metal-organic compounds
Bis[2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine]manganese(II) bis(perchlorate) acetonitrile solvate
aSchool of Chemical and Materials Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing, Jiangsu Province 210094, People's Republic of China, and bSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: liweijun947@163.com
In the cation of the title compound, [Mn(C11H13N5)2](ClO4)2·CH3CN, the metal atom is located on a twofold rotation axis and is six-coordinated by six N atoms from two different 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine (bip) ligands in a distorted octahedral geometry. The O atoms of the perchlorate anions are disordered with occupancies in the ratio 0.593 (10):0.407 (10). In the crystal, molecules are stabilized by two N—H⋯O hydrogen bonds, forming zigzag chains along the a axis, which are further interconnected by N—H⋯O hydrogen bonds and π–π interactions [centroid–centroid distance = 3.50 (1) Å] into a three-dimensional network.
Related literature
For the network topologies and potential applications of supramolecular architectures, see: Yaghi et al. (1998); Hagrman et al. (1999). The protonation and deprotonation of an imidazole ligand is believed to play an important role in the mechanism of the coordination chemistry, see: Bordo et al. (2001). Our studies of such complexes involving an imidazole ligand indicate that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism, see: Ren et al. (2007, 2009); Ren, Ye, He et al. (2004); Ren, Ye, Zhu et al. (2004). For metal–imidazole bond lengths, see: Stupka et al. (2004); Hammes et al. (2005); Haga et al. (1996); Böca et al. (2005). For metal–imidazole bond lengths, see: Ren et al. (2009). For the synthesis of 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine, see: Baker et al. (1991).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809029195/tk2501sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809029195/tk2501Isup2.hkl
All the reagents and solvents employed were commercially available and used as received without further purification. The ligand 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine (bip) was synthesized by literature methods (Baker et al., 1991).
A solution of MnCl24H2O (0.2 mmol, 40 mg) and NaClO4 (0.4 mmol, 50 mg) in acetonitrile (10 ml), was added dropwise to a stirred solution of bip (0.4 mmol, 86 mg) in methanol(10 ml) at 60 K. Yellow single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into the clear filtrate for two days in 60% yield. Elemental analysis, Found: C, 39.68; H, 3.93; N, 21.15%. Calc. for C24H29Cl2MnN11O8: C, 39.70; H, 4.00; N, 21.23%. Main IR bands (KBr, cm-1): 3370m, 3204 s, 2938m, 2887m, 1595m, 1567 s, 1531 s, 1453 s, 1283 s, 1209w, 1144 s,1116 s, 1089 s, 1028w, 1010m, 953w, 830w, 752w, 663w, 636m, 628m.
The H atom attached to N(2) atom was refined isotropically. All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H and C—H distances of 0.90 Å and 0.96 Å, respectively, and Uiso(H) = 1.2 times of those of their parent atoms (Å2). The O atoms are resolved into two positions by PART instructions. The occupancy for the unprimed O atoms is set at 21 and that of the primed atoms at -21. The clorine-oxygen distances were restrained to 1.44 Å (and the oxygen-oxygen interaction to 2.35 Å). Additionally, the vibration of the oxygen atoms were made isotropic by an ISOR restraint. The O atoms are resolved into two positions and give the site occupany of the major component.
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mn(C11H13N5)2](ClO4)2·C2H3N | F(000) = 1492 |
Mr = 725.42 | Dx = 1.521 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.521 (5) Å | Cell parameters from 668 reflections |
b = 12.732 (5) Å | θ = 2.0–25.1° |
c = 14.602 (6) Å | µ = 0.65 mm−1 |
β = 123.893 (10)° | T = 273 K |
V = 3167.0 (19) Å3 | Block, yellow |
Z = 4 | 0.28 × 0.21 × 0.14 mm |
Bruker SMART CCD area-detector diffractometer | 2821 independent reflections |
Radiation source: fine-focus sealed tube | 1277 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −22→24 |
Tmin = 0.837, Tmax = 0.912 | k = −11→15 |
7799 measured reflections | l = −16→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 0.79 | w = 1/[σ2(Fo2) + (0.0647P)2] where P = (Fo2 + 2Fc2)/3 |
2821 reflections | (Δ/σ)max = 0.001 |
246 parameters | Δρmax = 0.33 e Å−3 |
94 restraints | Δρmin = −0.27 e Å−3 |
[Mn(C11H13N5)2](ClO4)2·C2H3N | V = 3167.0 (19) Å3 |
Mr = 725.42 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 20.521 (5) Å | µ = 0.65 mm−1 |
b = 12.732 (5) Å | T = 273 K |
c = 14.602 (6) Å | 0.28 × 0.21 × 0.14 mm |
β = 123.893 (10)° |
Bruker SMART CCD area-detector diffractometer | 2821 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 1277 reflections with I > 2σ(I) |
Tmin = 0.837, Tmax = 0.912 | Rint = 0.056 |
7799 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 94 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 0.79 | Δρmax = 0.33 e Å−3 |
2821 reflections | Δρmin = −0.27 e Å−3 |
246 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.5000 | 0.94417 (7) | 0.7500 | 0.0488 (3) | |
N1 | 0.51856 (17) | 0.8931 (3) | 0.9132 (2) | 0.0468 (8) | |
N2 | 0.59227 (18) | 1.0487 (2) | 0.8898 (2) | 0.0539 (8) | |
N3 | 0.6779 (2) | 1.0731 (3) | 1.0725 (3) | 0.0708 (10) | |
H3A | 0.6979 | 1.0635 | 1.1416 | 0.085* | |
N4 | 0.40797 (17) | 0.8262 (2) | 0.7177 (2) | 0.0524 (8) | |
N5 | 0.3602 (2) | 0.7083 (3) | 0.7785 (3) | 0.0833 (12) | |
H5A | 0.3581 | 0.6730 | 0.8271 | 0.100* | |
C1 | 0.6436 (2) | 1.1375 (4) | 0.9029 (3) | 0.0746 (13) | |
H1A | 0.6130 | 1.2013 | 0.8721 | 0.090* | |
H1B | 0.6693 | 1.1225 | 0.8652 | 0.090* | |
C2 | 0.7041 (3) | 1.1503 (4) | 1.0259 (3) | 0.0785 (14) | |
H2A | 0.7566 | 1.1347 | 1.0453 | 0.094* | |
H2B | 0.7032 | 1.2208 | 1.0504 | 0.094* | |
C3 | 0.6168 (2) | 1.0191 (3) | 0.9886 (3) | 0.0509 (10) | |
C4 | 0.5788 (2) | 0.9317 (3) | 1.0073 (3) | 0.0450 (9) | |
C5 | 0.6011 (2) | 0.8891 (3) | 1.1076 (3) | 0.0630 (12) | |
H5 | 0.6430 | 0.9169 | 1.1733 | 0.076* | |
C6 | 0.5594 (3) | 0.8037 (4) | 1.1076 (3) | 0.0757 (14) | |
H6 | 0.5736 | 0.7730 | 1.1741 | 0.091* | |
C7 | 0.4970 (2) | 0.7637 (4) | 1.0097 (3) | 0.0678 (13) | |
H7 | 0.4689 | 0.7062 | 1.0090 | 0.081* | |
C8 | 0.4778 (2) | 0.8114 (3) | 0.9136 (3) | 0.0506 (10) | |
C9 | 0.4140 (2) | 0.7806 (3) | 0.8007 (3) | 0.0525 (11) | |
C10 | 0.3053 (3) | 0.6981 (4) | 0.6593 (3) | 0.0818 (14) | |
H10A | 0.2523 | 0.7166 | 0.6361 | 0.098* | |
H10B | 0.3054 | 0.6279 | 0.6335 | 0.098* | |
N6 | 0.5000 | 0.3462 (7) | 0.7500 | 0.186 (4) | |
C12 | 0.5000 | 0.5403 (7) | 0.7500 | 0.178 (5) | |
H12B | 0.5294 | 0.5712 | 0.7238 | 0.214* | 0.50 |
H12A | 0.5189 | 0.5583 | 0.8247 | 0.214* | 0.50 |
H12C | 0.4453 | 0.5583 | 0.7073 | 0.214* | 0.50 |
C13 | 0.5000 | 0.4339 (7) | 0.7500 | 0.116 (3) | |
C11 | 0.3378 (2) | 0.7797 (3) | 0.6178 (3) | 0.0664 (12) | |
H11A | 0.3520 | 0.7454 | 0.5720 | 0.080* | |
H11B | 0.2991 | 0.8334 | 0.5742 | 0.080* | |
Cl1 | 0.32690 (9) | 0.52285 (13) | 0.39585 (12) | 0.1026 (5) | |
O1 | 0.3119 (7) | 0.5391 (11) | 0.4824 (8) | 0.147 (6) | 0.407 (10) |
O2 | 0.4047 (4) | 0.4898 (11) | 0.4424 (8) | 0.152 (7) | 0.407 (10) |
O3 | 0.2745 (6) | 0.4409 (11) | 0.3284 (13) | 0.209 (9) | 0.407 (10) |
O4 | 0.3090 (11) | 0.6156 (10) | 0.3332 (15) | 0.264 (11) | 0.407 (10) |
O1' | 0.3558 (5) | 0.6031 (6) | 0.4718 (7) | 0.151 (5) | 0.593 (10) |
O2' | 0.3455 (6) | 0.4194 (5) | 0.4361 (7) | 0.139 (5) | 0.593 (10) |
O3' | 0.2464 (3) | 0.5354 (7) | 0.3137 (5) | 0.139 (4) | 0.593 (10) |
O4' | 0.3628 (7) | 0.5401 (8) | 0.3310 (10) | 0.217 (7) | 0.593 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0517 (6) | 0.0556 (6) | 0.0338 (5) | 0.000 | 0.0205 (4) | 0.000 |
N1 | 0.047 (2) | 0.054 (2) | 0.0324 (18) | −0.0002 (17) | 0.0180 (17) | −0.0028 (15) |
N2 | 0.059 (2) | 0.058 (2) | 0.0378 (19) | −0.0088 (18) | 0.0229 (16) | 0.0011 (16) |
N3 | 0.074 (2) | 0.084 (3) | 0.0357 (19) | −0.030 (2) | 0.0196 (19) | −0.0089 (19) |
N4 | 0.051 (2) | 0.059 (2) | 0.0362 (18) | −0.0072 (17) | 0.0177 (17) | −0.0039 (16) |
N5 | 0.091 (3) | 0.093 (3) | 0.046 (2) | −0.046 (3) | 0.027 (2) | −0.007 (2) |
C1 | 0.088 (3) | 0.072 (3) | 0.054 (3) | −0.023 (3) | 0.034 (3) | −0.004 (2) |
C2 | 0.081 (3) | 0.091 (4) | 0.053 (3) | −0.030 (3) | 0.032 (3) | −0.009 (2) |
C3 | 0.049 (3) | 0.055 (3) | 0.042 (2) | −0.002 (2) | 0.022 (2) | −0.004 (2) |
C4 | 0.047 (2) | 0.051 (3) | 0.034 (2) | 0.000 (2) | 0.020 (2) | −0.002 (2) |
C5 | 0.065 (3) | 0.076 (3) | 0.035 (2) | −0.010 (3) | 0.019 (2) | −0.003 (2) |
C6 | 0.093 (4) | 0.089 (4) | 0.039 (3) | −0.014 (3) | 0.033 (3) | 0.008 (2) |
C7 | 0.080 (3) | 0.076 (3) | 0.040 (3) | −0.022 (3) | 0.029 (2) | −0.001 (2) |
C8 | 0.047 (2) | 0.056 (3) | 0.043 (2) | −0.005 (2) | 0.021 (2) | −0.003 (2) |
C9 | 0.054 (3) | 0.055 (3) | 0.040 (2) | −0.008 (2) | 0.021 (2) | −0.003 (2) |
C10 | 0.081 (3) | 0.087 (4) | 0.058 (3) | −0.034 (3) | 0.027 (3) | −0.015 (3) |
N6 | 0.304 (12) | 0.120 (8) | 0.196 (9) | 0.000 | 0.179 (9) | 0.000 |
C12 | 0.163 (10) | 0.098 (8) | 0.154 (9) | 0.000 | 0.013 (7) | 0.000 |
C13 | 0.153 (8) | 0.094 (8) | 0.124 (7) | 0.000 | 0.091 (6) | 0.000 |
C11 | 0.062 (3) | 0.073 (3) | 0.044 (2) | −0.018 (2) | 0.017 (2) | −0.010 (2) |
Cl1 | 0.0956 (11) | 0.0967 (12) | 0.0876 (10) | 0.0154 (9) | 0.0339 (9) | −0.0296 (9) |
O1 | 0.165 (12) | 0.155 (13) | 0.094 (7) | 0.048 (10) | 0.056 (8) | −0.039 (7) |
O2 | 0.077 (6) | 0.243 (16) | 0.111 (10) | 0.016 (7) | 0.038 (6) | −0.023 (10) |
O3 | 0.105 (9) | 0.242 (16) | 0.247 (18) | −0.054 (11) | 0.079 (11) | −0.189 (15) |
O4 | 0.31 (3) | 0.224 (15) | 0.27 (2) | 0.084 (15) | 0.17 (2) | 0.105 (15) |
O1' | 0.134 (7) | 0.129 (7) | 0.109 (6) | 0.003 (5) | 0.017 (5) | −0.077 (6) |
O2' | 0.211 (13) | 0.103 (5) | 0.137 (7) | 0.059 (7) | 0.118 (8) | 0.025 (5) |
O3' | 0.110 (5) | 0.159 (9) | 0.065 (4) | −0.011 (5) | −0.004 (4) | −0.018 (4) |
O4' | 0.320 (15) | 0.167 (10) | 0.300 (16) | −0.050 (10) | 0.256 (16) | −0.056 (9) |
Mn1—N4 | 2.247 (3) | C5—C6 | 1.384 (5) |
Mn1—N4i | 2.247 (3) | C5—H5 | 0.9300 |
Mn1—N2 | 2.283 (3) | C6—C7 | 1.378 (5) |
Mn1—N2i | 2.283 (3) | C6—H6 | 0.9300 |
Mn1—N1 | 2.287 (3) | C7—C8 | 1.370 (5) |
Mn1—N1i | 2.287 (3) | C7—H7 | 0.9300 |
N1—C4 | 1.328 (4) | C8—C9 | 1.476 (5) |
N1—C8 | 1.337 (4) | C10—C11 | 1.530 (5) |
N2—C3 | 1.292 (4) | C10—H10A | 0.9700 |
N2—C1 | 1.484 (5) | C10—H10B | 0.9700 |
N3—C3 | 1.354 (5) | N6—C13 | 1.117 (10) |
N3—C2 | 1.458 (5) | C12—C13 | 1.3547 |
N3—H3A | 0.8600 | C12—H12B | 0.9600 |
N4—C9 | 1.287 (4) | C12—H12A | 0.9600 |
N4—C11 | 1.486 (4) | C12—H12C | 0.9600 |
N5—C9 | 1.332 (4) | C11—H11A | 0.9700 |
N5—C10 | 1.459 (5) | C11—H11B | 0.9700 |
N5—H5A | 0.8600 | Cl1—O1' | 1.376 (5) |
C1—C2 | 1.519 (5) | Cl1—O2' | 1.406 (5) |
C1—H1A | 0.9700 | Cl1—O2 | 1.407 (6) |
