organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Ammonio­naphthalene-2-sulfonate monohydrate: the zwitterionic hydrate of 1,7-Cleve's acid

aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 14 July 2009; accepted 31 July 2009; online 8 August 2009)

The structure of 8-amino-2-naphthalene­sulfonic acid monohydrate (1,7-Cleve's acid hydrate), C10H9NO3S·H2O, shows the presence of a sulfonate–aminium group zwitterion, both groups and the water mol­ecule of solvation giving cyclic R33(8) O—H⋯O and N—H⋯O inter­molecular hydrogen-bonding inter­actions, forming chains which extend down the a axis of the unit cell. Additional peripheral associations, including weak aromatic ring ππ inter­actions [centroid–centroid distance = 3.6299 (15) Å], result in a two-dimensional sheet structure.

Related literature

1,7-Cleve's acid and 1,6-Cleve's acid have important industrialchemical applications as azo dye precursors, see: O'Neil (2001[O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 410. Whitehouse Station, New Jersey: Merck & Co.]). For the preliminary crystal data for a number of aminona­phthalenesulfonic acids, see: Corbridge et al. (1966[Corbridge, D. E. C., Brown, C. J. & Wallwork, C. (1966). Acta Cryst. 20, 698-699.]). For the strutures of 5-amino-2-naphthalene­sulfonic acid (1,6-Cleve's acid) and the 1:1 adduct of 1,7-Cleve's acid with strychnine, see: Smith et al. (2004[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2004). Acta Cryst. E60, o2014-o2016.], 2007[Smith, G., Wermuth, U. D., Young, D. J. & Healy, P. C. (2007). J. Chem. Crystallogr. 36, 805-811.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO3S·H2O

  • Mr = 241.27

  • Orthorhombic, P n a 21

  • a = 7.1616 (3) Å

  • b = 16.4608 (7) Å

  • c = 8.9059 (3) Å

  • V = 1049.88 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 297 K

  • 0.35 × 0.20 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.990

  • 5904 measured reflections

  • 2252 independent reflections

  • 1830 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.076

  • S = 0.91

  • 2252 reflections

  • 165 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 974 Friedel pairs

  • Flack parameter: 0.06 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O23i 0.82 (4) 1.98 (4) 2.798 (3) 176 (3)
O1W—H12W⋯O22ii 0.90 (3) 1.91 (3) 2.796 (3) 169 (3)
N8—H81⋯O23iii 0.88 (3) 1.95 (3) 2.817 (2) 171 (2)
N8—H82⋯O21ii 0.89 (4) 1.96 (3) 2.793 (3) 154 (3)
N8—H83⋯O1W 0.98 (4) 1.82 (4) 2.725 (3) 152 (4)
Symmetry codes: (i) [-x+1, -y+2, z+{\script{1\over 2}}]; (ii) [-x+2, -y+2, z+{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

8-Amino-2-naphthalenesulfonic acid (1-naphthylamine-7-sulfonic acid: 1,7-Cleve's acid) is a compound which along with 1,6-Cleve's acid has important industrial chemical applications as an azo dye precursor (O'Neil, 2001). Although the preliminary crystal data for a number of aminonaphthalenesulfonic acids were reported by Corbridge et al. (1966), the crystal structures of very few have been determined. We reported the structure of 5-amino-2-naphthalenesulfonic acid (1,6-Cleve's acid) (Smith et al., 2004) which, together with the 1:1 adduct of 1,7-Cleve's acid with strychnine (Smith et al., 2007) represent the only crystallographically characterized examples. In both of these structures the molecules exist as sulfonate–amino group zwitterions as is commonly the case with the aminosulfonic acids.

The crystals used for the determination of the structure reported here, the hydrate C10H9NO3S.H2O (I), were obtained from the attempted preparation of a co-crystal with picrylsulfonic acid in ethanol-water solvent, the usual reported form of the acid is the same monohydrate. The unit-cell parameters and space group reported for this compound (Corbridge et al., 1964) (orthorhombic, a = 8.91, b = 16.44, c = 7.14 Å, space group P21cn (non-standard setting) are comparable to those determined here for (I).

The molecules of 1,7-Cleve's acid monohydrate in (I), like those of the isomeric anhydrous 1,6-Cleve's acid (Smith et al., 2004), not unexpectedly show the presence of a sulfonate–aminium group zwitterion (Fig. 1). However, the presence of the water molecule of solvation in (I) results in significantly different hydrogen-bonding characteristics. Whereas with 1,6-Cleve's acid, the aminium protons give interactions with the sulfonate-O acceptors of three separate acid species, giving a 3-D structure, in (I) the structure is 2-D (Fig. 2). The primary intermolecular sulfonate–aminium group interaction involves the water molecule in a cyclic R33(8) association resulting in chains extending down the a direction in the unit cell. Additional peripheral interactions (Table 1) together with weak intermolecular ππ aromatic ring associations [minimum ring centroid separation, 3.6299 (15) Å for the six-membered ring C5–C10], give the structure extension across c (Fig. 3).

Related literature top

1,7-Cleve's acid and 1,6-Cleve's acid have important industrialchemical applications as azo dye precursors, see: O'Neil (2001). For the preliminary crystal data for a number of aminonaphthalenesulfonic acids, see: Corbridge et al. (1966). For the strutures of 5-amino-2-naphthalenesulfonic acid (1,6-Cleve's acid) and the 1:1 adduct of 1,7-Cleve's acid with strychnine, see: Smith et al. (2004, 2007).

Experimental top

The title compound (I) was isolated as the only product from the attempted preparation of an adduct compound of 8-amino-2-naphthalenesulfonic acid (1-naphthylamine-7-sulfonic acid) with picrylsulfonic acid, by heating together for 10 min under reflux 1 mmol quantities of the two reagents in 40 ml of 50% ethanol-water. The crystals formed as colourless flat prisms after partial room-temperature evaporation of the hot-filtered solution.

