organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hydr­­oxy-4-meth­oxy­benzyl­­idene)-4-meth­oxy­benzohydrazide

aDepartment of Chemistry, Baicheng Normal College, Baicheng 137000, People's Republic of China
*Correspondence e-mail: xinyou_zhang@126.com

(Received 13 August 2009; accepted 15 August 2009; online 22 August 2009)

In the title compound, C16H16N2O4, the dihedral angle between the two benzene rings is 8.7 (2)°. The mol­ecule adopts an E configuration about the C=N bond, with an intra­molecular O—H⋯N hydrogen bond involving the hydr­oxy substituent and the hydrazide N atom. In the crystal structure, adjacent mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains propagating in the b-axis direction.

Related literature

For related structures, see: Alhadi et al. (2008[Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.]); Küçükgüzel et al. (2003[Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.]); Mohd Lair et al. (2009a[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.],b[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190.]); Li et al. (2009[Li, M.-L., Huang, X. & Feng, R.-K. (2009). Acta Cryst. E65, o369.]); Zhang et al. (2009[Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.]). For a similar hydrazone compound, see: Zhang (2009[Zhang, X. (2009). Acta Cryst. E65, o1388.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4

  • Mr = 300.31

  • Monoclinic, P 21 /c

  • a = 17.692 (2) Å

  • b = 5.4131 (7) Å

  • c = 14.933 (2) Å

  • β = 97.431 (7)°

  • V = 1418.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.980

  • 8164 measured reflections

  • 3069 independent reflections

  • 2001 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.03

  • 3069 reflections

  • 205 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.577 (2) 146
N2—H2⋯O2i 0.90 (1) 2.393 (11) 3.281 (2) 168 (2)
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds are readily synthesized by the reaction of aldehydes with hydrazides. A large number of hydrazone compounds have been reported (Alhadi et al., 2008; Küçükgüzel et al., 2003; Li et al., 2009; Zhang et al., 2009). Recently, the author reported on the crystal structure of a hydrazone compound derived from the reaction of 2-methoxybenzaldehyde with 4-methoxybenzohydrazide (Zhang, 2009). Herein, the crystal structure of the new title hydrazone, prepared from the reaction of 2-hydroxy-4-methoxybenzaldehyde with 4-methoxybenzohydrazide, is reported on.

The molecule structure of the title compound is illustrated in Fig. 1. The molecule adopts an E configuration about the CN bond. The dihedral angle involving the two benzene rings is 8.7 (2)°. There is an intramolecular O1—H1···N1 hydrogen bond, involving the hydroxyl substituent and the hydrazide N-atom (Table 1). All the bond lengths are within normal values (Allen et al., 1987) and are comparable with those observed in similar compounds (Mohd Lair et al., 2009a,b; Zhang, 2009).

In the crystal structure of the title compound adjacent molecules are linked through intermolecular N—H···O hydrogen bonds, forming chains propagating in b direction (Table 1 and Fig. 2).

Related literature top

For related structures, see: Alhadi et al. (2008); Küçükgüzel et al. (2003); Mohd Lair et al. (2009a,b); Li et al. (2009); Zhang et al. (2009). For a similar hydrazone compound, see: Zhang (2009). For reference structural data, see: Allen et al. (1987).

Experimental top

2-Hydroxy-4-methoxybenzaldehyde (1.0 mmol, 152.2 mg) and 4-methoxybenzohydrazide (1.0 mmol, 166.2 mg) were mixed in a methanol solution, and the mixture was refluxed for 1 h. Colorless block-shaped crystals of the title compound were formed by slow evaporation of the solution in air.

Refinement top

Atom H2 attached to N2 was located from a difference electron-density map and freely refined with Uiso(H) restrained to 0.08 (2) Å2. The other H-atoms were included in calculated positions and refined as riding atoms: d(C—H) = 0.93–0.96 Å, d(O—H) = 0.82 Å, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl and O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 30% displacement ellipsoids. The intramolecular N-H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A perspective view, along the c-axis, illustrating the infinite chain structure of the title compound. O-H···N and N-H···O hydrogen bonds are shown as dashed lines [see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity].
N'-(2-Hydroxy-4-methoxybenzylidene)-4-methoxybenzohydrazide top
Crystal data top
C16H16N2O4F(000) = 632
Mr = 300.31Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1647 reflections
a = 17.692 (2) Åθ = 2.3–24.5°
b = 5.4131 (7) ŵ = 0.10 mm1
c = 14.933 (2) ÅT = 298 K
β = 97.431 (7)°Block, colorless
V = 1418.1 (3) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3069 independent reflections
Radiation source: fine-focus sealed tube2001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2122
Tmin = 0.977, Tmax = 0.980k = 66
8164 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.2712P]
where P = (Fo2 + 2Fc2)/3
3069 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C16H16N2O4V = 1418.1 (3) Å3
Mr = 300.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.692 (2) ŵ = 0.10 mm1
b = 5.4131 (7) ÅT = 298 K
c = 14.933 (2) Å0.23 × 0.20 × 0.20 mm
β = 97.431 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3069 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2001 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.980Rint = 0.033
8164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
3069 reflectionsΔρmin = 0.16 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25296 (7)0.8356 (2)0.42022 (10)0.0497 (4)
H10.20790.79860.40790.075*
O20.03919 (7)0.9056 (3)0.38193 (10)0.0550 (4)
O30.49908 (7)0.5665 (3)0.36425 (10)0.0584 (4)
O40.29179 (7)0.4958 (3)0.40281 (9)0.0479 (4)
N10.13948 (8)0.5576 (3)0.35985 (10)0.0426 (4)
N20.06360 (9)0.5020 (3)0.35871 (12)0.0449 (4)
C10.26537 (10)0.4485 (3)0.34327 (12)0.0375 (4)
C20.29666 (10)0.6628 (3)0.38635 (12)0.0381 (4)
C30.37456 (10)0.7056 (3)0.39548 (13)0.0419 (5)
H30.39490.84540.42580.050*
C40.42197 (10)0.5403 (4)0.35937 (13)0.0425 (5)
C50.39204 (11)0.3296 (4)0.31433 (13)0.0464 (5)
H50.42370.22020.28890.056*
C60.31544 (11)0.2860 (4)0.30805 (13)0.0437 (5)
H60.29590.14300.27930.052*
C70.18490 (10)0.3929 (4)0.33728 (12)0.0422 (5)
H70.16650.23890.31720.051*
C80.01619 (10)0.6911 (4)0.37443 (12)0.0407 (4)
C90.06413 (10)0.6228 (3)0.38074 (12)0.0375 (4)
C100.10700 (10)0.7816 (4)0.42781 (13)0.0429 (5)
H100.08430.92260.45480.052*
C110.18213 (11)0.7328 (4)0.43479 (13)0.0435 (5)
H110.21000.83990.46660.052*
C120.21659 (10)0.5231 (3)0.39429 (12)0.0374 (4)
C130.17495 (10)0.3632 (4)0.34784 (13)0.0437 (5)
H130.19790.22280.32060.052*
C140.09899 (10)0.4126 (4)0.34193 (13)0.0436 (5)
H140.07090.30300.31140.052*
C150.53412 (11)0.7685 (4)0.41459 (18)0.0660 (7)
H15A0.51540.92090.38730.099*
H15B0.58840.75990.41500.099*
H15C0.52220.76090.47540.099*
C160.32941 (11)0.2764 (4)0.36696 (15)0.0531 (5)
H16A0.32560.26510.30350.080*
H16B0.38210.28230.37590.080*
H16C0.30570.13460.39740.080*
H20.0500 (13)0.341 (2)0.3594 (16)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0404 (8)0.0411 (8)0.0694 (9)0.0031 (6)0.0135 (7)0.0102 (7)
O20.0463 (8)0.0446 (9)0.0753 (10)0.0066 (7)0.0117 (7)0.0086 (8)
O30.0352 (8)0.0575 (10)0.0830 (11)0.0003 (6)0.0101 (7)0.0097 (8)
O40.0360 (7)0.0486 (8)0.0610 (9)0.0001 (6)0.0130 (6)0.0039 (7)
N10.0330 (8)0.0451 (10)0.0502 (9)0.0006 (7)0.0069 (7)0.0031 (8)
N20.0322 (8)0.0430 (10)0.0598 (10)0.0019 (7)0.0074 (7)0.0010 (9)
C10.0369 (10)0.0346 (10)0.0410 (10)0.0016 (8)0.0054 (8)0.0025 (8)
C20.0395 (10)0.0329 (10)0.0429 (10)0.0051 (8)0.0088 (8)0.0012 (8)
C30.0398 (10)0.0364 (11)0.0494 (11)0.0002 (8)0.0048 (8)0.0029 (9)
C40.0333 (10)0.0451 (12)0.0496 (11)0.0048 (8)0.0069 (8)0.0050 (9)
C50.0439 (11)0.0431 (12)0.0531 (12)0.0092 (9)0.0095 (9)0.0035 (10)
C60.0442 (11)0.0358 (11)0.0508 (11)0.0026 (8)0.0052 (9)0.0037 (9)
C70.0409 (11)0.0375 (11)0.0476 (11)0.0024 (8)0.0030 (8)0.0010 (9)
C80.0372 (10)0.0443 (12)0.0407 (10)0.0016 (9)0.0051 (8)0.0024 (9)
C90.0349 (9)0.0374 (10)0.0401 (10)0.0016 (8)0.0043 (8)0.0009 (8)
C100.0426 (11)0.0377 (11)0.0482 (11)0.0003 (8)0.0046 (9)0.0071 (9)
C110.0453 (11)0.0403 (11)0.0459 (11)0.0075 (9)0.0093 (9)0.0057 (9)
C120.0341 (9)0.0388 (11)0.0398 (10)0.0034 (8)0.0061 (7)0.0028 (8)
C130.0399 (11)0.0380 (11)0.0534 (12)0.0016 (8)0.0064 (9)0.0093 (9)
C140.0390 (10)0.0405 (11)0.0521 (11)0.0032 (8)0.0096 (9)0.0096 (9)
C150.0375 (12)0.0611 (15)0.0982 (19)0.0027 (10)0.0041 (11)0.0059 (14)
C160.0390 (11)0.0527 (13)0.0678 (14)0.0066 (9)0.0072 (10)0.0012 (11)
Geometric parameters (Å, º) top
O1—C21.353 (2)C6—H60.9300
O1—H10.8200C7—H70.9300
O2—C81.231 (2)C8—C91.483 (2)
O3—C41.364 (2)C9—C141.385 (3)
O3—C151.423 (3)C9—C101.395 (2)
O4—C121.361 (2)C10—C111.372 (2)
O4—C161.431 (2)C10—H100.9300
N1—C71.274 (2)C11—C121.389 (3)
N1—N21.374 (2)C11—H110.9300
N2—C81.363 (2)C12—C131.380 (2)
N2—H20.903 (10)C13—C141.384 (2)
C1—C61.398 (2)C13—H130.9300
C1—C21.405 (3)C14—H140.9300
C1—C71.447 (2)C15—H15A0.9600
C2—C31.387 (2)C15—H15B0.9600
C3—C41.383 (2)C15—H15C0.9600
C3—H30.9300C16—H16A0.9600
C4—C51.393 (3)C16—H16B0.9600
C5—C61.367 (3)C16—H16C0.9600
C5—H50.9300
C2—O1—H1109.5C14—C9—C10118.38 (17)
C4—O3—C15118.20 (15)C14—C9—C8123.83 (17)
C12—O4—C16117.91 (14)C10—C9—C8117.79 (17)
C7—N1—N2119.46 (17)C11—C10—C9120.98 (18)
C8—N2—N1117.10 (16)C11—C10—H10119.5
C8—N2—H2123.5 (15)C9—C10—H10119.5
N1—N2—H2118.2 (15)C10—C11—C12119.92 (17)
C6—C1—C2117.41 (16)C10—C11—H11120.0
C6—C1—C7120.80 (17)C12—C11—H11120.0
C2—C1—C7121.77 (16)O4—C12—C13124.80 (17)
O1—C2—C3117.15 (17)O4—C12—C11115.29 (16)
O1—C2—C1122.13 (16)C13—C12—C11119.90 (17)
C3—C2—C1120.71 (16)C12—C13—C14119.78 (18)
C4—C3—C2119.92 (18)C12—C13—H13120.1
C4—C3—H3120.0C14—C13—H13120.1
C2—C3—H3120.0C13—C14—C9121.03 (17)
O3—C4—C3124.39 (18)C13—C14—H14119.5
O3—C4—C5115.21 (16)C9—C14—H14119.5
C3—C4—C5120.40 (17)O3—C15—H15A109.5
C6—C5—C4119.08 (17)O3—C15—H15B109.5
C6—C5—H5120.5H15A—C15—H15B109.5
C4—C5—H5120.5O3—C15—H15C109.5
C5—C6—C1122.43 (18)H15A—C15—H15C109.5
C5—C6—H6118.8H15B—C15—H15C109.5
C1—C6—H6118.8O4—C16—H16A109.5
N1—C7—C1119.14 (18)O4—C16—H16B109.5
N1—C7—H7120.4H16A—C16—H16B109.5
C1—C7—H7120.4O4—C16—H16C109.5
O2—C8—N2121.38 (17)H16A—C16—H16C109.5
O2—C8—C9122.52 (17)H16B—C16—H16C109.5
N2—C8—C9116.10 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.577 (2)146
N2—H2···O2i0.90 (1)2.39 (1)3.281 (2)168 (2)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O4
Mr300.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.692 (2), 5.4131 (7), 14.933 (2)
β (°) 97.431 (7)
V3)1418.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
8164, 3069, 2001
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.03
No. of reflections3069
No. of parameters205
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.577 (2)145.5
N2—H2···O2i0.90 (1)2.393 (11)3.281 (2)168 (2)
Symmetry code: (i) x, y1, z.
 

References

First citationAlhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKüçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science PubMed Google Scholar
First citationLi, M.-L., Huang, X. & Feng, R.-K. (2009). Acta Cryst. E65, o369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. (2009). Acta Cryst. E65, o1388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds