metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1127-m1128

trans-(Pyrimidine-2-thiol­ato-κ2N,S)[tris­­(2-amino­ethyl)amine-κ4N,N′,N′′,N′′′]cobalt(III) chloride hexa­fluoridophosphate

aDepartment of Applied Science, Faculty of Science, Kochi University, Akebono-cho, Kochi 780-8520, Japan
*Correspondence e-mail: yonemura@kochi-u.ac.jp

(Received 15 August 2009; accepted 15 August 2009; online 22 August 2009)

In the title compound, [Co(C4H3N2S)(C6H18N4)](Cl)PF6, the CoIII ion is coordinated by a tripod-like tetra­dentate ligand and a monoanionic N,S-bidentate ligand in an approximately octa­hedral CoN4OS geometry. The anionic S atom of the pyrimidine-2-thiol­ate (pymt) ligand is coordinated in the trans position to the primary amine N atom (Nprim) of the tris­(2-amino­ethyl)amine (tren) ligand. The crystal structure exhibits short inter­molecular N—H⋯N hydrogen bonds (N⋯N <3.2 Å), and inter­molecular N—H⋯Cl and C—H⋯F contacts, leading to the formation of an infinite two-dimensional network.

Related literature

For the synthesis and chemistry of similar tren [tren = tris­(2-amino­ethyl)amine] complexes, see: Jackson & Sargeson (1978[Jackson, W. G. & Sargeson, A. M. (1978). Inorg. Chem. 17, 2165-2169.]); Kojima et al. (1994[Kojima, M., Shimizu, Y., Nakajima, K. & Yoshikawa, Y. (1994). Bull. Chem. Soc. Jpn, 67, 869-872.]); Mitsui et al. (1976[Mitsui, Y., Watanabe, J., Harada, Y., Sakamaki, T., Kushi, Y. & Kimura, E. (1976). J. Chem. Soc. Dalton Trans. pp. 2095-2102.]); Ohba & Saito (1984[Ohba, S. & Saito, Y. (1984). Acta Cryst. C40, 398-401.]); Okamoto et al. (1990[Okamoto, K., Konno, T. & Hidaka, J. (1990). Acta Cryst. C46, 216-218.]); Yonemura et al. (1997[Yonemura, T., Shibuya, K., Okamoto, K., Ama, T., Kawaguchi, H. & Yasui, T. (1997). Inorg. Chim. Acta, 260, 119-128.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H3N2S)(C6H18N4)](Cl)PF6

  • Mr = 496.73

  • Monoclinic, P 21 /c

  • a = 12.7106 (17) Å

  • b = 11.326 (2) Å

  • c = 14.205 (2) Å

  • β = 112.549 (10)°

  • V = 1888.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 296 K

  • 0.45 × 0.35 × 0.20 mm

Data collection
  • Rigaku AFC-7S diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.503, Tmax = 0.770

  • 5201 measured reflections

  • 4342 independent reflections

  • 3416 reflections with F2 > 2σ(F2)

  • Rint = 0.031

  • 3 standard reflections every 150 reflections intensity decay: 5.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.174

  • S = 1.05

  • 4342 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H8⋯N2i 0.90 2.50 3.079 (4) 123
N4—H9⋯Cl1ii 0.90 2.52 3.278 (3) 142
N5—H14⋯Cl1ii 0.90 2.39 3.287 (3) 173
N5—H15⋯Cl1iii 0.90 2.42 3.273 (3) 160
N6—H21⋯Cl1 0.90 2.29 3.187 (3) 173
C6—H6⋯F1 0.97 2.39 3.210 (6) 143
C7—H11⋯F4iv 0.97 2.52 3.328 (6) 141
C9—H17⋯F6v 0.97 2.52 3.454 (6) 161
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1.

Data collection: WinAFC (Rigaku/MSC, 2000[Rigaku/MSC (2000). WinAFC. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Cobalt(III)-tren [tren = tris(2-aminoethyl)amine] complexes with thiolate and/or thioether ligands have been investigated in view of their stereochemistry and ligand substitution reactions (Mitsui & Kimura, et al., 1976; Jackson & Sargeson et al., 1978; Ohba & Saito, et al., 1984; Okamoto, et al., 1990; Kojima, et al., 1994; Yonemura, et al., 1997). The chemistry of the aliphatic and aromatic thiolato cobalt(III) complexes has led to many interesting results concerning the features of the coordinated sulfur atoms. Although aliphatic thiolato cobalt(III)-tren complexes have been extensively investigated, aromatic thiolato complexes have not been thus far because of the difficulties involved in their preparation.

In view of our interest in the stereochemistry and spectrochemical properties of aromatic and aliphatic cobalt(III) complexes, we synthesized the title compound using the tripod-like tetradentate tren ligand to fix the remaining two cis coordination sites in the cobalt(III) complexes, as two geometrical isomers, p-(trans(Nprim,S))and t-(trans(Ntert,S)), are possible for [Co(bidentate-N,S)(tren)]-type complexes. The known cobalt(III)-tren complexes of 2-aminoethanethiolate-N,S (aet) (Sargeson et al., 1978) formed p-isomers as the major products, and those of 2-mercaptoacetate-O,S (ma) or 3-mercaptopropionate-O,S (mp) selectively formed the t-isomers (Mitsui & Kimura, et al., 1976; Jackson & Sargeson et al., 1978; Ohba & Saito, et al., 1984; Okamoto, et al.,1990; Kojima, et al., 1994; Yonemura, et al., 1997). Herein we report on the structure of a cobalt(III)-tren complex coordinated with the aromatic thiolato ligand pyrimidine-2-thiolate (pymt).

In the title compound the cobalt(III) atom is coordinated by a tripod-like tetradentate ligand and a monoanionic N,S-bidentate ligand, producing an approximately octahedral CoN4OS geometry (Fig. 1). In the present complex the anionic sulfur atom of the pymt ligand is coordinated trans to the primary amine N-atom (Nprim) of the tren ligand, with a nearly linear S1—Co1—N4 angle (170.71 (9)Å) hence the title compound is the p-isomer (trans(Nprim,S)). The known cobalt(III)-tren complex of aet shows the same systematic trend, at least in the coordination manner of the N,S-bidentate ligand. The Co—S distance (2.3187 (12) Å) is significantly longer than those observed in the Co(III)-tren complexes with aliphatic thiolato ligands: 2.239 (1) Å in t-[Co{CH3SCH(CH3)COO}(tren)]2+ (Ohba & Saito, et al., 1984), 2.236 (2) Å in t-[Co(mp)(tren)]+ and 2.232 (1) Å in t-[Co(ma)(tren)]+ (Yonemura, et al., 1997)). The Co—N4 distance (1.954 (3) Å), which is in the trans position relative to the sulfur atom, is shorter than the other Co-N(tren) distances (Co1—N5 = 1.966 (3) Å and Co1—N6 = 1.970 (3) Å). The S1-Co1-N1 angle of 72.31 (9)° is far from the ideal angle of 90°. This distortion is relaxed by the other angles in the same plane, that is, S1-Co1-N3 = 101.96 (9), and N1-Co1-N4 = 98.40 (12)°. The other bond distances and angles are similar to those in the cobalt(III)-tren complexes mentioned above.

The aromatic pymt N,S-chelate ring is almost planar and the three N,N'-chelate rings of the tren are in a gauche conformation. The gauche conformations of the two –N—CH2—CH2—NH2 chelates in the tren ligand have unsymmetrical skew forms with the λ and δ conformations, and the gauche conformation of the central –N—CH2—CH2—NH2 chelate in the tren ligand has an unsymmetrical skew form with the λ conformation.

In the crystal structure each complex cation is linked to adjacent cations through N–H···N hydrogen bonds so constructing a one-dimensional chain structure (Fig. 2 and Table 1). These chains are further bridged by ordered Cl and PF6 anions through N–H···Cl and C–H···F contacts, leading to the formation of an infinite two-dimensional network (Table 1 and Fig. 2).

Related literature top

For the synthesis and chemistry of similar tren [tren = tris(2-aminoethyl)amine] complexes, see: Jackson & Sargeson (1978); Kojima et al. (1994); Mitsui et al. (1976); Ohba & Saito (1984); Okamoto et al. (1990); Yonemura et al. (1997).

Experimental top

A methanolic solution of 2-pyrimidinethiol (1.12 g, 10 mmol) was adjusted to pH 8.0 with aqueous solutions of NaOH and HCl. The mixed solution was added to an aqueous solution of [CoCl2(tren)]Cl (3.11 g, 10 mmol) and stirred at 40 °C for 1 h. The reaction mixture was poured onto an SP-Sepahadex C-25 column (Na+ form, 7 cm × 7 cm) and the adsorbed band was developed with a 0.2 mol dm-3 NaCl aqueous solution. The eluted red band was concentrated to a small volume, the precipitated NaCl was filtered off and the red filtrate was added to a solution of NH4PF6 (1.1 g, 6.7 mmol). The resulting red powder was collected by filtration and recrystallized from water. A few days later red crystals of the title compoun were obtained with a yield of 1.50 g (35%). Anal. Calc. for [Co(pymt)(tren)]ClPF6 = C10H21CoN6SClPF6: C 24.18, H 4.26, N 16.92%, Found: C 24.09, H 4.24, N 17.04%.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: N—H = 0.90 Å, C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: WinAFC (Rigaku/MSC, 2000); cell refinement: WinAFC (Rigaku/MSC, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2007).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom-labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view along the b-axis of the crystal packing diagram of the title compound, showing the N–H···N hydrogen-bonds and N–H···Cl and C–H···F contacts as dashed lines (the H-atoms have been omitted for clarity).
trans-(Pyrimidine-2-thiolato-κ2N,S)[tris(2- aminoethyl)amine-κ4N,N',N'',N''']cobalt(III) chloride hexafluoridophosphate top
Crystal data top
[Co(C4H3N2S)(C6H18N4)](Cl)PF6F(000) = 1008.0
Mr = 496.73Dx = 1.747 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.7106 (17) Åθ = 15.4–17.1°
b = 11.326 (2) ŵ = 1.31 mm1
c = 14.205 (2) ÅT = 296 K
β = 112.549 (10)°Prismatic, red-brown
V = 1888.7 (5) Å30.45 × 0.35 × 0.20 mm
Z = 4
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.031
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 1615
Tmin = 0.503, Tmax = 0.770k = 140
5201 measured reflectionsl = 1018
4342 independent reflections3 standard reflections every 150 reflections
3416 reflections with F2 > 2σ(F2) intensity decay: 5.4%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.1106P)2 + 1.816P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.174(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.14 e Å3
4342 reflectionsΔρmin = 0.87 e Å3
237 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0077 (13)
Crystal data top
[Co(C4H3N2S)(C6H18N4)](Cl)PF6V = 1888.7 (5) Å3
Mr = 496.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7106 (17) ŵ = 1.31 mm1
b = 11.326 (2) ÅT = 296 K
c = 14.205 (2) Å0.45 × 0.35 × 0.20 mm
β = 112.549 (10)°
Data collection top
Rigaku AFC-7S
diffractometer
3416 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.503, Tmax = 0.7703 standard reflections every 150 reflections
5201 measured reflections intensity decay: 5.4%
4342 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.05Δρmax = 1.14 e Å3
4342 reflectionsΔρmin = 0.87 e Å3
237 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.18778 (4)0.70419 (4)0.19018 (3)0.0308 (1)
S10.23158 (8)0.80886 (9)0.06968 (7)0.0410 (3)
N10.0476 (2)0.7685 (3)0.0930 (2)0.0372 (9)
N20.0184 (3)0.8748 (3)0.0597 (2)0.0470 (10)
N30.3357 (2)0.6418 (3)0.2771 (2)0.0385 (8)
N40.1255 (2)0.6241 (3)0.2792 (2)0.0406 (9)
N50.1706 (2)0.5600 (3)0.1086 (2)0.0405 (9)
N60.2288 (2)0.8465 (3)0.2764 (2)0.0410 (9)
C10.0848 (3)0.8230 (3)0.0267 (2)0.0384 (10)
C20.0930 (4)0.8686 (4)0.0804 (3)0.0548 (12)
C30.1387 (3)0.8134 (4)0.0174 (3)0.0568 (14)
C40.0639 (3)0.7636 (4)0.0716 (3)0.0488 (12)
C50.3252 (3)0.5685 (3)0.3615 (2)0.0452 (11)
C60.2038 (3)0.5283 (3)0.3347 (2)0.0438 (11)
C70.3755 (3)0.5708 (4)0.2084 (3)0.0508 (12)
C80.2801 (4)0.4922 (4)0.1429 (3)0.0516 (12)
C90.4102 (3)0.7457 (4)0.3219 (3)0.0484 (11)
C100.3430 (3)0.8304 (3)0.3597 (3)0.0493 (12)
P10.35869 (9)0.19313 (10)0.36387 (9)0.0445 (3)
F10.2435 (3)0.2566 (4)0.2930 (3)0.1068 (16)
F20.4274 (5)0.2804 (3)0.3247 (6)0.142 (3)
F30.3517 (3)0.1030 (3)0.2757 (2)0.0873 (12)
F40.4707 (3)0.1283 (5)0.4302 (3)0.1148 (16)
F50.2846 (5)0.1060 (4)0.3963 (5)0.147 (3)
F60.3610 (4)0.2851 (4)0.4487 (3)0.1020 (16)
Cl10.03840 (9)0.91504 (11)0.36135 (8)0.0531 (3)
H10.142800.903100.140300.0660*
H20.217000.810100.034600.0680*
H30.091100.726900.116300.0590*
H40.349700.614600.423700.0540*
H50.374500.500000.373600.0540*
H60.189000.458200.292300.0530*
H70.191800.508800.396300.0530*
H80.117300.676000.324000.0490*
H90.056500.594000.241900.0490*
H100.440600.523200.248800.0610*
H110.398700.623000.165700.0610*
H120.294700.465700.084200.0610*
H130.274800.423300.181500.0610*
H140.115600.514500.114800.0490*
H150.149500.579500.042500.0490*
H160.431900.783600.270700.0580*
H170.478900.720900.377800.0580*
H180.334800.798600.420000.0590*
H190.382200.905600.377300.0590*
H200.230200.909500.238300.0490*
H210.176400.859600.303400.0490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0335 (2)0.0386 (2)0.0257 (2)0.0010 (2)0.0173 (2)0.0001 (2)
S10.0416 (4)0.0527 (5)0.0362 (4)0.0043 (3)0.0232 (3)0.0054 (3)
N10.0375 (14)0.0471 (17)0.0312 (14)0.0010 (12)0.0177 (11)0.0025 (12)
N20.057 (2)0.0517 (19)0.0315 (14)0.0037 (15)0.0162 (14)0.0037 (13)
N30.0372 (14)0.0458 (16)0.0349 (14)0.0015 (12)0.0164 (12)0.0003 (13)
N40.0485 (17)0.0501 (17)0.0316 (14)0.0057 (13)0.0246 (13)0.0012 (12)
N50.0490 (17)0.0472 (17)0.0318 (14)0.0058 (13)0.0226 (13)0.0046 (12)
N60.0473 (17)0.0433 (16)0.0369 (15)0.0022 (13)0.0211 (13)0.0040 (13)
C10.0427 (18)0.0446 (19)0.0325 (16)0.0017 (15)0.0194 (14)0.0001 (14)
C20.057 (2)0.058 (2)0.041 (2)0.012 (2)0.0096 (18)0.0013 (19)
C30.037 (2)0.070 (3)0.058 (2)0.0057 (19)0.0121 (18)0.006 (2)
C40.044 (2)0.063 (2)0.046 (2)0.0001 (18)0.0245 (17)0.0018 (19)
C50.054 (2)0.046 (2)0.0344 (17)0.0047 (17)0.0156 (16)0.0055 (15)
C60.059 (2)0.044 (2)0.0335 (16)0.0009 (17)0.0235 (16)0.0045 (14)
C70.047 (2)0.066 (2)0.046 (2)0.0145 (19)0.0253 (17)0.0033 (19)
C80.069 (2)0.049 (2)0.045 (2)0.0116 (19)0.031 (2)0.0071 (17)
C90.0367 (18)0.058 (2)0.045 (2)0.0066 (17)0.0094 (15)0.0031 (19)
C100.057 (2)0.043 (2)0.041 (2)0.0059 (17)0.0112 (17)0.0054 (16)
P10.0437 (5)0.0468 (5)0.0452 (5)0.0057 (4)0.0196 (4)0.0026 (4)
F10.084 (2)0.113 (3)0.102 (3)0.046 (2)0.012 (2)0.005 (2)
F20.170 (5)0.072 (2)0.264 (7)0.021 (2)0.171 (5)0.006 (3)
F30.103 (2)0.085 (2)0.073 (2)0.016 (2)0.0329 (19)0.0226 (18)
F40.089 (2)0.148 (4)0.077 (2)0.048 (2)0.002 (2)0.002 (2)
F50.182 (5)0.078 (2)0.265 (7)0.003 (3)0.180 (5)0.022 (3)
F60.120 (3)0.112 (3)0.073 (2)0.015 (2)0.036 (2)0.027 (2)
Cl10.0510 (5)0.0707 (7)0.0425 (5)0.0165 (4)0.0235 (4)0.0068 (4)
Geometric parameters (Å, º) top
Co1—S12.3187 (12)N4—H90.9000
Co1—N11.930 (3)N5—H150.9000
Co1—N31.944 (3)N5—H140.9000
Co1—N41.954 (3)N6—H210.9000
Co1—N51.966 (3)N6—H200.9000
Co1—N61.970 (3)C2—C31.389 (6)
Co1—C12.566 (3)C3—C41.378 (6)
S1—C11.734 (4)C5—C61.511 (5)
P1—F31.592 (3)C7—C81.504 (6)
P1—F41.557 (5)C9—C101.513 (6)
P1—F51.551 (6)C2—H10.9300
P1—F61.585 (4)C3—H20.9300
P1—F11.595 (4)C4—H30.9300
P1—F21.556 (6)C5—H50.9700
N1—C11.354 (4)C5—H40.9700
N1—C41.332 (5)C6—H60.9700
N2—C21.333 (7)C6—H70.9700
N2—C11.330 (4)C7—H100.9700
N3—C51.506 (4)C7—H110.9700
N3—C71.495 (5)C8—H130.9700
N3—C91.491 (5)C8—H120.9700
N4—C61.479 (5)C9—H160.9700
N5—C81.498 (6)C9—H170.9700
N6—C101.491 (5)C10—H190.9700
N4—H80.9000C10—H180.9700
S1—Co1—N172.31 (9)H14—N5—H15108.00
S1—Co1—N3101.96 (9)Co1—N5—H14109.00
S1—Co1—N4170.71 (9)H20—N6—H21108.00
S1—Co1—N589.62 (9)Co1—N6—H20110.00
S1—Co1—N687.67 (9)C10—N6—H21110.00
S1—Co1—C141.18 (9)Co1—N6—H21110.00
N1—Co1—N3173.92 (12)C10—N6—H20110.00
N1—Co1—N498.40 (12)Co1—C1—N147.51 (15)
N1—Co1—N591.63 (13)Co1—C1—S161.73 (10)
N1—Co1—N695.02 (13)Co1—C1—N2171.7 (3)
N1—Co1—C131.15 (12)N1—C1—N2125.2 (4)
N3—Co1—N487.33 (12)S1—C1—N1109.2 (2)
N3—Co1—N586.23 (13)S1—C1—N2125.6 (3)
N3—Co1—N686.65 (13)N2—C2—C3123.6 (4)
N3—Co1—C1143.02 (12)C2—C3—C4117.6 (4)
N4—Co1—N590.85 (13)N1—C4—C3119.5 (4)
N4—Co1—N693.09 (13)N3—C5—C6111.1 (2)
N4—Co1—C1129.54 (12)N4—C6—C5109.1 (3)
N5—Co1—N6171.69 (12)N3—C7—C8109.1 (3)
N5—Co1—C189.96 (11)N5—C8—C7109.0 (3)
N6—Co1—C193.16 (11)N3—C9—C10107.4 (3)
Co1—S1—C177.09 (11)N6—C10—C9107.8 (3)
F5—P1—F691.6 (3)N2—C2—H1118.00
F1—P1—F289.6 (3)C3—C2—H1118.00
F1—P1—F391.8 (2)C2—C3—H2121.00
F1—P1—F4178.1 (2)C4—C3—H2121.00
F1—P1—F587.7 (3)N1—C4—H3120.00
F1—P1—F685.9 (2)C3—C4—H3120.00
F2—P1—F389.8 (3)N3—C5—H5109.00
F2—P1—F490.4 (3)N3—C5—H4109.00
F2—P1—F5176.5 (4)H4—C5—H5108.00
F2—P1—F690.3 (3)C6—C5—H4109.00
F3—P1—F486.3 (2)C6—C5—H5109.00
F3—P1—F588.2 (3)N4—C6—H6110.00
F3—P1—F6177.7 (2)C5—C6—H7110.00
F4—P1—F592.2 (3)N4—C6—H7110.00
F4—P1—F696.0 (2)C5—C6—H6110.00
Co1—N1—C1101.4 (2)H6—C6—H7108.00
Co1—N1—C4139.2 (3)H10—C7—H11108.00
C1—N1—C4119.0 (3)N3—C7—H10110.00
C1—N2—C2115.1 (3)N3—C7—H11110.00
Co1—N3—C5110.3 (2)C8—C7—H10110.00
Co1—N3—C7105.5 (2)C8—C7—H11110.00
Co1—N3—C9106.6 (2)N5—C8—H12110.00
C5—N3—C7112.3 (3)N5—C8—H13110.00
C5—N3—C9109.3 (3)C7—C8—H12110.00
C7—N3—C9112.6 (3)C7—C8—H13110.00
Co1—N4—C6109.2 (2)H12—C8—H13108.00
Co1—N5—C8110.8 (2)N3—C9—H16110.00
Co1—N6—C10109.8 (2)N3—C9—H17110.00
C6—N4—H9110.00C10—C9—H16110.00
H8—N4—H9108.00C10—C9—H17110.00
Co1—N4—H8110.00H16—C9—H17108.00
C6—N4—H8110.00N6—C10—H18110.00
Co1—N4—H9110.00N6—C10—H19110.00
C8—N5—H14110.00C9—C10—H18110.00
C8—N5—H15109.00C9—C10—H19110.00
Co1—N5—H15109.00H18—C10—H19108.00
N1—Co1—S1—C11.46 (15)N4—Co1—N6—C1085.4 (2)
N3—Co1—S1—C1176.44 (15)C1—Co1—N6—C10144.7 (2)
N5—Co1—S1—C190.38 (14)S1—Co1—C1—N1177.3 (3)
N6—Co1—S1—C197.48 (14)N1—Co1—C1—S1177.3 (3)
S1—Co1—N1—C11.86 (19)N3—Co1—C1—S15.8 (2)
S1—Co1—N1—C4173.9 (4)N3—Co1—C1—N1176.9 (2)
N4—Co1—N1—C1178.3 (2)N4—Co1—C1—S1179.46 (13)
N4—Co1—N1—C46.3 (4)N4—Co1—C1—N12.2 (3)
N5—Co1—N1—C187.2 (2)N5—Co1—C1—S189.47 (12)
N5—Co1—N1—C484.8 (4)N5—Co1—C1—N193.2 (2)
N6—Co1—N1—C187.8 (2)N6—Co1—C1—S182.83 (12)
N6—Co1—N1—C4100.1 (4)N6—Co1—C1—N194.5 (2)
C1—Co1—N1—C4172.1 (6)Co1—S1—C1—N12.1 (2)
S1—Co1—N3—C5179.45 (19)Co1—S1—C1—N2175.4 (3)
S1—Co1—N3—C758.0 (2)Co1—N1—C1—S12.5 (3)
S1—Co1—N3—C962.0 (2)Co1—N1—C1—N2175.0 (3)
N4—Co1—N3—C50.4 (2)C4—N1—C1—Co1174.1 (4)
N4—Co1—N3—C7121.9 (3)C4—N1—C1—S1176.6 (3)
N4—Co1—N3—C9118.2 (2)C4—N1—C1—N20.9 (6)
N5—Co1—N3—C590.6 (2)Co1—N1—C4—C3170.8 (3)
N5—Co1—N3—C730.8 (2)C1—N1—C4—C30.3 (6)
N5—Co1—N3—C9150.8 (2)C2—N2—C1—S1175.8 (3)
N6—Co1—N3—C593.6 (2)C2—N2—C1—N11.2 (5)
N6—Co1—N3—C7144.9 (2)C1—N2—C2—C30.4 (6)
N6—Co1—N3—C924.9 (2)Co1—N3—C5—C620.3 (3)
C1—Co1—N3—C5175.55 (18)C7—N3—C5—C697.1 (3)
C1—Co1—N3—C754.1 (3)C9—N3—C5—C6137.2 (3)
C1—Co1—N3—C965.9 (3)Co1—N3—C7—C847.1 (4)
N1—Co1—N4—C6156.7 (2)C5—N3—C7—C873.1 (4)
N3—Co1—N4—C621.3 (2)C9—N3—C7—C8163.0 (3)
N5—Co1—N4—C664.9 (2)Co1—N3—C9—C1046.4 (3)
N6—Co1—N4—C6107.8 (2)C5—N3—C9—C1072.8 (4)
C1—Co1—N4—C6155.58 (18)C7—N3—C9—C10161.7 (3)
S1—Co1—N5—C893.0 (2)Co1—N4—C6—C537.0 (3)
N1—Co1—N5—C8165.3 (3)Co1—N5—C8—C715.2 (4)
N3—Co1—N5—C89.0 (3)Co1—N6—C10—C927.8 (3)
N4—Co1—N5—C896.3 (3)N2—C2—C3—C40.6 (7)
C1—Co1—N5—C8134.2 (3)C2—C3—C4—N11.0 (6)
S1—Co1—N6—C10103.9 (2)N3—C5—C6—N437.6 (3)
N1—Co1—N6—C10175.9 (2)N3—C7—C8—N540.9 (4)
N3—Co1—N6—C101.8 (2)N3—C9—C10—N648.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H8···N2i0.902.503.079 (4)123
N4—H9···Cl1ii0.902.523.278 (3)142
N5—H14···Cl1ii0.902.393.287 (3)173
N5—H15···Cl1iii0.902.423.273 (3)160
N6—H21···Cl10.902.293.187 (3)173
C6—H6···F10.972.393.210 (6)143
C7—H11···F4iv0.972.523.328 (6)141
C9—H17···F6v0.972.523.454 (6)161
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C4H3N2S)(C6H18N4)](Cl)PF6
Mr496.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.7106 (17), 11.326 (2), 14.205 (2)
β (°) 112.549 (10)
V3)1888.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.45 × 0.35 × 0.20
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.503, 0.770
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
5201, 4342, 3416
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.174, 1.05
No. of reflections4342
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.87

Computer programs: WinAFC (Rigaku/MSC, 2000), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H8···N2i0.902.503.079 (4)123
N4—H9···Cl1ii0.902.523.278 (3)142
N5—H14···Cl1ii0.902.393.287 (3)173
N5—H15···Cl1iii0.902.423.273 (3)160
N6—H21···Cl10.902.293.187 (3)173
C6—H6···F10.972.393.210 (6)143
C7—H11···F4iv0.972.523.328 (6)141
C9—H17···F6v0.972.523.454 (6)161
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z+1.
 

Acknowledgements

This work was partially supported by Grants-in-Aid for Scientific Research C (No. 20550138) from the Japanese Society for the Promotion of Science (JSPS). The authors are grateful to Kochi University for financial support (The Kochi University President's Discretionary Grant 2009).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJackson, W. G. & Sargeson, A. M. (1978). Inorg. Chem. 17, 2165–2169.  CrossRef CAS Web of Science Google Scholar
First citationKojima, M., Shimizu, Y., Nakajima, K. & Yoshikawa, Y. (1994). Bull. Chem. Soc. Jpn, 67, 869–872.  CrossRef CAS Web of Science Google Scholar
First citationMitsui, Y., Watanabe, J., Harada, Y., Sakamaki, T., Kushi, Y. & Kimura, E. (1976). J. Chem. Soc. Dalton Trans. pp. 2095–2102.  CSD CrossRef Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOhba, S. & Saito, Y. (1984). Acta Cryst. C40, 398–401.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkamoto, K., Konno, T. & Hidaka, J. (1990). Acta Cryst. C46, 216–218.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku/MSC (2000). WinAFC. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYonemura, T., Shibuya, K., Okamoto, K., Ama, T., Kawaguchi, H. & Yasui, T. (1997). Inorg. Chim. Acta, 260, 119–128.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1127-m1128
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds