metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­bis­(3-methylsulfanyl-1,2,4-thia­diazole-5-thiol­ato)tin(IV)

aCollege of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Shandong, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: zhangjunhong@lcu.edu.cn

(Received 20 July 2009; accepted 29 July 2009; online 8 August 2009)

In the title compound, [Sn(CH3)2(C3H3N2S3)2], the SnIV atom is coordinated within a C2N2S2 donor set that defines a skew-trapezoidal bipyramidal geometry in which the methyl groups lie over the weakly coordinated N atoms. Two independent mol­ecules comprise the asymmetric unit, each of which lies on a mirror plane that passes through the C2Sn unit.

Related literature

For related structures, see: Ma et al. (2005[Ma, C.-L., Zhang, J.-H., Tian, G.-R. & Zhang, R.-F. (2005). J. Organomet. Chem. 690, 519-533.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C3H3N2S3)2]

  • Mr = 475.27

  • Orthorhombic, P n m a

  • a = 13.721 (9) Å

  • b = 16.383 (10) Å

  • c = 16.282 (10) Å

  • V = 3660 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.07 mm−1

  • T = 293 K

  • 0.48 × 0.37 × 0.25 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.436, Tmax = 0.625

  • 18306 measured reflections

  • 3368 independent reflections

  • 2269 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.09

  • 3368 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Two independent molecules of (CH3)2Sn(C3H3S3N2)2 (I) comprise the asymmetric unit, each of which has mirror symmetry so that the C2Sn units lie on a plane (Fig. 1). The molecules have essentially equivalent bond distances and angles. Each tin atoms exists within a C2N2S2 donor set that defines a skew-trapezoidal bipyramidal geometry where the methyl groups lie over the weakly coordinated N atoms. The structure of (I) resembles closely those reported for a series of diorganotin(IV) 2-mercapto-4-methylpyrimidine derivatives (Ma et al., 2005).

Related literature top

For related structures, see: Ma et al. (2005).

Experimental top

3-Methylmercapto-5-mercapto-1,2,4-thiadiazole (2 mmol) was added to a solution of ethanol (20 ml) containing sodium ethoxide (2 mmol). The mixture was stirred for 30 minutes after which dimethyltin dichloride (1 mmol) was added. Stirring continued for 12 h at 318 K. After cooling to room temperature, the solution was filtered. The solvent was gradually removed by evaporation under vacuum until a solid product was obtained. The solid was then recrystallized from ether-dichloromethane to yield coulorless crystals; m. p. 356 K. Analysis, calculated for C8H12N4S6Sn: C 20.22, H 2.54, N 11.79; Found: C 20.16, H 2.49, N 11.83%.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.96 Å, and with Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SaINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and atom labelling.
Dimethylbis(3-methylsulfanyl-1,2,4-thiadiazole-5-thiolato)tin(IV) top
Crystal data top
[Sn(CH3)2(C3H3N2S3)2]F(000) = 1872
Mr = 475.27Dx = 1.725 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5224 reflections
a = 13.721 (9) Åθ = 3.0–24.2°
b = 16.383 (10) ŵ = 2.07 mm1
c = 16.282 (10) ÅT = 293 K
V = 3660 (4) Å3Block, colourless
Z = 80.48 × 0.37 × 0.25 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3368 independent reflections
Radiation source: fine-focus sealed tube2269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1016
Tmin = 0.436, Tmax = 0.625k = 1919
18306 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0351P)2 + 5.554P]
where P = (Fo2 + 2Fc2)/3
3368 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Sn(CH3)2(C3H3N2S3)2]V = 3660 (4) Å3
Mr = 475.27Z = 8
Orthorhombic, PnmaMo Kα radiation
a = 13.721 (9) ŵ = 2.07 mm1
b = 16.383 (10) ÅT = 293 K
c = 16.282 (10) Å0.48 × 0.37 × 0.25 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3368 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2269 reflections with I > 2σ(I)
Tmin = 0.436, Tmax = 0.625Rint = 0.086
18306 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.09Δρmax = 0.72 e Å3
3368 reflectionsΔρmin = 0.58 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.82279 (4)0.25000.19604 (3)0.04949 (19)
Sn20.43193 (4)0.75000.09775 (3)0.04987 (19)
N10.8651 (4)0.4226 (3)0.1828 (3)0.0512 (12)
N20.8588 (4)0.5637 (3)0.1905 (3)0.0652 (15)
N30.3945 (4)0.5731 (3)0.0784 (3)0.0523 (12)
N40.4114 (4)0.4321 (3)0.0854 (3)0.0636 (14)
S10.75305 (13)0.53359 (10)0.23249 (11)0.0635 (5)
S20.70308 (12)0.35277 (9)0.24329 (11)0.0622 (5)
S31.02182 (15)0.49793 (12)0.12428 (12)0.0799 (6)
S40.51099 (13)0.46584 (10)0.13109 (10)0.0637 (5)
S50.54857 (14)0.64762 (10)0.14981 (11)0.0685 (5)
S60.25017 (14)0.49009 (14)0.00916 (12)0.0833 (6)
C10.7797 (4)0.4321 (3)0.2172 (3)0.0487 (14)
C20.9065 (5)0.4983 (4)0.1694 (4)0.0568 (16)
C31.0417 (6)0.6055 (5)0.1120 (5)0.093 (3)
H3A1.10420.61440.08710.140*
H3B1.03980.63160.16470.140*
H3C0.99170.62790.07750.140*
C40.8323 (8)0.25000.0646 (5)0.079 (3)
H4A0.76780.25000.04160.119*
H4B0.86660.20220.04670.119*0.50
H4C0.86660.29780.04670.119*0.50
C50.9452 (7)0.25000.2736 (6)0.072 (3)
H5A0.92420.25000.32990.108*
H5B0.98370.29780.26320.108*0.50
H5C0.98370.20220.26320.108*0.50
C60.4790 (4)0.5664 (3)0.1173 (3)0.0486 (14)
C70.3603 (5)0.4953 (4)0.0620 (3)0.0525 (15)
C80.2309 (6)0.3820 (5)0.0082 (5)0.096 (3)
H8A0.17110.37000.01980.144*
H8B0.22720.36230.06370.144*
H8C0.28410.35590.01960.144*
C90.4396 (8)0.75000.0320 (5)0.066 (3)
H9A0.50660.75000.04880.099*
H9B0.40780.79780.05300.099*0.50
H9C0.40780.70220.05300.099*0.50
C100.3045 (7)0.75000.1705 (6)0.072 (3)
H10A0.32220.75000.22760.108*
H10B0.26670.70220.15860.108*0.50
H10C0.26670.79780.15860.108*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0439 (3)0.0543 (3)0.0502 (3)0.0000.0037 (3)0.000
Sn20.0534 (4)0.0459 (3)0.0503 (3)0.0000.0019 (3)0.000
N10.051 (3)0.048 (3)0.054 (3)0.008 (2)0.004 (3)0.006 (2)
N20.080 (4)0.048 (3)0.067 (3)0.010 (3)0.015 (3)0.009 (3)
N30.058 (3)0.049 (3)0.050 (3)0.010 (2)0.000 (3)0.002 (2)
N40.077 (4)0.054 (3)0.060 (3)0.001 (3)0.001 (3)0.003 (2)
S10.0649 (11)0.0480 (9)0.0776 (11)0.0094 (8)0.0071 (9)0.0073 (8)
S20.0522 (10)0.0504 (9)0.0841 (12)0.0054 (8)0.0027 (9)0.0019 (8)
S30.0784 (13)0.0800 (13)0.0814 (13)0.0037 (11)0.0119 (11)0.0128 (10)
S40.0728 (11)0.0481 (9)0.0703 (10)0.0163 (9)0.0074 (9)0.0044 (8)
S50.0706 (12)0.0535 (10)0.0813 (12)0.0090 (9)0.0135 (10)0.0023 (8)
S60.0677 (12)0.1003 (15)0.0819 (13)0.0007 (11)0.0121 (11)0.0127 (11)
C10.048 (4)0.044 (3)0.054 (3)0.004 (3)0.014 (3)0.003 (3)
C20.066 (4)0.056 (4)0.048 (3)0.001 (3)0.009 (3)0.001 (3)
C30.086 (6)0.091 (6)0.102 (6)0.019 (5)0.005 (5)0.031 (5)
C40.086 (8)0.110 (8)0.043 (5)0.0000.011 (5)0.000
C50.061 (6)0.061 (6)0.094 (7)0.0000.032 (6)0.000
C60.053 (4)0.050 (3)0.043 (3)0.009 (3)0.010 (3)0.004 (3)
C70.059 (4)0.066 (4)0.033 (3)0.001 (3)0.010 (3)0.006 (3)
C80.092 (6)0.108 (6)0.088 (5)0.025 (5)0.009 (5)0.006 (5)
C90.089 (7)0.061 (6)0.047 (5)0.0000.004 (5)0.000
C100.078 (7)0.059 (6)0.080 (6)0.0000.022 (6)0.000
Geometric parameters (Å, º) top
Sn1—C52.102 (9)S5—C61.721 (6)
Sn1—C42.144 (8)S6—C71.741 (7)
Sn1—S2i2.475 (2)S6—C81.790 (8)
Sn1—S22.475 (2)C3—H3A0.9600
Sn1—N12.894 (5)C3—H3B0.9600
Sn2—C102.112 (9)C3—H3C0.9600
Sn2—C92.115 (8)C4—H4A0.9600
Sn2—S5ii2.468 (2)C4—H4B0.9600
Sn2—S52.468 (2)C4—H4C0.9600
N1—C11.308 (7)C5—H5A0.9600
N1—C21.382 (7)C5—H5B0.9600
N2—C21.301 (8)C5—H5C0.9600
N2—S11.678 (6)C8—H8A0.9600
N3—C61.325 (7)C8—H8B0.9600
N3—C71.384 (7)C8—H8C0.9600
N4—C71.306 (7)C9—H9A0.9600
N4—S41.651 (6)C9—H9B0.9600
S1—C11.721 (6)C9—H9C0.9600
S2—C11.725 (6)C10—H10A0.9600
S3—C21.744 (7)C10—H10B0.9600
S3—C31.794 (8)C10—H10C0.9600
S4—C61.719 (6)
C5—Sn1—C4123.5 (4)H3A—C3—H3C109.5
C5—Sn1—S2i110.1 (2)H3B—C3—H3C109.5
C4—Sn1—S2i110.5 (2)Sn1—C4—H4A109.5
C5—Sn1—S2110.1 (2)Sn1—C4—H4B109.5
C4—Sn1—S2110.5 (2)H4A—C4—H4B109.5
S2i—Sn1—S285.74 (9)Sn1—C4—H4C109.5
C5—Sn1—N183.37 (11)H4A—C4—H4C109.5
C4—Sn1—N185.03 (11)H4B—C4—H4C109.5
S2i—Sn1—N1145.17 (11)Sn1—C5—H5A109.5
S2—Sn1—N159.45 (11)Sn1—C5—H5B109.5
C10—Sn2—C9127.0 (4)H5A—C5—H5B109.5
C10—Sn2—S5ii110.1 (2)Sn1—C5—H5C109.5
C9—Sn2—S5ii108.1 (2)H5A—C5—H5C109.5
C10—Sn2—S5110.1 (2)H5B—C5—H5C109.5
C9—Sn2—S5108.1 (2)N3—C6—S4111.4 (4)
S5ii—Sn2—S585.61 (10)N3—C6—S5124.6 (4)
C1—N1—C2109.2 (5)S4—C6—S5124.0 (4)
C1—N1—Sn184.5 (3)N4—C7—N3119.4 (6)
C2—N1—Sn1166.2 (4)N4—C7—S6124.8 (5)
C2—N2—S1107.5 (4)N3—C7—S6115.8 (5)
C6—N3—C7108.2 (5)S6—C8—H8A109.5
C7—N4—S4108.1 (4)S6—C8—H8B109.5
N2—S1—C192.3 (3)H8A—C8—H8B109.5
C1—S2—Sn191.8 (2)S6—C8—H8C109.5
C2—S3—C3100.4 (4)H8A—C8—H8C109.5
N4—S4—C692.9 (3)H8B—C8—H8C109.5
C6—S5—Sn293.5 (2)Sn2—C9—H9A109.5
C7—S6—C8100.4 (4)Sn2—C9—H9B109.5
N1—C1—S1111.6 (4)H9A—C9—H9B109.5
N1—C1—S2124.2 (4)Sn2—C9—H9C109.5
S1—C1—S2124.2 (4)H9A—C9—H9C109.5
N2—C2—N1119.4 (6)H9B—C9—H9C109.5
N2—C2—S3124.8 (5)Sn2—C10—H10A109.5
N1—C2—S3115.9 (5)Sn2—C10—H10B109.5
S3—C3—H3A109.5H10A—C10—H10B109.5
S3—C3—H3B109.5Sn2—C10—H10C109.5
H3A—C3—H3B109.5H10A—C10—H10C109.5
S3—C3—H3C109.5H10B—C10—H10C109.5
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C3H3N2S3)2]
Mr475.27
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)13.721 (9), 16.383 (10), 16.282 (10)
V3)3660 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.07
Crystal size (mm)0.48 × 0.37 × 0.25
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.436, 0.625
No. of measured, independent and
observed [I > 2σ(I)] reflections
18306, 3368, 2269
Rint0.086
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.09
No. of reflections3368
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.58

Computer programs: SMART (Siemens, 1996), SaINT (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20741008) and the State Key Laboratory of Crystalline Materials, Liaocheng University, People's Republic of China.

References

First citationMa, C.-L., Zhang, J.-H., Tian, G.-R. & Zhang, R.-F. (2005). J. Organomet. Chem. 690, 519–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds