metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium 2-nitro­cinnamate dihydrate: a one-dimensional hydrogen-bonded coordination polymer

aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 16 July 2009; accepted 31 July 2009; online 8 August 2009)

The title compound catena-poly[aqua­sodium-μ2-aqua-μ3-2-nitro­cinnamato], [Na(C9H6NO4)(H2O)2]n, the sodium salt of trans-2-nitro­cinnamic acid, is a one-dimensional coordination polymer based on six-coordinate octa­hedral NaO6 centres, comprising three facially related monodentate carboxyl­ate O-atom donors from separate ligands (all bridging) [Na—O = 2.4370 (13)–2.5046 (13) Å], and three water mol­ecules (two bridging and one monodentate) [Na—O = 2.3782 (13)–2.4404 (17) Å]. The structure is also stabilized by intra-chain water–carboxyl­ate and water–nitro O—H⋯O hydrogen bonds.

Related literature

For literature on similar compounds, see: Crowther et al. (2008[Crowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct. 872, 64-71.]); Kariuki et al. (1995[Kariuki, B. M., Valim, J. B., Jones, W. & King, J. (1995). Acta Cryst. C51, 1051-1053.]); Kula et al. (2007[Kula, A., Mazur, L. & Rzaczynska, Z. (2007). J. Coord. Chem. 60, 843-850.]); Schmidt (1964[Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014-2021.]); Smith et al. (2006[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o2024-o2026.]); Trividi et al. (2005[Trividi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem. 15, 2606-2614.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C9H6NO4)(H2O)2]

  • Mr = 251.17

  • Monoclinic, P 21 /c

  • a = 19.4179 (7) Å

  • b = 3.6899 (2) Å

  • c = 14.8738 (7) Å

  • β = 92.239 (4)°

  • V = 1064.90 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 297 K

  • 0.40 × 0.30 × 0.13 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.93, Tmax = 0.98

  • 6531 measured reflections

  • 2100 independent reflections

  • 1626 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.09

  • 2100 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O32i 0.78 (3) 2.14 (3) 2.8871 (17) 162 (2)
O1W—H12W⋯O32ii 0.89 (2) 1.90 (2) 2.7852 (17) 171 (2)
O2W—H21W⋯O21iii 0.77 (3) 2.49 (3) 3.050 (2) 131 (3)
O2W—H22W⋯O32i 0.91 (4) 2.04 (5) 2.882 (2) 153 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Although the structures of two polymorphs of trans-cinnamic acid have been determined (Schmidt, 1964; Smith et al., 2006), the structures of neither trans-2-nitrocinnamic acid [(E)-3-(2-nitrophenyl)propenoic acid] nor any of its alkali metal salts are known, although the dicyclohexylaminium salt has been reported (Trividi et al., 2005). The only structures of alkali metal compounds of analogous ring-substituted trans-cinnamic acids are the sodium complexes with 2-chlorocinnamic acid (Kariuki et al., 1995), 3-chlorocinnamic acid (Crowther et al., 2008), and 4-hydroxy-2-methoxycinnamic acid (Kula et al., 2007). We have now prepared the sodium salt of trans-2-nitrocinnamic acid, a dihydrate [Na(C9H6NO4)(H2O)2]n and its structure is reported here.

The molecular structure of the title compound is illustrated in Fig. 1. The polymeric structure is based on octahadral six-coordinate NaO6 centres comprising three facially related monodentate carboxylate O-donors from separate ligands (all bridging) [Na–O, 2.4370 (13)– 2.5046 (13) Å] and three water molecules (two bridging, one monodentate) [Na–O, 2.3782 (13)–2.4404 (17) Å]. These units are linked into one-dimensional coordination polymer chains which extend along direction [010] (Fig. 1). The structure is similar to that of the sodium 2-chlorocinnamate complex (Kariuki et al., 1995). The polymer chains are stabilized by intra-chain water OH···Ocarboxylate and OH···Onitrohydrogen bonds (Table 1).

In the substituted cinnamate ligand molecule, the nitro group is rotated out of the plane of the benzene ring [torsion angle C1–C2–N21–O22, 144.65 (17)°], while the carboxylate group is similarly non-coplanar [C11–C21–C31–O31, -169.51 (17)°].

Related literature top

For literature on similar compounds, see: Crowther et al. (2008); Kariuki et al. (1995); Kula et al. (2007); Schmidt (1964); Smith et al. (2006); Trividi et al. (2005).

Experimental top

The title compound was synthesized by heating together for 10 minutes under reflux 1 mmol quantities of trans-cinnamic acid [(E-3-(2-nitrophenyl)propenoic acid] and sodium carbonate in 50 ml of 50% ethanol-water. After concentration to ca 30 ml, partial rt evaporation of the hot-filtered solution gave thin colourless plate-like crystals, suitable for X-ray analysis.

Refinement top

The H-atoms of the water molecules were located in difference electron-density maps and were freely refined: O-H = 0.77 (3) - 0.91 (4) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the title compound, showing the one-dimensional chain polymer structure extending along direction [010]. Displacement ellipsoids are drawn at the 50% probability level [Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 1, -z].
catena-poly[aquasodium-µ2-aqua-µ3-2-nitrocinnamato] top
Crystal data top
[Na(C9H6NO4)(H2O)2]F(000) = 520
Mr = 251.17Dx = 1.567 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2943 reflections
a = 19.4179 (7) Åθ = 3.0–28.7°
b = 3.6899 (2) ŵ = 0.17 mm1
c = 14.8738 (7) ÅT = 297 K
β = 92.239 (4)°Plate, colourless
V = 1064.90 (9) Å30.40 × 0.30 × 0.13 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2100 independent reflections
Radiation source: Enhance (Mo) X-ray source1626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2321
Tmin = 0.93, Tmax = 0.98k = 44
6531 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0708P)2]
where P = (Fo2 + 2Fc2)/3
2100 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Na(C9H6NO4)(H2O)2]V = 1064.90 (9) Å3
Mr = 251.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.4179 (7) ŵ = 0.17 mm1
b = 3.6899 (2) ÅT = 297 K
c = 14.8738 (7) Å0.40 × 0.30 × 0.13 mm
β = 92.239 (4)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2100 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1626 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.98Rint = 0.019
6531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.30 e Å3
2100 reflectionsΔρmin = 0.19 e Å3
170 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.05494 (3)0.73072 (17)0.06704 (4)0.0272 (2)
O1W0.02635 (6)0.2374 (3)0.16440 (8)0.0319 (4)
O2W0.16105 (8)0.6812 (5)0.14886 (12)0.0691 (7)
O210.29871 (7)0.4625 (6)0.31366 (9)0.0637 (6)
O220.39979 (7)0.2280 (5)0.32066 (10)0.0541 (6)
O310.06940 (6)0.2430 (3)0.04255 (8)0.0282 (4)
O320.10417 (6)0.0743 (4)0.18086 (8)0.0336 (4)
N210.35246 (7)0.3769 (4)0.27927 (10)0.0339 (5)
C10.30837 (8)0.4562 (5)0.12070 (11)0.0267 (5)
C20.36252 (8)0.4742 (4)0.18535 (11)0.0261 (5)
C30.42813 (9)0.5880 (5)0.16617 (12)0.0327 (6)
C40.44154 (10)0.6987 (5)0.08063 (14)0.0384 (6)
C50.38972 (10)0.6860 (5)0.01494 (13)0.0368 (6)
C60.32514 (9)0.5634 (5)0.03431 (12)0.0346 (6)
C110.23935 (9)0.3141 (5)0.13955 (12)0.0297 (5)
C210.18383 (9)0.3638 (5)0.08772 (13)0.0345 (6)
C310.11421 (8)0.2155 (4)0.10637 (11)0.0256 (5)
H30.462900.589500.210900.0390*
H40.485200.781500.067200.0460*
H50.398500.761200.043200.0440*
H60.291400.551500.011800.0420*
H110.234900.179700.191900.0360*
H11W0.0460 (11)0.241 (6)0.209 (2)0.055 (8)*
H12W0.0168 (12)0.157 (7)0.1733 (17)0.044 (8)*
H210.188100.501000.035800.0410*
H21W0.1828 (16)0.851 (9)0.138 (2)0.093 (13)*
H22W0.1500 (18)0.666 (12)0.209 (2)0.101 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0279 (4)0.0275 (4)0.0260 (4)0.0019 (3)0.0005 (3)0.0007 (3)
O1W0.0363 (7)0.0350 (7)0.0244 (7)0.0082 (5)0.0026 (5)0.0002 (5)
O2W0.0399 (9)0.1143 (15)0.0532 (10)0.0214 (9)0.0046 (7)0.0098 (9)
O210.0357 (8)0.1222 (15)0.0337 (8)0.0081 (9)0.0067 (6)0.0065 (9)
O220.0475 (9)0.0775 (12)0.0364 (9)0.0164 (7)0.0096 (7)0.0112 (7)
O310.0220 (6)0.0370 (7)0.0253 (6)0.0013 (5)0.0039 (5)0.0011 (5)
O320.0290 (7)0.0461 (8)0.0255 (7)0.0007 (5)0.0005 (5)0.0056 (6)
N210.0266 (8)0.0471 (9)0.0276 (8)0.0020 (7)0.0027 (6)0.0022 (7)
C10.0235 (8)0.0281 (9)0.0283 (9)0.0035 (7)0.0004 (7)0.0017 (7)
C20.0264 (8)0.0257 (8)0.0260 (9)0.0040 (7)0.0003 (7)0.0020 (7)
C30.0255 (9)0.0331 (10)0.0393 (11)0.0010 (8)0.0021 (7)0.0033 (8)
C40.0299 (10)0.0362 (10)0.0499 (13)0.0071 (8)0.0106 (9)0.0017 (9)
C50.0405 (11)0.0374 (10)0.0331 (11)0.0045 (8)0.0097 (8)0.0035 (8)
C60.0340 (10)0.0415 (11)0.0281 (9)0.0024 (8)0.0026 (7)0.0020 (8)
C110.0261 (9)0.0353 (10)0.0276 (9)0.0015 (7)0.0001 (7)0.0008 (7)
C210.0266 (9)0.0435 (11)0.0334 (10)0.0035 (8)0.0004 (7)0.0093 (8)
C310.0231 (8)0.0288 (9)0.0248 (9)0.0039 (7)0.0008 (7)0.0028 (7)
Geometric parameters (Å, º) top
Na1—O1W2.3782 (13)C1—C21.399 (2)
Na1—O2W2.4404 (17)C1—C61.395 (2)
Na1—O312.4370 (13)C1—C111.476 (2)
Na1—O1Wi2.4162 (13)C2—C31.382 (2)
Na1—O31i2.5046 (13)C3—C41.371 (3)
Na1—O31ii2.4577 (13)C4—C51.376 (3)
O21—N211.222 (2)C5—C61.374 (3)
O22—N211.217 (2)C11—C211.314 (3)
O31—C311.267 (2)C21—C311.494 (2)
O32—C311.247 (2)C3—H30.9300
O1W—H11W0.78 (3)C4—H40.9300
O1W—H12W0.89 (2)C5—H50.9300
O2W—H21W0.77 (3)C6—H60.9300
O2W—H22W0.91 (4)C11—H110.9300
N21—C21.463 (2)C21—H210.9300
O1W—Na1—O2W79.67 (5)C2—C1—C6115.06 (15)
O1W—Na1—O3181.96 (4)C2—C1—C11123.37 (15)
O1W—Na1—O1Wi100.64 (4)C6—C1—C11121.46 (15)
O1W—Na1—O31i172.53 (5)N21—C2—C1121.34 (14)
O1W—Na1—O31ii85.02 (4)N21—C2—C3115.49 (14)
O2W—Na1—O31101.58 (6)C1—C2—C3123.16 (15)
O1Wi—Na1—O2W86.43 (5)C2—C3—C4119.49 (17)
O2W—Na1—O31i107.80 (5)C3—C4—C5119.26 (18)
O2W—Na1—O31ii158.48 (6)C4—C5—C6120.69 (18)
O1Wi—Na1—O31171.93 (5)C1—C6—C5122.29 (16)
O31—Na1—O31i96.60 (4)C1—C11—C21124.71 (17)
O31—Na1—O31ii91.04 (4)C11—C21—C31124.59 (17)
O1Wi—Na1—O31i79.83 (4)O31—C31—C21115.57 (14)
O1Wi—Na1—O31ii81.62 (4)O32—C31—C21119.48 (15)
O31i—Na1—O31ii87.68 (4)O31—C31—O32124.96 (15)
Na1—O1W—Na1iii100.64 (5)C2—C3—H3120.00
Na1—O31—C31128.20 (10)C4—C3—H3120.00
Na1—O31—Na1iii96.60 (5)C3—C4—H4120.00
Na1—O31—Na1ii88.96 (4)C5—C4—H4120.00
Na1iii—O31—C31118.92 (10)C4—C5—H5120.00
Na1ii—O31—C31122.84 (10)C6—C5—H5120.00
Na1iii—O31—Na1ii92.32 (4)C1—C6—H6119.00
H11W—O1W—H12W112 (2)C5—C6—H6119.00
H21W—O2W—H22W111 (4)C1—C11—H11118.00
O21—N21—C2118.98 (14)C21—C11—H11118.00
O22—N21—C2117.87 (14)C11—C21—H21118.00
O21—N21—O22123.06 (16)C31—C21—H21118.00
O2W—Na1—O1W—Na1iii95.66 (6)O31—Na1—O31ii—C31ii136.41 (11)
O31—Na1—O1W—Na1iii7.75 (5)Na1—O31—C31—O32145.52 (13)
O1Wi—Na1—O1W—Na1iii180.00 (6)Na1—O31—C31—C2135.11 (19)
O31ii—Na1—O1W—Na1iii99.51 (5)Na1iii—O31—C31—O3287.48 (18)
O1W—Na1—O31—C31142.67 (13)Na1iii—O31—C31—C2191.89 (14)
O1W—Na1—O31—Na1iii7.39 (4)Na1ii—O31—C31—O3226.8 (2)
O1W—Na1—O31—Na1ii84.82 (4)Na1ii—O31—C31—C21153.81 (11)
O2W—Na1—O31—C3165.02 (14)O21—N21—C2—C138.6 (2)
O2W—Na1—O31—Na1iii70.26 (6)O21—N21—C2—C3140.47 (18)
O2W—Na1—O31—Na1ii162.47 (5)O22—N21—C2—C1144.65 (17)
O31i—Na1—O31—C3144.72 (13)O22—N21—C2—C336.2 (2)
O31i—Na1—O31—Na1iii180.00 (4)C6—C1—C2—N21178.85 (15)
O31i—Na1—O31—Na1ii87.79 (4)C6—C1—C2—C30.2 (3)
O31ii—Na1—O31—C31132.51 (13)C11—C1—C2—N214.8 (3)
O31ii—Na1—O31—Na1iii92.21 (5)C11—C1—C2—C3176.18 (17)
O31ii—Na1—O31—Na1ii0.00 (3)C2—C1—C6—C51.5 (3)
O1W—Na1—O1Wi—Na1i180.00 (6)C11—C1—C6—C5177.99 (17)
O2W—Na1—O1Wi—Na1i101.22 (6)C2—C1—C11—C21164.51 (18)
O2W—Na1—O31i—Na1i75.56 (6)C6—C1—C11—C2119.4 (3)
O2W—Na1—O31i—C31i65.26 (12)N21—C2—C3—C4177.36 (16)
O31—Na1—O31i—Na1i180.00 (3)C1—C2—C3—C41.7 (3)
O31—Na1—O31i—C31i39.19 (12)C2—C3—C4—C51.6 (3)
O1W—Na1—O31ii—Na1ii81.83 (4)C3—C4—C5—C60.1 (3)
O1W—Na1—O31ii—C31ii54.58 (11)C4—C5—C6—C11.7 (3)
O2W—Na1—O31ii—Na1ii126.42 (15)C1—C11—C21—C31179.16 (16)
O2W—Na1—O31ii—C31ii10.0 (2)C11—C21—C31—O31169.51 (17)
O31—Na1—O31ii—Na1ii0.00 (5)C11—C21—C31—O329.9 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O32iv0.78 (3)2.14 (3)2.8871 (17)162 (2)
O1W—H12W···O32v0.89 (2)1.90 (2)2.7852 (17)171 (2)
O2W—H21W···O21vi0.77 (3)2.49 (3)3.050 (2)131 (3)
O2W—H22W···O32iv0.91 (4)2.04 (5)2.882 (2)153 (4)
C11—H11···O210.932.392.846 (2)110
Symmetry codes: (iv) x, y+1/2, z1/2; (v) x, y, z; (vi) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Na(C9H6NO4)(H2O)2]
Mr251.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)19.4179 (7), 3.6899 (2), 14.8738 (7)
β (°) 92.239 (4)
V3)1064.90 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.40 × 0.30 × 0.13
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.93, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
6531, 2100, 1626
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.09
No. of reflections2100
No. of parameters170
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O32i0.78 (3)2.14 (3)2.8871 (17)162 (2)
O1W—H12W···O32ii0.89 (2)1.90 (2)2.7852 (17)171 (2)
O2W—H21W···O21iii0.77 (3)2.49 (3)3.050 (2)131 (3)
O2W—H22W···O32i0.91 (4)2.04 (5)2.882 (2)153 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCrowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct. 872, 64–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationKariuki, B. M., Valim, J. B., Jones, W. & King, J. (1995). Acta Cryst. C51, 1051–1053.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKula, A., Mazur, L. & Rzaczynska, Z. (2007). J. Coord. Chem. 60, 843–850.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSchmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014–2021.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o2024–o2026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrividi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem. 15, 2606–2614.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds