metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1023-m1024

Bis[2,6-bis­­(4,5-di­hydro-1H-imidazol-2-yl)pyridine]manganese(II) bis­­(per­chlorate) aceto­nitrile solvate

aSchool of Chemical and Materials Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing, Jiangsu Province 210094, People's Republic of China, and bSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: liweijun947@163.com

(Received 15 July 2009; accepted 23 July 2009; online 8 August 2009)

In the cation of the title compound, [Mn(C11H13N5)2](ClO4)2·CH3CN, the metal atom is located on a twofold rotation axis and is six-coordinated by six N atoms from two different 2,6-bis­(4,5-dihydro-1H-imidazol-2-yl)pyridine (bip) ligands in a distorted octahedral geometry. The O atoms of the perchlorate anions are disordered with occupancies in the ratio 0.593 (10):0.407 (10). In the crystal, mol­ecules are stabilized by two N—H⋯O hydrogen bonds, forming zigzag chains along the a axis, which are further inter­connected by N—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distance = 3.50 (1) Å] into a three-dimensional network.

Related literature

For the network topologies and potential applications of supra­molecular architectures, see: Yaghi et al. (1998[Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]). The protonation and deprotonation of an imidazole ligand is believed to play an important role in the mechanism of the coordination chemistry, see: Bordo et al. (2001[Bordo, D., Forlani, F., Spallarossa, A., Colnaghi, R., Carpen, A., Bolognesi, M. & Pagani, S. (2001). Biol. Chem. 382, 1245-31252.]). Our studies of such complexes involving an imidazole ligand indicate that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism, see: Ren et al. (2007[Ren, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741-3747.], 2009[Ren, C.-X., Li, S.-Y., Yin, Z.-Z., Lu, X. & Ding, Y.-Q. (2009). Acta Cryst. E65, m572-m573.]); Ren, Ye, He et al. (2004[Ren, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). CrystEngComm, 6, 200-206.]); Ren, Ye, Zhu et al. (2004[Ren, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004). Inorg. Chim. Acta, 357, 443-450.]). For metal–imidazole bond lengths, see: Stupka et al. (2004[Stupka, G., Gremaud, L., Bernardinelli, G. & Williams, A. F. (2004). Dalton Trans. pp. 407-412.]); Hammes et al. (2005[Hammes, B. S., Damiano, B. J., Tobash, P. H., Hidalog, M. J. & Yap, G. P. A. (2005). Inorg. Chem. Commun. 8, 513-516.]); Haga et al. (1996[Haga, M., Ali, M. M. & Arakawa, R. (1996). Angew. Chem. Int. Ed. Engl. 35, 76-78.]); Böca et al. (2005[Böca, R., Renz, F., Böca, M., Fuess, H., Haase, W., Kickelbick, G., Linert, W. & Vrbova-Schikora, M. (2005). Inorg. Chem. Commun. 8, 227-230.]). For metal–imidazole bond lengths, see: Ren et al. (2009[Ren, C.-X., Li, S.-Y., Yin, Z.-Z., Lu, X. & Ding, Y.-Q. (2009). Acta Cryst. E65, m572-m573.]). For the synthesis of 2,6-bis­(4,5-dihydro-1H-imidazol-2-yl)pyridine, see: Baker et al. (1991[Baker, A. T., Singh, P. & Vignevich, V. (1991). Aust. J. Chem. 44, 1041-1048.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C11H13N5)2](ClO4)2·C2H3N

  • Mr = 725.42

  • Monoclinic, C 2/c

  • a = 20.521 (5) Å

  • b = 12.732 (5) Å

  • c = 14.602 (6) Å

  • β = 123.893 (10)°

  • V = 3167.0 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 273 K

  • 0.28 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.912

  • 7799 measured reflections

  • 2821 independent reflections

  • 1277 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.121

  • S = 0.79

  • 2821 reflections

  • 246 parameters

  • 94 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—N4 2.247 (3)
Mn1—N2 2.283 (3)
Mn1—N1 2.287 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O2ii 0.86 2.50 3.237 (12) 144
N5—H5A⋯O3ii 0.86 2.25 2.942 (12) 137
N5—H5A⋯O2′ii 0.86 2.11 2.965 (8) 176
N3—H3A⋯O4iii 0.86 2.52 3.26 (2) 144
N3—H3A⋯O3′iii 0.86 2.16 3.015 (8) 178
Symmetry codes: (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction supramolecular architectures is currently of great interest owing to their intriguing network topologies and potential functions such as adsorption, ion exchange, shape-selective catalysis, non-linear and magnetic materials (Yaghi et al., 1998; Hagrman et al., 1999). The protonation and deprotonation of an imidazole ligand is believed to play an important role in the mechanism of the coordination chemistry (Bordo, et al., 2001). We described previously a number of such metal complexes, including imidazole ligand, and have concluded that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism (Ren, Ye, He et al., 2004; Ren, Ye, Zhu et al., 2004; Ren et al., 2007, 2009). We report here the preparation and crystal structure of a mononuclear coordination complex, [Mn(bip)2](ClO4)2.CH3CN (I) (bip is 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine).

The crystal structure of (I) crystallizes in the monoclinic space group C2/c. As shown in Fig. 1, the title compound consists of a [Mn(bip)2]2+ cation, two perchlorate counter ions and one Acetonitride molecular. The manganese(II) atom in the cation is in a distorted tetrahedral geometry, being coordinated with six nitrogen atoms from two neutral tridentate ligands bip. The Mn(1)—N bond lengths of The equatorial 2.292 (4), 2.284 (4), 2.251 (4) Å, which are slightly shorter than the metal-imidazole (Stupka, et al., 2004; Hammes et al., 2005; Haga et al., 1996; Böca et al., 2005) and longer than the metal-imidazole (Ren, et al., 2009). The N—Mn(1)—N bond angle is in the range of 70.17 (15)–147.1 (2) /%. Two bip ligands of adjacent molecules are parallel to each other with a distance of 3.50 Å, showing the presence of π-π interaction. The molecules further interconnected into three-dimensional network through hydrogen bond between the oxygen atom of perchlorate counter-ion and the uncoordination nitrogen atoms of bip ligands.

Related literature top

For the network topologies and potential applications of supramolecular architectures, see: Yaghi et al. (1998); Hagrman et al. (1999). The protonation and deprotonation of an imidazole ligand is believed to play an important role in the mechanism of the coordination chemistry, see: Bordo et al. (2001). Our studies of such complexes involving an imidazole ligand indicate that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism, see: Ren et al. (2007, 2009); Ren, Ye, He et al. (2004); Ren, Ye, Zhu et al. (2004). For metal–imidazole bond lengths, see: Stupka et al. (2004); Hammes et al. (2005); Haga et al. (1996); Böca et al. (2005). For metal–imidazole bond lengths, see: Ren et al. (2009). For the synthesis of 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine, see: Baker et al. (1991).

Experimental top

All the reagents and solvents employed were commercially available and used as received without further purification. The ligand 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine (bip) was synthesized by literature methods (Baker et al., 1991).

A solution of MnCl24H2O (0.2 mmol, 40 mg) and NaClO4 (0.4 mmol, 50 mg) in acetonitrile (10 ml), was added dropwise to a stirred solution of bip (0.4 mmol, 86 mg) in methanol(10 ml) at 60 K. Yellow single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into the clear filtrate for two days in 60% yield. Elemental analysis, Found: C, 39.68; H, 3.93; N, 21.15%. Calc. for C24H29Cl2MnN11O8: C, 39.70; H, 4.00; N, 21.23%. Main IR bands (KBr, cm-1): 3370m, 3204 s, 2938m, 2887m, 1595m, 1567 s, 1531 s, 1453 s, 1283 s, 1209w, 1144 s,1116 s, 1089 s, 1028w, 1010m, 953w, 830w, 752w, 663w, 636m, 628m.

Refinement top

The H atom attached to N(2) atom was refined isotropically. All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H and C—H distances of 0.90 Å and 0.96 Å, respectively, and Uiso(H) = 1.2 times of those of their parent atoms (Å2). The O atoms are resolved into two positions by PART instructions. The occupancy for the unprimed O atoms is set at 21 and that of the primed atoms at -21. The clorine-oxygen distances were restrained to 1.44 Å (and the oxygen-oxygen interaction to 2.35 Å). Additionally, the vibration of the oxygen atoms were made isotropic by an ISOR restraint. The O atoms are resolved into two positions and give the site occupany of the major component.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the complex [Mn(bip)2]2+ showing 30% probability displacement ellipsoids and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The framework of [Mn(bip)2](ClO4)2CH3CN viewed along the c axis. H atoms have been omitted for clarity.
Bis[2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine]manganese(II) bis(perchlorate) acetonitrile solvate top
Crystal data top
[Mn(C11H13N5)2](ClO4)2·C2H3NF(000) = 1492
Mr = 725.42Dx = 1.521 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.521 (5) ÅCell parameters from 668 reflections
b = 12.732 (5) Åθ = 2.0–25.1°
c = 14.602 (6) ŵ = 0.65 mm1
β = 123.893 (10)°T = 273 K
V = 3167.0 (19) Å3Block, yellow
Z = 40.28 × 0.21 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2821 independent reflections
Radiation source: fine-focus sealed tube1277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2224
Tmin = 0.837, Tmax = 0.912k = 1115
7799 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 0.79 w = 1/[σ2(Fo2) + (0.0647P)2]
where P = (Fo2 + 2Fc2)/3
2821 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.33 e Å3
94 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Mn(C11H13N5)2](ClO4)2·C2H3NV = 3167.0 (19) Å3
Mr = 725.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.521 (5) ŵ = 0.65 mm1
b = 12.732 (5) ÅT = 273 K
c = 14.602 (6) Å0.28 × 0.21 × 0.14 mm
β = 123.893 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2821 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1277 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.912Rint = 0.056
7799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04794 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 0.79Δρmax = 0.33 e Å3
2821 reflectionsΔρmin = 0.27 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.94417 (7)0.75000.0488 (3)
N10.51856 (17)0.8931 (3)0.9132 (2)0.0468 (8)
N20.59227 (18)1.0487 (2)0.8898 (2)0.0539 (8)
N30.6779 (2)1.0731 (3)1.0725 (3)0.0708 (10)
H3A0.69791.06351.14160.085*
N40.40797 (17)0.8262 (2)0.7177 (2)0.0524 (8)
N50.3602 (2)0.7083 (3)0.7785 (3)0.0833 (12)
H5A0.35810.67300.82710.100*
C10.6436 (2)1.1375 (4)0.9029 (3)0.0746 (13)
H1A0.61301.20130.87210.090*
H1B0.66931.12250.86520.090*
C20.7041 (3)1.1503 (4)1.0259 (3)0.0785 (14)
H2A0.75661.13471.04530.094*
H2B0.70321.22081.05040.094*
C30.6168 (2)1.0191 (3)0.9886 (3)0.0509 (10)
C40.5788 (2)0.9317 (3)1.0073 (3)0.0450 (9)
C50.6011 (2)0.8891 (3)1.1076 (3)0.0630 (12)
H50.64300.91691.17330.076*
C60.5594 (3)0.8037 (4)1.1076 (3)0.0757 (14)
H60.57360.77301.17410.091*
C70.4970 (2)0.7637 (4)1.0097 (3)0.0678 (13)
H70.46890.70621.00900.081*
C80.4778 (2)0.8114 (3)0.9136 (3)0.0506 (10)
C90.4140 (2)0.7806 (3)0.8007 (3)0.0525 (11)
C100.3053 (3)0.6981 (4)0.6593 (3)0.0818 (14)
H10A0.25230.71660.63610.098*
H10B0.30540.62790.63350.098*
N60.50000.3462 (7)0.75000.186 (4)
C120.50000.5403 (7)0.75000.178 (5)
H12B0.52940.57120.72380.214*0.50
H12A0.51890.55830.82470.214*0.50
H12C0.44530.55830.70730.214*0.50
C130.50000.4339 (7)0.75000.116 (3)
C110.3378 (2)0.7797 (3)0.6178 (3)0.0664 (12)
H11A0.35200.74540.57200.080*
H11B0.29910.83340.57420.080*
Cl10.32690 (9)0.52285 (13)0.39585 (12)0.1026 (5)
O10.3119 (7)0.5391 (11)0.4824 (8)0.147 (6)0.407 (10)
O20.4047 (4)0.4898 (11)0.4424 (8)0.152 (7)0.407 (10)
O30.2745 (6)0.4409 (11)0.3284 (13)0.209 (9)0.407 (10)
O40.3090 (11)0.6156 (10)0.3332 (15)0.264 (11)0.407 (10)
O1'0.3558 (5)0.6031 (6)0.4718 (7)0.151 (5)0.593 (10)
O2'0.3455 (6)0.4194 (5)0.4361 (7)0.139 (5)0.593 (10)
O3'0.2464 (3)0.5354 (7)0.3137 (5)0.139 (4)0.593 (10)
O4'0.3628 (7)0.5401 (8)0.3310 (10)0.217 (7)0.593 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0517 (6)0.0556 (6)0.0338 (5)0.0000.0205 (4)0.000
N10.047 (2)0.054 (2)0.0324 (18)0.0002 (17)0.0180 (17)0.0028 (15)
N20.059 (2)0.058 (2)0.0378 (19)0.0088 (18)0.0229 (16)0.0011 (16)
N30.074 (2)0.084 (3)0.0357 (19)0.030 (2)0.0196 (19)0.0089 (19)
N40.051 (2)0.059 (2)0.0362 (18)0.0072 (17)0.0177 (17)0.0039 (16)
N50.091 (3)0.093 (3)0.046 (2)0.046 (3)0.027 (2)0.007 (2)
C10.088 (3)0.072 (3)0.054 (3)0.023 (3)0.034 (3)0.004 (2)
C20.081 (3)0.091 (4)0.053 (3)0.030 (3)0.032 (3)0.009 (2)
C30.049 (3)0.055 (3)0.042 (2)0.002 (2)0.022 (2)0.004 (2)
C40.047 (2)0.051 (3)0.034 (2)0.000 (2)0.020 (2)0.002 (2)
C50.065 (3)0.076 (3)0.035 (2)0.010 (3)0.019 (2)0.003 (2)
C60.093 (4)0.089 (4)0.039 (3)0.014 (3)0.033 (3)0.008 (2)
C70.080 (3)0.076 (3)0.040 (3)0.022 (3)0.029 (2)0.001 (2)
C80.047 (2)0.056 (3)0.043 (2)0.005 (2)0.021 (2)0.003 (2)
C90.054 (3)0.055 (3)0.040 (2)0.008 (2)0.021 (2)0.003 (2)
C100.081 (3)0.087 (4)0.058 (3)0.034 (3)0.027 (3)0.015 (3)
N60.304 (12)0.120 (8)0.196 (9)0.0000.179 (9)0.000
C120.163 (10)0.098 (8)0.154 (9)0.0000.013 (7)0.000
C130.153 (8)0.094 (8)0.124 (7)0.0000.091 (6)0.000
C110.062 (3)0.073 (3)0.044 (2)0.018 (2)0.017 (2)0.010 (2)
Cl10.0956 (11)0.0967 (12)0.0876 (10)0.0154 (9)0.0339 (9)0.0296 (9)
O10.165 (12)0.155 (13)0.094 (7)0.048 (10)0.056 (8)0.039 (7)
O20.077 (6)0.243 (16)0.111 (10)0.016 (7)0.038 (6)0.023 (10)
O30.105 (9)0.242 (16)0.247 (18)0.054 (11)0.079 (11)0.189 (15)
O40.31 (3)0.224 (15)0.27 (2)0.084 (15)0.17 (2)0.105 (15)
O1'0.134 (7)0.129 (7)0.109 (6)0.003 (5)0.017 (5)0.077 (6)
O2'0.211 (13)0.103 (5)0.137 (7)0.059 (7)0.118 (8)0.025 (5)
O3'0.110 (5)0.159 (9)0.065 (4)0.011 (5)0.004 (4)0.018 (4)
O4'0.320 (15)0.167 (10)0.300 (16)0.050 (10)0.256 (16)0.056 (9)
Geometric parameters (Å, º) top
Mn1—N42.247 (3)C5—C61.384 (5)
Mn1—N4i2.247 (3)C5—H50.9300
Mn1—N22.283 (3)C6—C71.378 (5)
Mn1—N2i2.283 (3)C6—H60.9300
Mn1—N12.287 (3)C7—C81.370 (5)
Mn1—N1i2.287 (3)C7—H70.9300
N1—C41.328 (4)C8—C91.476 (5)
N1—C81.337 (4)C10—C111.530 (5)
N2—C31.292 (4)C10—H10A0.9700
N2—C11.484 (5)C10—H10B0.9700
N3—C31.354 (5)N6—C131.117 (10)
N3—C21.458 (5)C12—C131.3547
N3—H3A0.8600C12—H12B0.9600
N4—C91.287 (4)C12—H12A0.9600
N4—C111.486 (4)C12—H12C0.9600
N5—C91.332 (4)C11—H11A0.9700
N5—C101.459 (5)C11—H11B0.9700
N5—H5A0.8600Cl1—O1'1.376 (5)
C1—C21.519 (5)Cl1—O2'1.406 (5)
C1—H1A0.9700Cl1—O21.407 (6)
C1—H1B0.9700Cl1—O3'1.409 (5)
C2—H2A0.9700Cl1—O41.411 (7)
C2—H2B0.9700Cl1—O31.426 (7)
C3—C41.468 (5)Cl1—O11.474 (7)
C4—C51.379 (5)Cl1—O4'1.505 (6)
N4—Mn1—N4i96.14 (16)C8—C7—H7121.0
N4—Mn1—N2139.28 (11)C6—C7—H7121.0
N4i—Mn1—N291.20 (11)N1—C8—C7121.8 (4)
N4—Mn1—N2i91.20 (11)N1—C8—C9111.6 (3)
N4i—Mn1—N2i139.28 (11)C7—C8—C9126.6 (4)
N2—Mn1—N2i108.70 (16)N4—C9—N5116.9 (3)
N4—Mn1—N170.18 (11)N4—C9—C8119.4 (4)
N4i—Mn1—N187.66 (10)N5—C9—C8123.7 (4)
N2—Mn1—N170.18 (12)N5—C10—C11101.3 (3)
N2i—Mn1—N1132.10 (10)N5—C10—H10A111.3
N4—Mn1—N1i87.66 (10)C11—C10—H10A110.3
N4i—Mn1—N1i70.18 (11)N5—C10—H10B112.2
N2—Mn1—N1i132.10 (11)C11—C10—H10B112.1
N2i—Mn1—N1i70.18 (11)H10A—C10—H10B109.4
N1—Mn1—N1i146.97 (17)C13—C12—H12B114.2
C4—N1—C8120.4 (3)C13—C12—H12A103.9
C4—N1—Mn1119.4 (2)H12B—C12—H12A114.2
C8—N1—Mn1119.0 (2)C13—C12—H12C103.9
C3—N2—C1105.8 (3)H12B—C12—H12C114.2
C3—N2—Mn1116.2 (3)H12A—C12—H12C105.4
C1—N2—Mn1137.3 (2)N6—C13—C12180.000 (6)
C3—N3—C2108.5 (3)N4—C11—C10106.3 (3)
C3—N3—H3A125.7N4—C11—H11A110.9
C2—N3—H3A125.7C10—C11—H11A109.5
C9—N4—C11106.0 (3)N4—C11—H11B110.7
C9—N4—Mn1118.4 (3)C10—C11—H11B111.2
C11—N4—Mn1135.5 (2)H11A—C11—H11B108.3
C9—N5—C10109.6 (3)O1'—Cl1—O2'117.7 (5)
C9—N5—H5A125.2O1'—Cl1—O288.3 (5)
C10—N5—H5A125.2O2'—Cl1—O263.0 (5)
N2—C1—C2106.7 (3)O1'—Cl1—O3'112.1 (4)
N2—C1—H1A110.4O2'—Cl1—O3'112.2 (5)
C2—C1—H1A110.4O2—Cl1—O3'157.2 (5)
N2—C1—H1B110.4O1'—Cl1—O474.9 (8)
C2—C1—H1B110.4O2'—Cl1—O4165.2 (8)
H1A—C1—H1B108.6O2—Cl1—O4112.3 (7)
N3—C2—C1102.0 (3)O3'—Cl1—O466.1 (7)
N3—C2—H2A111.4O1'—Cl1—O3157.0 (5)
C1—C2—H2A111.4O2'—Cl1—O361.8 (7)
N3—C2—H2B111.4O2—Cl1—O3109.3 (6)
C1—C2—H2B111.4O3'—Cl1—O354.5 (6)
H2A—C2—H2B109.2O4—Cl1—O3109.9 (7)
N2—C3—N3116.7 (4)O1'—Cl1—O153.6 (5)
N2—C3—C4120.8 (3)O2'—Cl1—O184.9 (6)
N3—C3—C4122.5 (3)O2—Cl1—O1110.6 (6)
N1—C4—C5121.3 (4)O3'—Cl1—O190.5 (5)
N1—C4—C3111.9 (3)O4—Cl1—O1109.6 (6)
C5—C4—C3126.8 (4)O3—Cl1—O1104.9 (6)
C4—C5—C6118.1 (4)O1'—Cl1—O4'104.9 (5)
C4—C5—H5121.0O2'—Cl1—O4'106.6 (4)
C6—C5—H5121.0O2—Cl1—O4'61.7 (5)
C7—C6—C5120.4 (4)O3'—Cl1—O4'101.6 (5)
C7—C6—H6119.8O4—Cl1—O4'60.8 (7)
C5—C6—H6119.8O3—Cl1—O4'96.7 (6)
C8—C7—C6118.0 (4)O1—Cl1—O4'158.3 (6)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O2ii0.862.503.237 (12)144
N5—H5A···O3ii0.862.252.942 (12)137
N5—H5A···O2ii0.862.112.965 (8)176
N3—H3A···O4iii0.862.523.26 (2)144
N3—H3A···O3iii0.862.163.015 (8)178
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C11H13N5)2](ClO4)2·C2H3N
Mr725.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)20.521 (5), 12.732 (5), 14.602 (6)
β (°) 123.893 (10)
V3)3167.0 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.28 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.837, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
7799, 2821, 1277
Rint0.056
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 0.79
No. of reflections2821
No. of parameters246
No. of restraints94
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—N42.247 (3)Mn1—N12.287 (3)
Mn1—N22.283 (3)
N4—Mn1—N4i96.14 (16)N2—Mn1—N170.18 (12)
N4—Mn1—N2139.28 (11)N2i—Mn1—N1132.10 (10)
N4i—Mn1—N291.20 (11)N4—Mn1—N1i87.66 (10)
N4—Mn1—N2i91.20 (11)N4i—Mn1—N1i70.18 (11)
N4i—Mn1—N2i139.28 (11)N2—Mn1—N1i132.10 (11)
N2—Mn1—N2i108.70 (16)N2i—Mn1—N1i70.18 (11)
N4—Mn1—N170.18 (11)N1—Mn1—N1i146.97 (17)
N4i—Mn1—N187.66 (10)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O2ii0.862.503.237 (12)144.3
N5—H5A···O3ii0.862.252.942 (12)137.0
N5—H5A···O2'ii0.862.112.965 (8)175.7
N3—H3A···O4iii0.862.523.26 (2)144.1
N3—H3A···O3'iii0.862.163.015 (8)178.4
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was generously supported by the National Natural Science Foundation of China (grant No. 20701016).

References

First citationBaker, A. T., Singh, P. & Vignevich, V. (1991). Aust. J. Chem. 44, 1041–1048.  CrossRef CAS Google Scholar
First citationBöca, R., Renz, F., Böca, M., Fuess, H., Haase, W., Kickelbick, G., Linert, W. & Vrbova-Schikora, M. (2005). Inorg. Chem. Commun. 8, 227–230.  Google Scholar
First citationBordo, D., Forlani, F., Spallarossa, A., Colnaghi, R., Carpen, A., Bolognesi, M. & Pagani, S. (2001). Biol. Chem. 382, 1245–31252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART, SAINT-Plus, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaga, M., Ali, M. M. & Arakawa, R. (1996). Angew. Chem. Int. Ed. Engl. 35, 76–78.  CrossRef CAS Web of Science Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationHammes, B. S., Damiano, B. J., Tobash, P. H., Hidalog, M. J. & Yap, G. P. A. (2005). Inorg. Chem. Commun. 8, 513–516.  Web of Science CrossRef CAS Google Scholar
First citationRen, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741–3747.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, C.-X., Li, S.-Y., Yin, Z.-Z., Lu, X. & Ding, Y.-Q. (2009). Acta Cryst. E65, m572–m573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). CrystEngComm, 6, 200–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004). Inorg. Chim. Acta, 357, 443–450.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStupka, G., Gremaud, L., Bernardinelli, G. & Williams, A. F. (2004). Dalton Trans. pp. 407–412.  Web of Science CSD CrossRef Google Scholar
First citationYaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1023-m1024
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds