metal-organic compounds
Sodium 2-nitrocinnamate dihydrate: a one-dimensional hydrogen-bonded coordination polymer
aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
The title compound catena-poly[aquasodium-μ2-aqua-μ3-2-nitrocinnamato], [Na(C9H6NO4)(H2O)2]n, the sodium salt of trans-2-nitrocinnamic acid, is a one-dimensional coordination polymer based on six-coordinate octahedral NaO6 centres, comprising three facially related monodentate carboxylate O-atom donors from separate ligands (all bridging) [Na—O = 2.4370 (13)–2.5046 (13) Å], and three water molecules (two bridging and one monodentate) [Na—O = 2.3782 (13)–2.4404 (17) Å]. The structure is also stabilized by intra-chain water–carboxylate and water–nitro O—H⋯O hydrogen bonds.
Related literature
For literature on similar compounds, see: Crowther et al. (2008); Kariuki et al. (1995); Kula et al. (2007); Schmidt (1964); Smith et al. (2006); Trividi et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536809030402/su2131sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809030402/su2131Isup2.hkl
The title compound was synthesized by heating together for 10 minutes under reflux 1 mmol quantities of trans-cinnamic acid [(E-3-(2-nitrophenyl)propenoic acid] and sodium carbonate in 50 ml of 50% ethanol-water. After concentration to ca 30 ml, partial rt evaporation of the hot-filtered solution gave thin colourless plate-like crystals, suitable for X-ray analysis.
The H-atoms of the water molecules were located in difference electron-density maps and were freely refined: O-H = 0.77 (3) - 0.91 (4) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).[Na(C9H6NO4)(H2O)2] | F(000) = 520 |
Mr = 251.17 | Dx = 1.567 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2943 reflections |
a = 19.4179 (7) Å | θ = 3.0–28.7° |
b = 3.6899 (2) Å | µ = 0.17 mm−1 |
c = 14.8738 (7) Å | T = 297 K |
β = 92.239 (4)° | Plate, colourless |
V = 1064.90 (9) Å3 | 0.40 × 0.30 × 0.13 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2100 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1626 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ω scans | θmax = 26.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −23→21 |
Tmin = 0.93, Tmax = 0.98 | k = −4→4 |
6531 measured reflections | l = −18→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0708P)2] where P = (Fo2 + 2Fc2)/3 |
2100 reflections | (Δ/σ)max < 0.001 |
170 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
[Na(C9H6NO4)(H2O)2] | V = 1064.90 (9) Å3 |
Mr = 251.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 19.4179 (7) Å | µ = 0.17 mm−1 |
b = 3.6899 (2) Å | T = 297 K |
c = 14.8738 (7) Å | 0.40 × 0.30 × 0.13 mm |
β = 92.239 (4)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2100 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1626 reflections with I > 2σ(I) |
Tmin = 0.93, Tmax = 0.98 | Rint = 0.019 |
6531 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.30 e Å−3 |
2100 reflections | Δρmin = −0.19 e Å−3 |
170 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.05494 (3) | 0.73072 (17) | −0.06704 (4) | 0.0272 (2) | |
O1W | 0.02635 (6) | 0.2374 (3) | −0.16440 (8) | 0.0319 (4) | |
O2W | 0.16105 (8) | 0.6812 (5) | −0.14886 (12) | 0.0691 (7) | |
O21 | 0.29871 (7) | 0.4625 (6) | 0.31366 (9) | 0.0637 (6) | |
O22 | 0.39979 (7) | 0.2280 (5) | 0.32066 (10) | 0.0541 (6) | |
O31 | 0.06940 (6) | 0.2430 (3) | 0.04255 (8) | 0.0282 (4) | |
O32 | 0.10417 (6) | 0.0743 (4) | 0.18086 (8) | 0.0336 (4) | |
N21 | 0.35246 (7) | 0.3769 (4) | 0.27927 (10) | 0.0339 (5) | |
C1 | 0.30837 (8) | 0.4562 (5) | 0.12070 (11) | 0.0267 (5) | |
C2 | 0.36252 (8) | 0.4742 (4) | 0.18535 (11) | 0.0261 (5) | |
C3 | 0.42813 (9) | 0.5880 (5) | 0.16617 (12) | 0.0327 (6) | |
C4 | 0.44154 (10) | 0.6987 (5) | 0.08063 (14) | 0.0384 (6) | |
C5 | 0.38972 (10) | 0.6860 (5) | 0.01494 (13) | 0.0368 (6) | |
C6 | 0.32514 (9) | 0.5634 (5) | 0.03431 (12) | 0.0346 (6) | |
C11 | 0.23935 (9) | 0.3141 (5) | 0.13955 (12) | 0.0297 (5) | |
C21 | 0.18383 (9) | 0.3638 (5) | 0.08772 (13) | 0.0345 (6) | |
C31 | 0.11421 (8) | 0.2155 (4) | 0.10637 (11) | 0.0256 (5) | |
H3 | 0.46290 | 0.58950 | 0.21090 | 0.0390* | |
H4 | 0.48520 | 0.78150 | 0.06720 | 0.0460* | |
H5 | 0.39850 | 0.76120 | −0.04320 | 0.0440* | |
H6 | 0.29140 | 0.55150 | −0.01180 | 0.0420* | |
H11 | 0.23490 | 0.17970 | 0.19190 | 0.0360* | |
H11W | 0.0460 (11) | 0.241 (6) | −0.209 (2) | 0.055 (8)* | |
H12W | −0.0168 (12) | 0.157 (7) | −0.1733 (17) | 0.044 (8)* | |
H21 | 0.18810 | 0.50100 | 0.03580 | 0.0410* | |
H21W | 0.1828 (16) | 0.851 (9) | −0.138 (2) | 0.093 (13)* | |
H22W | 0.1500 (18) | 0.666 (12) | −0.209 (2) | 0.101 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0279 (4) | 0.0275 (4) | 0.0260 (4) | −0.0019 (3) | −0.0005 (3) | 0.0007 (3) |
O1W | 0.0363 (7) | 0.0350 (7) | 0.0244 (7) | −0.0082 (5) | 0.0026 (5) | −0.0002 (5) |
O2W | 0.0399 (9) | 0.1143 (15) | 0.0532 (10) | −0.0214 (9) | 0.0046 (7) | 0.0098 (9) |
O21 | 0.0357 (8) | 0.1222 (15) | 0.0337 (8) | 0.0081 (9) | 0.0067 (6) | −0.0065 (9) |
O22 | 0.0475 (9) | 0.0775 (12) | 0.0364 (9) | 0.0164 (7) | −0.0096 (7) | 0.0112 (7) |
O31 | 0.0220 (6) | 0.0370 (7) | 0.0253 (6) | −0.0013 (5) | −0.0039 (5) | 0.0011 (5) |
O32 | 0.0290 (7) | 0.0461 (8) | 0.0255 (7) | 0.0007 (5) | 0.0005 (5) | 0.0056 (6) |
N21 | 0.0266 (8) | 0.0471 (9) | 0.0276 (8) | −0.0020 (7) | −0.0027 (6) | −0.0022 (7) |
C1 | 0.0235 (8) | 0.0281 (9) | 0.0283 (9) | 0.0035 (7) | 0.0004 (7) | −0.0017 (7) |
C2 | 0.0264 (8) | 0.0257 (8) | 0.0260 (9) | 0.0040 (7) | 0.0003 (7) | −0.0020 (7) |
C3 | 0.0255 (9) | 0.0331 (10) | 0.0393 (11) | −0.0010 (8) | −0.0021 (7) | −0.0033 (8) |
C4 | 0.0299 (10) | 0.0362 (10) | 0.0499 (13) | −0.0071 (8) | 0.0106 (9) | −0.0017 (9) |
C5 | 0.0405 (11) | 0.0374 (10) | 0.0331 (11) | −0.0045 (8) | 0.0097 (8) | 0.0035 (8) |
C6 | 0.0340 (10) | 0.0415 (11) | 0.0281 (9) | 0.0024 (8) | −0.0026 (7) | 0.0020 (8) |
C11 | 0.0261 (9) | 0.0353 (10) | 0.0276 (9) | −0.0015 (7) | 0.0001 (7) | −0.0008 (7) |
C21 | 0.0266 (9) | 0.0435 (11) | 0.0334 (10) | −0.0035 (8) | −0.0004 (7) | 0.0093 (8) |
C31 | 0.0231 (8) | 0.0288 (9) | 0.0248 (9) | 0.0039 (7) | 0.0008 (7) | −0.0028 (7) |
Na1—O1W | 2.3782 (13) | C1—C2 | 1.399 (2) |
Na1—O2W | 2.4404 (17) | C1—C6 | 1.395 (2) |
Na1—O31 | 2.4370 (13) | C1—C11 | 1.476 (2) |
Na1—O1Wi | 2.4162 (13) | C2—C3 | 1.382 (2) |
Na1—O31i | 2.5046 (13) | C3—C4 | 1.371 (3) |
Na1—O31ii | 2.4577 (13) | C4—C5 | 1.376 (3) |
O21—N21 | 1.222 (2) | C5—C6 | 1.374 (3) |
O22—N21 | 1.217 (2) | C11—C21 | 1.314 (3) |
O31—C31 | 1.267 (2) | C21—C31 | 1.494 (2) |
O32—C31 | 1.247 (2) | C3—H3 | 0.9300 |
O1W—H11W | 0.78 (3) | C4—H4 | 0.9300 |
O1W—H12W | 0.89 (2) | C5—H5 | 0.9300 |
O2W—H21W | 0.77 (3) | C6—H6 | 0.9300 |
O2W—H22W | 0.91 (4) | C11—H11 | 0.9300 |
N21—C2 | 1.463 (2) | C21—H21 | 0.9300 |
O1W—Na1—O2W | 79.67 (5) | C2—C1—C6 | 115.06 (15) |
O1W—Na1—O31 | 81.96 (4) | C2—C1—C11 | 123.37 (15) |
O1W—Na1—O1Wi | 100.64 (4) | C6—C1—C11 | 121.46 (15) |
O1W—Na1—O31i | 172.53 (5) | N21—C2—C1 | 121.34 (14) |
O1W—Na1—O31ii | 85.02 (4) | N21—C2—C3 | 115.49 (14) |
O2W—Na1—O31 | 101.58 (6) | C1—C2—C3 | 123.16 (15) |
O1Wi—Na1—O2W | 86.43 (5) | C2—C3—C4 | 119.49 (17) |
O2W—Na1—O31i | 107.80 (5) | C3—C4—C5 | 119.26 (18) |
O2W—Na1—O31ii | 158.48 (6) | C4—C5—C6 | 120.69 (18) |
O1Wi—Na1—O31 | 171.93 (5) | C1—C6—C5 | 122.29 (16) |
O31—Na1—O31i | 96.60 (4) | C1—C11—C21 | 124.71 (17) |
O31—Na1—O31ii | 91.04 (4) | C11—C21—C31 | 124.59 (17) |
O1Wi—Na1—O31i | 79.83 (4) | O31—C31—C21 | 115.57 (14) |
O1Wi—Na1—O31ii | 81.62 (4) | O32—C31—C21 | 119.48 (15) |
O31i—Na1—O31ii | 87.68 (4) | O31—C31—O32 | 124.96 (15) |
Na1—O1W—Na1iii | 100.64 (5) | C2—C3—H3 | 120.00 |
Na1—O31—C31 | 128.20 (10) | C4—C3—H3 | 120.00 |
Na1—O31—Na1iii | 96.60 (5) | C3—C4—H4 | 120.00 |
Na1—O31—Na1ii | 88.96 (4) | C5—C4—H4 | 120.00 |
Na1iii—O31—C31 | 118.92 (10) | C4—C5—H5 | 120.00 |
Na1ii—O31—C31 | 122.84 (10) | C6—C5—H5 | 120.00 |
Na1iii—O31—Na1ii | 92.32 (4) | C1—C6—H6 | 119.00 |
H11W—O1W—H12W | 112 (2) | C5—C6—H6 | 119.00 |
H21W—O2W—H22W | 111 (4) | C1—C11—H11 | 118.00 |
O21—N21—C2 | 118.98 (14) | C21—C11—H11 | 118.00 |
O22—N21—C2 | 117.87 (14) | C11—C21—H21 | 118.00 |
O21—N21—O22 | 123.06 (16) | C31—C21—H21 | 118.00 |
O2W—Na1—O1W—Na1iii | 95.66 (6) | O31—Na1—O31ii—C31ii | −136.41 (11) |
O31—Na1—O1W—Na1iii | −7.75 (5) | Na1—O31—C31—O32 | 145.52 (13) |
O1Wi—Na1—O1W—Na1iii | 180.00 (6) | Na1—O31—C31—C21 | −35.11 (19) |
O31ii—Na1—O1W—Na1iii | −99.51 (5) | Na1iii—O31—C31—O32 | −87.48 (18) |
O1W—Na1—O31—C31 | 142.67 (13) | Na1iii—O31—C31—C21 | 91.89 (14) |
O1W—Na1—O31—Na1iii | 7.39 (4) | Na1ii—O31—C31—O32 | 26.8 (2) |
O1W—Na1—O31—Na1ii | −84.82 (4) | Na1ii—O31—C31—C21 | −153.81 (11) |
O2W—Na1—O31—C31 | 65.02 (14) | O21—N21—C2—C1 | −38.6 (2) |
O2W—Na1—O31—Na1iii | −70.26 (6) | O21—N21—C2—C3 | 140.47 (18) |
O2W—Na1—O31—Na1ii | −162.47 (5) | O22—N21—C2—C1 | 144.65 (17) |
O31i—Na1—O31—C31 | −44.72 (13) | O22—N21—C2—C3 | −36.2 (2) |
O31i—Na1—O31—Na1iii | 180.00 (4) | C6—C1—C2—N21 | 178.85 (15) |
O31i—Na1—O31—Na1ii | 87.79 (4) | C6—C1—C2—C3 | −0.2 (3) |
O31ii—Na1—O31—C31 | −132.51 (13) | C11—C1—C2—N21 | −4.8 (3) |
O31ii—Na1—O31—Na1iii | 92.21 (5) | C11—C1—C2—C3 | 176.18 (17) |
O31ii—Na1—O31—Na1ii | 0.00 (3) | C2—C1—C6—C5 | −1.5 (3) |
O1W—Na1—O1Wi—Na1i | −180.00 (6) | C11—C1—C6—C5 | −177.99 (17) |
O2W—Na1—O1Wi—Na1i | −101.22 (6) | C2—C1—C11—C21 | 164.51 (18) |
O2W—Na1—O31i—Na1i | 75.56 (6) | C6—C1—C11—C21 | −19.4 (3) |
O2W—Na1—O31i—C31i | −65.26 (12) | N21—C2—C3—C4 | −177.36 (16) |
O31—Na1—O31i—Na1i | 180.00 (3) | C1—C2—C3—C4 | 1.7 (3) |
O31—Na1—O31i—C31i | 39.19 (12) | C2—C3—C4—C5 | −1.6 (3) |
O1W—Na1—O31ii—Na1ii | 81.83 (4) | C3—C4—C5—C6 | −0.1 (3) |
O1W—Na1—O31ii—C31ii | −54.58 (11) | C4—C5—C6—C1 | 1.7 (3) |
O2W—Na1—O31ii—Na1ii | 126.42 (15) | C1—C11—C21—C31 | 179.16 (16) |
O2W—Na1—O31ii—C31ii | −10.0 (2) | C11—C21—C31—O31 | −169.51 (17) |
O31—Na1—O31ii—Na1ii | 0.00 (5) | C11—C21—C31—O32 | 9.9 (3) |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z; (iii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O32iv | 0.78 (3) | 2.14 (3) | 2.8871 (17) | 162 (2) |
O1W—H12W···O32v | 0.89 (2) | 1.90 (2) | 2.7852 (17) | 171 (2) |
O2W—H21W···O21vi | 0.77 (3) | 2.49 (3) | 3.050 (2) | 131 (3) |
O2W—H22W···O32iv | 0.91 (4) | 2.04 (5) | 2.882 (2) | 153 (4) |
C11—H11···O21 | 0.93 | 2.39 | 2.846 (2) | 110 |
Symmetry codes: (iv) x, −y+1/2, z−1/2; (v) −x, −y, −z; (vi) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Na(C9H6NO4)(H2O)2] |
Mr | 251.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 297 |
a, b, c (Å) | 19.4179 (7), 3.6899 (2), 14.8738 (7) |
β (°) | 92.239 (4) |
V (Å3) | 1064.90 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.17 |
Crystal size (mm) | 0.40 × 0.30 × 0.13 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.93, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6531, 2100, 1626 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.113, 1.09 |
No. of reflections | 2100 |
No. of parameters | 170 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.19 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O32i | 0.78 (3) | 2.14 (3) | 2.8871 (17) | 162 (2) |
O1W—H12W···O32ii | 0.89 (2) | 1.90 (2) | 2.7852 (17) | 171 (2) |
O2W—H21W···O21iii | 0.77 (3) | 2.49 (3) | 3.050 (2) | 131 (3) |
O2W—H22W···O32i | 0.91 (4) | 2.04 (5) | 2.882 (2) | 153 (4) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y, −z; (iii) x, −y+3/2, z−1/2. |
Acknowledgements
The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Crowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct. 872, 64–71. Web of Science CSD CrossRef CAS Google Scholar
Kariuki, B. M., Valim, J. B., Jones, W. & King, J. (1995). Acta Cryst. C51, 1051–1053. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kula, A., Mazur, L. & Rzaczynska, Z. (2007). J. Coord. Chem. 60, 843–850. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014–2021. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o2024–o2026. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trividi, D. R., Ballabh, A. & Dastidar, P. (2005). J. Mater. Chem. 15, 2606–2614. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Although the structures of two polymorphs of trans-cinnamic acid have been determined (Schmidt, 1964; Smith et al., 2006), the structures of neither trans-2-nitrocinnamic acid [(E)-3-(2-nitrophenyl)propenoic acid] nor any of its alkali metal salts are known, although the dicyclohexylaminium salt has been reported (Trividi et al., 2005). The only structures of alkali metal compounds of analogous ring-substituted trans-cinnamic acids are the sodium complexes with 2-chlorocinnamic acid (Kariuki et al., 1995), 3-chlorocinnamic acid (Crowther et al., 2008), and 4-hydroxy-2-methoxycinnamic acid (Kula et al., 2007). We have now prepared the sodium salt of trans-2-nitrocinnamic acid, a dihydrate [Na(C9H6NO4)(H2O)2]n and its structure is reported here.
The molecular structure of the title compound is illustrated in Fig. 1. The polymeric structure is based on octahadral six-coordinate NaO6 centres comprising three facially related monodentate carboxylate O-donors from separate ligands (all bridging) [Na–O, 2.4370 (13)– 2.5046 (13) Å] and three water molecules (two bridging, one monodentate) [Na–O, 2.3782 (13)–2.4404 (17) Å]. These units are linked into one-dimensional coordination polymer chains which extend along direction [010] (Fig. 1). The structure is similar to that of the sodium 2-chlorocinnamate complex (Kariuki et al., 1995). The polymer chains are stabilized by intra-chain water O–H···Ocarboxylate and O–H···Onitrohydrogen bonds (Table 1).
In the substituted cinnamate ligand molecule, the nitro group is rotated out of the plane of the benzene ring [torsion angle C1–C2–N21–O22, 144.65 (17)°], while the carboxylate group is similarly non-coplanar [C11–C21–C31–O31, -169.51 (17)°].