (18) |
N3—C31 | 1.4140 (17) | C21—C24 | 1.532 (2) |
N11—C2 | 1.3548 (15) | C22—H22A | 0.9800 |
N11—C11B | 1.4590 (17) | C22—H22B | 0.9800 |
N11—C11A | 1.4656 (16) | C22—H22C | 0.9800 |
C11A—C12A | 1.526 (2) | C23—H23A | 0.9800 |
C11A—H11A | 0.9900 | C23—H23B | 0.9800 |
C11A—H11B | 0.9900 | C23—H23C | 0.9800 |
C12A—C13A | 1.523 (2) | C24—H24A | 0.9800 |
C12A—H12A | 0.9900 | C24—H24B | 0.9800 |
C12A—H12B | 0.9900 | C24—H24C | 0.9800 |
C13A—H13A | 0.9800 | C31—C36 | 1.376 (2) |
C13A—H13B | 0.9800 | C31—C32 | 1.396 (2) |
C13A—H13C | 0.9800 | C32—C33 | 1.394 (2) |
C11B—C12B | 1.516 (2) | C32—H32 | 0.9500 |
C11B—H11C | 0.9900 | C33—C34 | 1.378 (3) |
C11B—H11D | 0.9900 | C33—H33 | 0.9500 |
C12B—C13B | 1.529 (2) | C34—C35 | 1.369 (3) |
C12B—H12C | 0.9900 | C34—H34 | 0.9500 |
C12B—H12D | 0.9900 | C35—C36 | 1.391 (3) |
C13B—H13D | 0.9800 | C35—H35 | 0.9500 |
C13B—H13E | 0.9800 | C36—H36 | 0.9500 |
C13B—H13F | 0.9800 | ||
C3—N1—C2 | 121.47 (9) | O1—C3—N1 | 120.74 (10) |
C3—N1—H1 | 119.1 (9) | O1—C3—C21 | 122.97 (10) |
C2—N1—H1 | 118.2 (9) | N1—C3—C21 | 116.28 (10) |
C2—N3—C31 | 119.01 (10) | C22—C21—C23 | 110.35 (15) |
C2—N11—C11B | 123.42 (10) | C22—C21—C24 | 110.14 (15) |
C2—N11—C11A | 117.56 (10) | C23—C21—C24 | 109.27 (13) |
C11B—N11—C11A | 119.01 (10) | C22—C21—C3 | 108.02 (12) |
N11—C11A—C12A | 112.54 (12) | C23—C21—C3 | 107.92 (10) |
N11—C11A—H11A | 109.1 | C24—C21—C3 | 111.11 (12) |
C12A—C11A—H11A | 109.1 | C21—C22—H22A | 109.5 |
N11—C11A—H11B | 109.1 | C21—C22—H22B | 109.5 |
C12A—C11A—H11B | 109.1 | H22A—C22—H22B | 109.5 |
H11A—C11A—H11B | 107.8 | C21—C22—H22C | 109.5 |
C13A—C12A—C11A | 110.38 (15) | H22A—C22—H22C | 109.5 |
C13A—C12A—H12A | 109.6 | H22B—C22—H22C | 109.5 |
C11A—C12A—H12A | 109.6 | C21—C23—H23A | 109.5 |
C13A—C12A—H12B | 109.6 | C21—C23—H23B | 109.5 |
C11A—C12A—H12B | 109.6 | H23A—C23—H23B | 109.5 |
H12A—C12A—H12B | 108.1 | C21—C23—H23C | 109.5 |
C12A—C13A—H13A | 109.5 | H23A—C23—H23C | 109.5 |
C12A—C13A—H13B | 109.5 | H23B—C23—H23C | 109.5 |
H13A—C13A—H13B | 109.5 | C21—C24—H24A | 109.5 |
C12A—C13A—H13C | 109.5 | C21—C24—H24B | 109.5 |
H13A—C13A—H13C | 109.5 | H24A—C24—H24B | 109.5 |
H13B—C13A—H13C | 109.5 | C21—C24—H24C | 109.5 |
N11—C11B—C12B | 114.80 (11) | H24A—C24—H24C | 109.5 |
N11—C11B—H11C | 108.6 | H24B—C24—H24C | 109.5 |
C12B—C11B—H11C | 108.6 | C36—C31—C32 | 118.80 (14) |
N11—C11B—H11D | 108.6 | C36—C31—N3 | 122.50 (14) |
C12B—C11B—H11D | 108.6 | C32—C31—N3 | 118.67 (14) |
H11C—C11B—H11D | 107.5 | C33—C32—C31 | 119.64 (17) |
C11B—C12B—C13B | 110.64 (14) | C33—C32—H32 | 120.2 |
C11B—C12B—H12C | 109.5 | C31—C32—H32 | 120.2 |
C13B—C12B—H12C | 109.5 | C34—C33—C32 | 120.91 (18) |
C11B—C12B—H12D | 109.5 | C34—C33—H33 | 119.5 |
C13B—C12B—H12D | 109.5 | C32—C33—H33 | 119.5 |
H12C—C12B—H12D | 108.1 | C35—C34—C33 | 119.04 (17) |
C12B—C13B—H13D | 109.5 | C35—C34—H34 | 120.5 |
C12B—C13B—H13E | 109.5 | C33—C34—H34 | 120.5 |
H13D—C13B—H13E | 109.5 | C34—C35—C36 | 120.78 (19) |
C12B—C13B—H13F | 109.5 | C34—C35—H35 | 119.6 |
H13D—C13B—H13F | 109.5 | C36—C35—H35 | 119.6 |
H13E—C13B—H13F | 109.5 | C31—C36—C35 | 120.62 (17) |
N3—C2—N11 | 122.01 (10) | C31—C36—H36 | 119.7 |
N3—C2—N1 | 122.72 (10) | C35—C36—H36 | 119.7 |
N11—C2—N1 | 115.16 (10) | ||
C2—N11—C11A—C12A | −82.33 (15) | O1—C3—C21—C22 | −110.60 (16) |
C11B—N11—C11A—C12A | 96.56 (14) | N1—C3—C21—C22 | 68.37 (16) |
N11—C11A—C12A—C13A | 173.14 (13) | O1—C3—C21—C23 | 8.71 (19) |
C2—N11—C11B—C12B | 83.80 (15) | N1—C3—C21—C23 | −172.32 (13) |
C11A—N11—C11B—C12B | −95.02 (14) | O1—C3—C21—C24 | 128.49 (15) |
N11—C11B—C12B—C13B | −177.43 (13) | N1—C3—C21—C24 | −52.54 (16) |
C31—N3—C2—N11 | −177.27 (12) | C2—N3—C31—C36 | 65.47 (19) |
C31—N3—C2—N1 | 6.59 (19) | C2—N3—C31—C32 | −116.74 (15) |
C11B—N11—C2—N3 | −178.62 (12) | C36—C31—C32—C33 | −5.0 (2) |
C11A—N11—C2—N3 | 0.21 (18) | N3—C31—C32—C33 | 177.09 (14) |
C11B—N11—C2—N1 | −2.21 (16) | C31—C32—C33—C34 | 2.1 (3) |
C11A—N11—C2—N1 | 176.62 (10) | C32—C33—C34—C35 | 1.6 (3) |
C3—N1—C2—N3 | −97.25 (15) | C33—C34—C35—C36 | −2.3 (3) |
C3—N1—C2—N11 | 86.36 (13) | C32—C31—C36—C35 | 4.4 (2) |
C2—N1—C3—O1 | −7.40 (18) | N3—C31—C36—C35 | −177.80 (15) |
C2—N1—C3—C21 | 173.61 (12) | C34—C35—C36—C31 | −0.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.837 (17) | 2.01 (2) | 2.830 (2) | 165 (1) |
Symmetry code: (i) x−1/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C18H29N3O |
Mr | 303.44 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 183 |
a, b, c (Å) | 9.898 (5), 12.648 (5), 15.126 (5) |
V (Å3) | 1893.6 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.42 × 0.42 × 0.32 |
Data collection | |
Diffractometer | Oxford diffraction Xcalibur R diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.973, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31051, 7202, 5107 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.769 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.134, 0.97 |
No. of reflections | 7202 |
No. of parameters | 211 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.18 |
Absolute structure | Flack (1983), 3174 Friedel pairs |
Absolute structure parameter | 0.20 (12) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.837 (17) | 2.01 (2) | 2.830 (2) | 165 (1) |
Symmetry code: (i) x−1/2, −y+1/2, −z. |
Acknowledgements
The authors are grateful to the HEC-Pakistan for financial support for this research project and to the Swiss National Science Foundation (SNF-Förderungsprofessor PP002–119106/1 to EF).
References
Berlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617–649. Web of Science CrossRef PubMed CAS Google Scholar
Brzozowski, Z., Saczewski, F. & S1awinski, J. (2007). Eur. J. Med. Chem. 42, 1218–1225. Google Scholar
Cunha, S., Rodrigues, M. T. Jr, da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536–10540. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gomez, L., Gellibert, F., Wagner, A. & Mioskowski, C. (2000). Chem. Eur. J. 6, 4016–4020. CrossRef PubMed CAS Google Scholar
Ishikawa, T. & Isobe, T. (2002). Chem. Eur. J. 8, 552–557. CrossRef PubMed CAS Google Scholar
Kovacevic, B. & Maksic, Z. B. (2001). Org. Lett. 3, 1523–1526. Web of Science CrossRef PubMed CAS Google Scholar
Ma, Z., Saluta, G., Kucera, G. L. & Bierbach, U. (2008). Bioorg. Med. Chem. Lett. 18, 3799–3801. Web of Science CrossRef PubMed CAS Google Scholar
Murtaza, G., Hanif-Ur-Rehman, , Khawar Rauf, M., Ebihara, M. & Badshah, A. (2009). Acta Cryst. E65, o343. Google Scholar
Murtaza, G., Said, M., Rauf, M. K., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o4664. Web of Science CSD CrossRef IUCr Journals Google Scholar
Murtaza, G., Said, M., Khawar Rauf, M., Masahiro, E. & Badshah, A. (2008). Acta Cryst. E64, o333. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ohara, K., Smietana, M., Restouin, A., Mollard, S., Borg, J., Collette, Y. & Vasseur, J. (2007). J. Med. Chem. 50, 6465–6475. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Rauf, M. K., Imtiaz-ud-Din, Badshah, A., Gielen, M., Ebihara, M., de Vos, D. & Ahmed, S. (2009). J. Inorg. Biochem. 103, 1135–1144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The guanidinium moiety is present in diverse biologically active natural substances as well as in a number of medicinal compounds (Berlinck, 2002). Polysubstituted guanidines had received considerable interest as DNA binders (Ohara et al., 2007) and as anticancer agents (Ma et al., 2008; Brzozowski et al., 2007). In addition to their biological role, guanidine derivatives are widely utilized in synthetic organic chemistry, due to their high catalytic potential (Gomez et al., 2000; Kovacevic & Maksic, 2001). Due to their high proton affinity, guanidines can be considered as super-bases (Ishikawa & Isobe, 2002).
The title compound (Fig. 1) is a typical tetra-substituted guanidine with normal geometric parameters (Cunha et al., 2005; Murtaza et al., 2007, 2008, 2009). The C3—O1 bond shows the expected full double bond character [1.2243 (15) Å ]. The short value for the C2—N3 bond length [1.2812 (16) Å] also shows double bond character, while the values for the C2—N11, C2—N1, and C3—N1 bond lengths [1.3548 (15), 1.4348 (15) and 1.3510 (14) Å, respectively] indicate partial double bond character. The dihedral angles between the guanidine mean plane [C(2)/N(1)/N(3)/N(11)] and the phenyl ring [C31–C36] is 67.96 (10)°. The carbonyl group [C3═O1] is almost perpendicular the guanidine moiety mean plane, as reflected by torsion angles O1—C3—N1—C2= -7.40 (18)°, C3—N1—C2—N3= -97.21 (15)°, and C3—N1—C2—N11= 86.41 (13)°. This is probably due to the absence of intramolecular N—H···O hydrogen bonding forming a six-membered ring, which is commonly observed in this class of compounds (Cunha et al., 2005).
The crystal packing of the title compound shows intermolecular N—H···O hydrogen bonds, which link the molecules into a continuous chain (Fig. 2).