C1—H1B | 0.9700 | Cl1—O3' | 1.409 (5) |
C2—H2A | 0.9700 | Cl1—O4 | 1.411 (7) |
C2—H2B | 0.9700 | Cl1—O3 | 1.426 (7) |
C3—C4 | 1.468 (5) | Cl1—O1 | 1.474 (7) |
C4—C5 | 1.379 (5) | Cl1—O4' | 1.505 (6) |
N4—Mn1—N4i | 96.14 (16) | C8—C7—H7 | 121.0 |
N4—Mn1—N2 | 139.28 (11) | C6—C7—H7 | 121.0 |
N4i—Mn1—N2 | 91.20 (11) | N1—C8—C7 | 121.8 (4) |
N4—Mn1—N2i | 91.20 (11) | N1—C8—C9 | 111.6 (3) |
N4i—Mn1—N2i | 139.28 (11) | C7—C8—C9 | 126.6 (4) |
N2—Mn1—N2i | 108.70 (16) | N4—C9—N5 | 116.9 (3) |
N4—Mn1—N1 | 70.18 (11) | N4—C9—C8 | 119.4 (4) |
N4i—Mn1—N1 | 87.66 (10) | N5—C9—C8 | 123.7 (4) |
N2—Mn1—N1 | 70.18 (12) | N5—C10—C11 | 101.3 (3) |
N2i—Mn1—N1 | 132.10 (10) | N5—C10—H10A | 111.3 |
N4—Mn1—N1i | 87.66 (10) | C11—C10—H10A | 110.3 |
N4i—Mn1—N1i | 70.18 (11) | N5—C10—H10B | 112.2 |
N2—Mn1—N1i | 132.10 (11) | C11—C10—H10B | 112.1 |
N2i—Mn1—N1i | 70.18 (11) | H10A—C10—H10B | 109.4 |
N1—Mn1—N1i | 146.97 (17) | C13—C12—H12B | 114.2 |
C4—N1—C8 | 120.4 (3) | C13—C12—H12A | 103.9 |
C4—N1—Mn1 | 119.4 (2) | H12B—C12—H12A | 114.2 |
C8—N1—Mn1 | 119.0 (2) | C13—C12—H12C | 103.9 |
C3—N2—C1 | 105.8 (3) | H12B—C12—H12C | 114.2 |
C3—N2—Mn1 | 116.2 (3) | H12A—C12—H12C | 105.4 |
C1—N2—Mn1 | 137.3 (2) | N6—C13—C12 | 180.000 (6) |
C3—N3—C2 | 108.5 (3) | N4—C11—C10 | 106.3 (3) |
C3—N3—H3A | 125.7 | N4—C11—H11A | 110.9 |
C2—N3—H3A | 125.7 | C10—C11—H11A | 109.5 |
C9—N4—C11 | 106.0 (3) | N4—C11—H11B | 110.7 |
C9—N4—Mn1 | 118.4 (3) | C10—C11—H11B | 111.2 |
C11—N4—Mn1 | 135.5 (2) | H11A—C11—H11B | 108.3 |
C9—N5—C10 | 109.6 (3) | O1'—Cl1—O2' | 117.7 (5) |
C9—N5—H5A | 125.2 | O1'—Cl1—O2 | 88.3 (5) |
C10—N5—H5A | 125.2 | O2'—Cl1—O2 | 63.0 (5) |
N2—C1—C2 | 106.7 (3) | O1'—Cl1—O3' | 112.1 (4) |
N2—C1—H1A | 110.4 | O2'—Cl1—O3' | 112.2 (5) |
C2—C1—H1A | 110.4 | O2—Cl1—O3' | 157.2 (5) |
N2—C1—H1B | 110.4 | O1'—Cl1—O4 | 74.9 (8) |
C2—C1—H1B | 110.4 | O2'—Cl1—O4 | 165.2 (8) |
H1A—C1—H1B | 108.6 | O2—Cl1—O4 | 112.3 (7) |
N3—C2—C1 | 102.0 (3) | O3'—Cl1—O4 | 66.1 (7) |
N3—C2—H2A | 111.4 | O1'—Cl1—O3 | 157.0 (5) |
C1—C2—H2A | 111.4 | O2'—Cl1—O3 | 61.8 (7) |
N3—C2—H2B | 111.4 | O2—Cl1—O3 | 109.3 (6) |
C1—C2—H2B | 111.4 | O3'—Cl1—O3 | 54.5 (6) |
H2A—C2—H2B | 109.2 | O4—Cl1—O3 | 109.9 (7) |
N2—C3—N3 | 116.7 (4) | O1'—Cl1—O1 | 53.6 (5) |
N2—C3—C4 | 120.8 (3) | O2'—Cl1—O1 | 84.9 (6) |
N3—C3—C4 | 122.5 (3) | O2—Cl1—O1 | 110.6 (6) |
N1—C4—C5 | 121.3 (4) | O3'—Cl1—O1 | 90.5 (5) |
N1—C4—C3 | 111.9 (3) | O4—Cl1—O1 | 109.6 (6) |
C5—C4—C3 | 126.8 (4) | O3—Cl1—O1 | 104.9 (6) |
C4—C5—C6 | 118.1 (4) | O1'—Cl1—O4' | 104.9 (5) |
C4—C5—H5 | 121.0 | O2'—Cl1—O4' | 106.6 (4) |
C6—C5—H5 | 121.0 | O2—Cl1—O4' | 61.7 (5) |
C7—C6—C5 | 120.4 (4) | O3'—Cl1—O4' | 101.6 (5) |
C7—C6—H6 | 119.8 | O4—Cl1—O4' | 60.8 (7) |
C5—C6—H6 | 119.8 | O3—Cl1—O4' | 96.7 (6) |
C8—C7—C6 | 118.0 (4) | O1—Cl1—O4' | 158.3 (6) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···O2ii | 0.86 | 2.50 | 3.237 (12) | 144 |
N5—H5A···O3ii | 0.86 | 2.25 | 2.942 (12) | 137 |
N5—H5A···O2′ii | 0.86 | 2.11 | 2.965 (8) | 176 |
N3—H3A···O4iii | 0.86 | 2.52 | 3.26 (2) | 144 |
N3—H3A···O3′iii | 0.86 | 2.16 | 3.015 (8) | 178 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) x+1/2, y+1/2, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C11H13N5)2](ClO4)2·C2H3N |
Mr | 725.42 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 273 |
a, b, c (Å) | 20.521 (5), 12.732 (5), 14.602 (6) |
β (°) | 123.893 (10) |
V (Å3) | 3167.0 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.65 |
Crystal size (mm) | 0.28 × 0.21 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.837, 0.912 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7799, 2821, 1277 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.121, 0.79 |
No. of reflections | 2821 |
No. of parameters | 246 |
No. of restraints | 94 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.27 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).
Mn1—N4 | 2.247 (3) | Mn1—N1 | 2.287 (3) |
Mn1—N2 | 2.283 (3) | ||
N4—Mn1—N4i | 96.14 (16) | N2—Mn1—N1 | 70.18 (12) |
N4—Mn1—N2 | 139.28 (11) | N2i—Mn1—N1 | 132.10 (10) |
N4i—Mn1—N2 | 91.20 (11) | N4—Mn1—N1i | 87.66 (10) |
N4—Mn1—N2i | 91.20 (11) | N4i—Mn1—N1i | 70.18 (11) |
N4i—Mn1—N2i | 139.28 (11) | N2—Mn1—N1i | 132.10 (11) |
N2—Mn1—N2i | 108.70 (16) | N2i—Mn1—N1i | 70.18 (11) |
N4—Mn1—N1 | 70.18 (11) | N1—Mn1—N1i | 146.97 (17) |
N4i—Mn1—N1 | 87.66 (10) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···O2ii | 0.86 | 2.50 | 3.237 (12) | 144.3 |
N5—H5A···O3ii | 0.86 | 2.25 | 2.942 (12) | 137.0 |
N5—H5A···O2'ii | 0.86 | 2.11 | 2.965 (8) | 175.7 |
N3—H3A···O4iii | 0.86 | 2.52 | 3.26 (2) | 144.1 |
N3—H3A···O3'iii | 0.86 | 2.16 | 3.015 (8) | 178.4 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) x+1/2, y+1/2, z+1. |
Acknowledgements
This work was generously supported by the National Natural Science Foundation of China (grant No. 20701016).
References
Baker, A. T., Singh, P. & Vignevich, V. (1991). Aust. J. Chem. 44, 1041–1048. CrossRef CAS Google Scholar
Böca, R., Renz, F., Böca, M., Fuess, H., Haase, W., Kickelbick, G., Linert, W. & Vrbova-Schikora, M. (2005). Inorg. Chem. Commun. 8, 227–230. Google Scholar
Bordo, D., Forlani, F., Spallarossa, A., Colnaghi, R., Carpen, A., Bolognesi, M. & Pagani, S. (2001). Biol. Chem. 382, 1245–31252. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (1998). SMART, SAINT-Plus, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Haga, M., Ali, M. M. & Arakawa, R. (1996). Angew. Chem. Int. Ed. Engl. 35, 76–78. CrossRef CAS Web of Science Google Scholar
Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684. CrossRef Google Scholar
Hammes, B. S., Damiano, B. J., Tobash, P. H., Hidalog, M. J. & Yap, G. P. A. (2005). Inorg. Chem. Commun. 8, 513–516. Web of Science CrossRef CAS Google Scholar
Ren, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741–3747. Web of Science CSD CrossRef CAS Google Scholar
Ren, C.-X., Li, S.-Y., Yin, Z.-Z., Lu, X. & Ding, Y.-Q. (2009). Acta Cryst. E65, m572–m573. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ren, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). CrystEngComm, 6, 200–206. Web of Science CSD CrossRef CAS Google Scholar
Ren, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004). Inorg. Chim. Acta, 357, 443–450. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stupka, G., Gremaud, L., Bernardinelli, G. & Williams, A. F. (2004). Dalton Trans. pp. 407–412. Web of Science CSD CrossRef Google Scholar
Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The construction supramolecular architectures is currently of great interest owing to their intriguing network topologies and potential functions such as adsorption, ion exchange, shape-selective catalysis, non-linear and magnetic materials (Yaghi et al., 1998; Hagrman et al., 1999). The protonation and deprotonation of an imidazole ligand is believed to play an important role in the mechanism of the coordination chemistry (Bordo, et al., 2001). We described previously a number of such metal complexes, including imidazole ligand, and have concluded that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism (Ren, Ye, He et al., 2004; Ren, Ye, Zhu et al., 2004; Ren et al., 2007, 2009). We report here the preparation and crystal structure of a mononuclear coordination complex, [Mn(bip)2](ClO4)2.CH3CN (I) (bip is 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine).
The crystal structure of (I) crystallizes in the monoclinic space group C2/c. As shown in Fig. 1, the title compound consists of a [Mn(bip)2]2+ cation, two perchlorate counter ions and one Acetonitride molecular. The manganese(II) atom in the cation is in a distorted tetrahedral geometry, being coordinated with six nitrogen atoms from two neutral tridentate ligands bip. The Mn(1)—N bond lengths of The equatorial 2.292 (4), 2.284 (4), 2.251 (4) Å, which are slightly shorter than the metal-imidazole (Stupka, et al., 2004; Hammes et al., 2005; Haga et al., 1996; Böca et al., 2005) and longer than the metal-imidazole (Ren, et al., 2009). The N—Mn(1)—N bond angle is in the range of 70.17 (15)–147.1 (2) /%. Two bip ligands of adjacent molecules are parallel to each other with a distance of 3.50 Å, showing the presence of π-π interaction. The molecules further interconnected into three-dimensional network through hydrogen bond between the oxygen atom of perchlorate counter-ion and the uncoordination nitrogen atoms of bip ligands.