Refinement top

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions (C–H = 0.93 Å) as riding models with Uiso fixed at 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the 1,7-Cleve's acid zwitterion and the water molecules in (I). Displacement ellipsoids are drawn at the 50% probability level. The inter-species hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The 2-D hydrogen-bonded sheet structure of (I) Viewed down the approximate b axial direction of the unit cell showing also the intermolecular cyclic R33(8) sulfonate–aminium–water association. Non-interactive hydrogen atoms are omitted and hydrogen-bonds are shown as dashed lines.
[Figure 3] Fig. 3. The sheet structure of (I) viewed down the b axial direction; hydrogen-bonds are shown as dashed lines.
8-Ammonionaphthalene-2-sulfonate monohydrate top
Crystal data top
C10H9NO3S·H2OF(000) = 504
Mr = 241.27Dx = 1.526 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2826 reflections
a = 7.1616 (3) Åθ = 3.1–32.3°
b = 16.4608 (7) ŵ = 0.31 mm1
c = 8.9059 (3) ÅT = 297 K
V = 1049.88 (7) Å3Flat prism, colourless
Z = 40.35 × 0.20 × 0.05 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2252 independent reflections
Radiation source: Enhance (Mo) X-ray tube1830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.950, Tmax = 0.990k = 2121
5904 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.003
2252 reflectionsΔρmax = 0.29 e Å3
165 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 974 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (8)
Crystal data top
C10H9NO3S·H2OV = 1049.88 (7) Å3
Mr = 241.27Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.1616 (3) ŵ = 0.31 mm1
b = 16.4608 (7) ÅT = 297 K
c = 8.9059 (3) Å0.35 × 0.20 × 0.05 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2252 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1830 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.990Rint = 0.034
5904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.29 e Å3
S = 0.91Δρmin = 0.17 e Å3
2252 reflectionsAbsolute structure: Flack (1983), 974 Friedel pairs
165 parametersAbsolute structure parameter: 0.06 (8)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.91078 (7)0.91246 (3)0.30596 (6)0.0279 (2)
O210.9227 (3)0.98981 (10)0.38255 (19)0.0426 (6)
O221.0718 (2)0.89287 (11)0.21446 (19)0.0432 (6)
O230.7375 (3)0.90447 (11)0.21899 (17)0.0386 (6)
N80.7911 (4)0.89568 (12)0.9061 (2)0.0316 (7)
C10.8622 (3)0.85751 (14)0.5919 (3)0.0244 (6)
C20.8963 (3)0.83679 (13)0.4461 (2)0.0247 (6)
C30.9158 (4)0.75485 (14)0.4020 (3)0.0313 (7)
C40.8930 (4)0.69545 (14)0.5046 (3)0.0328 (7)
C50.8196 (4)0.65100 (14)0.7627 (3)0.0350 (7)
C60.7800 (4)0.66940 (15)0.9072 (3)0.0377 (8)
C70.7701 (4)0.75056 (16)0.9537 (2)0.0344 (8)
C80.8000 (3)0.81129 (15)0.8546 (2)0.0266 (7)
C90.8386 (3)0.79617 (14)0.7015 (2)0.0244 (6)
C100.8515 (3)0.71317 (14)0.6564 (3)0.0270 (7)
O1W0.6039 (4)1.01561 (13)0.7583 (3)0.0636 (9)
H10.854500.911900.619300.0290*
H30.944100.741900.302900.0380*
H40.904900.641500.474900.0390*
H50.825900.596900.733000.0420*
H60.759200.627900.976100.0450*
H70.742900.762701.053300.0410*
H810.762 (4)0.8959 (14)1.002 (3)0.038 (6)*
H820.904 (5)0.9182 (18)0.897 (4)0.051 (9)*
H830.690 (7)0.927 (3)0.860 (4)0.056 (10)*
H11W0.502 (6)1.0367 (18)0.746 (4)0.076 (10)*
H12W0.699 (4)1.0497 (17)0.738 (3)0.082 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0338 (3)0.0303 (3)0.0196 (2)0.0020 (2)0.0031 (3)0.0018 (2)
O210.0683 (14)0.0271 (8)0.0325 (9)0.0069 (9)0.0053 (10)0.0014 (7)
O220.0422 (11)0.0546 (11)0.0327 (9)0.0010 (9)0.0135 (9)0.0033 (8)
O230.0390 (10)0.0510 (11)0.0258 (8)0.0022 (9)0.0032 (8)0.0010 (7)
N80.0405 (14)0.0348 (12)0.0195 (10)0.0027 (10)0.0037 (10)0.0013 (8)
C10.0254 (12)0.0231 (10)0.0247 (10)0.0015 (9)0.0001 (9)0.0007 (8)
C20.0233 (11)0.0272 (10)0.0236 (10)0.0016 (10)0.0026 (9)0.0027 (8)
C30.0366 (13)0.0313 (11)0.0260 (10)0.0014 (11)0.0054 (11)0.0064 (9)
C40.0370 (13)0.0266 (11)0.0347 (12)0.0026 (11)0.0025 (12)0.0049 (9)
C50.0330 (12)0.0277 (12)0.0442 (14)0.0006 (11)0.0001 (11)0.0054 (11)
C60.0385 (15)0.0351 (13)0.0395 (14)0.0001 (12)0.0002 (13)0.0163 (12)
C70.0338 (14)0.0455 (14)0.0239 (11)0.0030 (12)0.0025 (11)0.0048 (11)
C80.0230 (12)0.0308 (12)0.0259 (11)0.0014 (10)0.0005 (9)0.0002 (9)
C90.0211 (11)0.0263 (11)0.0259 (10)0.0000 (9)0.0009 (9)0.0002 (9)
C100.0217 (12)0.0270 (12)0.0323 (11)0.0002 (10)0.0005 (10)0.0019 (10)
O1W0.0410 (12)0.0407 (12)0.109 (2)0.0022 (11)0.0058 (14)0.0170 (12)
Geometric parameters (Å, º) top
S2—O211.4470 (17)C4—C101.415 (4)
S2—O221.4484 (16)C5—C101.413 (4)
S2—O231.469 (2)C5—C61.352 (4)
S2—C21.766 (2)C6—C71.401 (4)
O1W—H12W0.90 (3)C7—C81.351 (3)
O1W—H11W0.82 (4)C8—C91.413 (3)
N8—C81.464 (3)C9—C101.427 (3)
N8—H810.88 (3)C1—H10.9300
N8—H820.89 (4)C3—H30.9300
N8—H830.98 (4)C4—H40.9300
C1—C21.365 (3)C5—H50.9300
C1—C91.415 (3)C6—H60.9300
C2—C31.412 (3)C7—H70.9300
C3—C41.348 (4)
O21—S2—O22114.47 (11)N8—C8—C9118.54 (19)
O21—S2—O23112.16 (11)C7—C8—C9122.1 (2)
O21—S2—C2106.91 (10)N8—C8—C7119.38 (18)
O22—S2—O23110.86 (10)C1—C9—C10118.78 (19)
O22—S2—C2106.70 (10)C8—C9—C10116.9 (2)
O23—S2—C2105.06 (10)C1—C9—C8124.3 (2)
H11W—O1W—H12W113 (3)C5—C10—C9119.6 (2)
H81—N8—H83103 (3)C4—C10—C9118.7 (2)
H82—N8—H83114 (2)C4—C10—C5121.7 (2)
C8—N8—H81108.6 (15)C2—C1—H1120.00
C8—N8—H82109 (2)C9—C1—H1120.00
H81—N8—H82108 (3)C4—C3—H3120.00
C8—N8—H83111 (3)C2—C3—H3120.00
C2—C1—C9120.0 (2)C3—C4—H4119.00
S2—C2—C3118.12 (16)C10—C4—H4119.00
S2—C2—C1120.44 (17)C10—C5—H5120.00
C1—C2—C3121.4 (2)C6—C5—H5120.00
C2—C3—C4119.5 (2)C5—C6—H6120.00
C3—C4—C10121.6 (2)C7—C6—H6120.00
C6—C5—C10120.6 (2)C6—C7—H7120.00
C5—C6—C7120.4 (2)C8—C7—H7120.00
C6—C7—C8120.3 (2)
O21—S2—C2—C112.5 (2)C10—C5—C6—C70.0 (4)
O21—S2—C2—C3169.2 (2)C6—C5—C10—C4180.0 (3)
O22—S2—C2—C1135.40 (18)C6—C5—C10—C91.1 (4)
O22—S2—C2—C346.3 (2)C5—C6—C7—C80.0 (4)
O23—S2—C2—C1106.85 (19)C6—C7—C8—N8179.3 (2)
O23—S2—C2—C371.4 (2)C6—C7—C8—C91.2 (4)
C9—C1—C2—S2175.82 (16)N8—C8—C9—C12.7 (3)
C9—C1—C2—C32.4 (3)N8—C8—C9—C10178.2 (2)
C2—C1—C9—C8179.0 (2)C7—C8—C9—C1176.9 (2)
C2—C1—C9—C100.1 (3)C7—C8—C9—C102.2 (3)
S2—C2—C3—C4175.6 (2)C1—C9—C10—C41.9 (3)
C1—C2—C3—C42.7 (4)C1—C9—C10—C5177.0 (2)
C2—C3—C4—C100.6 (4)C8—C9—C10—C4179.0 (2)
C3—C4—C10—C5177.2 (3)C8—C9—C10—C52.1 (3)
C3—C4—C10—C91.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O23i0.82 (4)1.98 (4)2.798 (3)176 (3)
O1W—H12W···O22ii0.90 (3)1.91 (3)2.796 (3)169 (3)
N8—H81···O23iii0.88 (3)1.95 (3)2.817 (2)171 (2)
N8—H82···O21ii0.89 (4)1.96 (3)2.793 (3)154 (3)
N8—H83···O1W0.98 (4)1.82 (4)2.725 (3)152 (4)
C1—H1···O210.932.522.899 (3)105
C1—H1···N80.932.612.913 (3)100
C6—H6···O22iv0.932.533.281 (3)137
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+2, y+2, z+1/2; (iii) x, y, z+1; (iv) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H9NO3S·H2O
Mr241.27
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)297
a, b, c (Å)7.1616 (3), 16.4608 (7), 8.9059 (3)
V3)1049.88 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.35 × 0.20 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
5904, 2252, 1830
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.076, 0.91
No. of reflections2252
No. of parameters165
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.17
Absolute structureFlack (1983), 974 Friedel pairs
Absolute structure parameter0.06 (8)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O23i0.82 (4)1.98 (4)2.798 (3)176 (3)
O1W—H12W···O22ii0.90 (3)1.91 (3)2.796 (3)169 (3)
N8—H81···O23iii0.88 (3)1.95 (3)2.817 (2)171 (2)
N8—H82···O21ii0.89 (4)1.96 (3)2.793 (3)154 (3)
N8—H83···O1W0.98 (4)1.82 (4)2.725 (3)152 (4)
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+2, y+2, z+1/2; (iii) x, y, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the School of Physical and Chemical Sciences, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCorbridge, D. E. C., Brown, C. J. & Wallwork, C. (1966). Acta Cryst. 20, 698–699.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationO'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 410. Whitehouse Station, New Jersey: Merck & Co.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & Healy, P. C. (2007). J. Chem. Crystallogr. 36, 805–811.  Web of Science CSD CrossRef Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2004). Acta Cryst. E60, o2014–o2016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds