organic compounds
N-(2-Hydroxyethyl)-2-[2-(hydroxyimino)propanamido]ethanaminium 2-(hydroxyimino)propanoate
aKarakalpakian University, Department of Chemistry, Universitet Keshesi 1, 742012 Nukus, Uzbekistan, bO. O. Bohomolets National Medical University, Department of General Chemistry, Shevchenko Blvd. 13, 01601 Kiev, Ukraine, and cKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine
*Correspondence e-mail: turgiskend@freemail.ru
The cation of the title salt, C7H16N3O3+·C3H4NO3−, the oxime group is trans with respect to the amide–carbonyl group. The components of the structure are united into a three-dimensional network by an extensive system of O—H⋯O and N—H⋯O hydrogen bonds.
Related literature
For background to et al. (1996); Chaudhuri (2003). For polynuclear species arising from bridging and/or functionalized see: Cervera et al. (1997); Costes et al. (1998); Moroz et al. (2008); Onindo et al. (1995); Sliva et al. (1997a,b); Gumienna-Kontecka et al. (2000). For stabilizing high oxidation states, see: Kanderal et al. (2005); Fritsky et al. (2006). For related structures, see: Duda et al. (1997); Fritsky et al. (1999); Fritsky (1999); Mokhir et al. (2002). For the synthesis, see: Lau & Gutsche (1978).
in coordination chemistry, see: KukushkinExperimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Bruker, 2004); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809029778/tk2512sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809029778/tk2512Isup2.hkl
Ethyl 2-(hydroxyimino)propanoate (1.31 g, 0.01 mol) was dissolved in methanol (50 ml) to which 2-((2-aminoethyl)amino)ethanol (1.04 g, 0.01 mol) was added. The mixture was set aside for 24 h at room temperature, then the solvent was removed on a rotary evaporator. Recrystallization of the crude product from water afforded the pure (I) in the form of single crystals. Ethyl 2-(hydroxyimino)propanoate was prepared according to the reported method (Lau & Gutsche, 1978).
The O—H and N—H hydrogen atoms were located from the difference Fourier map, and refined with Uiso = 1.5 Ueq(parent atom). The remaining H atoms were positioned geometrically and were constrained to ride on their parent atoms with C—H = 0.96–0.97 Å, and with Uiso = 1.2–1.5 Ueq(parent atom).
Data collection: COLLECT (Bruker, 2004); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A view of compound (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines. |
C7H16N3O3+·C3H4NO3− | F(000) = 624 |
Mr = 292.30 | Dx = 1.450 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1078 reflections |
a = 9.355 (2) Å | θ = 3.2–27.5° |
b = 6.996 (1) Å | µ = 0.12 mm−1 |
c = 20.606 (4) Å | T = 120 K |
β = 96.99 (3)° | Block, colourless |
V = 1338.6 (4) Å3 | 0.30 × 0.24 × 0.20 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 3090 independent reflections |
Radiation source: fine-focus sealed tube | 1887 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.049 |
Detector resolution: 9 pixels mm-1 | θmax = 28.4°, θmin = 3.1° |
ϕ scans and ω scans with κ offset | h = −12→9 |
Absorption correction: multi-scan (North et al., 1968) | k = −8→9 |
Tmin = 0.957, Tmax = 0.979 | l = −23→26 |
8410 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0375P)2] where P = (Fo2 + 2Fc2)/3 |
3090 reflections | (Δ/σ)max = 0.002 |
201 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C7H16N3O3+·C3H4NO3− | V = 1338.6 (4) Å3 |
Mr = 292.30 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.355 (2) Å | µ = 0.12 mm−1 |
b = 6.996 (1) Å | T = 120 K |
c = 20.606 (4) Å | 0.30 × 0.24 × 0.20 mm |
β = 96.99 (3)° |
Nonius KappaCCD diffractometer | 3090 independent reflections |
Absorption correction: multi-scan (North et al., 1968) | 1887 reflections with I > 2σ(I) |
Tmin = 0.957, Tmax = 0.979 | Rint = 0.049 |
8410 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | Δρmax = 0.20 e Å−3 |
3090 reflections | Δρmin = −0.25 e Å−3 |
201 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.84446 (13) | −0.16641 (17) | 0.98706 (6) | 0.0158 (3) | |
O2 | −0.60613 (13) | −0.22237 (19) | 1.00166 (6) | 0.0180 (3) | |
O3 | −0.84727 (14) | −0.3817 (2) | 0.80265 (6) | 0.0181 (3) | |
H3O | −0.939 (2) | −0.373 (3) | 0.7840 (10) | 0.027* | |
O4 | 0.55821 (13) | 0.0801 (2) | 0.88257 (6) | 0.0193 (3) | |
H4O | 0.583 (2) | 0.126 (3) | 0.9258 (10) | 0.029* | |
O5 | 0.12037 (13) | 0.11505 (19) | 0.75400 (6) | 0.0179 (3) | |
O6 | −0.27505 (15) | −0.2615 (2) | 1.00518 (6) | 0.0211 (3) | |
H6O | −0.369 (2) | −0.261 (3) | 0.9960 (9) | 0.032* | |
N1 | −0.85445 (16) | −0.3060 (2) | 0.86557 (7) | 0.0146 (4) | |
N2 | 0.41206 (16) | 0.1204 (2) | 0.87427 (7) | 0.0153 (4) | |
N3 | 0.13295 (17) | 0.1750 (2) | 0.86292 (8) | 0.0139 (4) | |
H3N | 0.189 (2) | 0.184 (3) | 0.8990 (9) | 0.021* | |
N4 | −0.10824 (17) | −0.0767 (2) | 0.90998 (7) | 0.0121 (4) | |
H4N | −0.008 (2) | −0.108 (3) | 0.9240 (9) | 0.018* | |
H5N | −0.139 (2) | −0.009 (3) | 0.9426 (9) | 0.018* | |
C1 | −0.7283 (2) | −0.2267 (3) | 0.96857 (9) | 0.0139 (4) | |
C2 | −0.73259 (19) | −0.3166 (3) | 0.90150 (9) | 0.0125 (4) | |
C3 | −0.59762 (19) | −0.4002 (3) | 0.88233 (9) | 0.0162 (4) | |
H3A | −0.6191 | −0.4704 | 0.8423 | 0.024* | |
H3C | −0.5558 | −0.4846 | 0.9162 | 0.024* | |
H3B | −0.5309 | −0.2995 | 0.8762 | 0.024* | |
C4 | 0.4116 (2) | −0.0067 (3) | 0.76127 (9) | 0.0203 (5) | |
H4A | 0.5142 | −0.0162 | 0.7719 | 0.030* | |
H4B | 0.3899 | 0.0728 | 0.7234 | 0.030* | |
H4C | 0.3720 | −0.1319 | 0.7523 | 0.030* | |
C5 | 0.3476 (2) | 0.0790 (3) | 0.81755 (9) | 0.0124 (4) | |
C6 | 0.1903 (2) | 0.1255 (3) | 0.80944 (9) | 0.0142 (4) | |
C7 | −0.01883 (19) | 0.2223 (3) | 0.86077 (9) | 0.0160 (4) | |
H7A | −0.0450 | 0.3120 | 0.8254 | 0.019* | |
H7B | −0.0345 | 0.2847 | 0.9013 | 0.019* | |
C8 | −0.1158 (2) | 0.0483 (3) | 0.85087 (9) | 0.0143 (4) | |
H8A | −0.2145 | 0.0903 | 0.8394 | 0.017* | |
H8B | −0.0887 | −0.0260 | 0.8145 | 0.017* | |
C9 | −0.19929 (19) | −0.2503 (3) | 0.89620 (8) | 0.0143 (4) | |
H9A | −0.1580 | −0.3293 | 0.8646 | 0.017* | |
H9B | −0.2948 | −0.2118 | 0.8770 | 0.017* | |
C10 | −0.2118 (2) | −0.3664 (3) | 0.95673 (9) | 0.0171 (4) | |
H10A | −0.2698 | −0.4789 | 0.9449 | 0.021* | |
H10B | −0.1167 | −0.4091 | 0.9750 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0160 (7) | 0.0177 (8) | 0.0139 (7) | 0.0013 (6) | 0.0025 (5) | −0.0025 (6) |
O2 | 0.0156 (8) | 0.0239 (8) | 0.0132 (7) | 0.0003 (6) | −0.0028 (6) | −0.0031 (6) |
O3 | 0.0161 (8) | 0.0264 (8) | 0.0114 (7) | 0.0014 (7) | −0.0003 (6) | −0.0043 (6) |
O4 | 0.0112 (7) | 0.0286 (9) | 0.0177 (8) | 0.0035 (6) | −0.0002 (6) | −0.0047 (6) |
O5 | 0.0154 (7) | 0.0250 (8) | 0.0127 (7) | 0.0001 (6) | −0.0003 (6) | 0.0020 (6) |
O6 | 0.0173 (8) | 0.0311 (9) | 0.0157 (7) | −0.0033 (7) | 0.0057 (6) | −0.0020 (6) |
N1 | 0.0193 (9) | 0.0160 (9) | 0.0089 (8) | −0.0016 (7) | 0.0030 (7) | −0.0017 (7) |
N2 | 0.0095 (8) | 0.0173 (9) | 0.0193 (9) | 0.0018 (7) | 0.0022 (7) | 0.0012 (7) |
N3 | 0.0117 (9) | 0.0180 (10) | 0.0116 (9) | −0.0007 (7) | −0.0001 (6) | −0.0003 (7) |
N4 | 0.0113 (9) | 0.0159 (9) | 0.0094 (8) | 0.0011 (7) | 0.0027 (7) | −0.0001 (7) |
C1 | 0.0160 (11) | 0.0116 (11) | 0.0141 (10) | −0.0007 (8) | 0.0017 (8) | 0.0028 (8) |
C2 | 0.0135 (10) | 0.0101 (10) | 0.0139 (10) | −0.0010 (8) | 0.0022 (8) | 0.0014 (8) |
C3 | 0.0142 (10) | 0.0197 (11) | 0.0146 (10) | 0.0003 (9) | 0.0010 (8) | −0.0018 (9) |
C4 | 0.0164 (11) | 0.0276 (12) | 0.0167 (11) | 0.0011 (9) | 0.0015 (9) | −0.0019 (9) |
C5 | 0.0152 (10) | 0.0096 (10) | 0.0126 (10) | −0.0005 (8) | 0.0024 (8) | 0.0009 (8) |
C6 | 0.0191 (11) | 0.0097 (10) | 0.0138 (10) | −0.0026 (8) | 0.0023 (9) | 0.0030 (8) |
C7 | 0.0151 (11) | 0.0161 (11) | 0.0175 (11) | 0.0009 (9) | 0.0042 (8) | 0.0016 (8) |
C8 | 0.0123 (10) | 0.0192 (12) | 0.0115 (10) | 0.0014 (9) | 0.0017 (8) | 0.0015 (8) |
C9 | 0.0131 (10) | 0.0150 (11) | 0.0150 (10) | −0.0019 (8) | 0.0022 (8) | −0.0019 (8) |
C10 | 0.0174 (11) | 0.0174 (11) | 0.0172 (10) | 0.0015 (9) | 0.0047 (8) | 0.0023 (9) |
O1—C1 | 1.266 (2) | C2—C3 | 1.488 (2) |
O2—C1 | 1.258 (2) | C3—H3A | 0.9600 |
O3—N1 | 1.4095 (18) | C3—H3C | 0.9600 |
O3—H3O | 0.90 (2) | C3—H3B | 0.9600 |
O4—N2 | 1.3861 (19) | C4—C5 | 1.494 (2) |
O4—H4O | 0.95 (2) | C4—H4A | 0.9600 |
O5—C6 | 1.248 (2) | C4—H4B | 0.9600 |
O6—C10 | 1.424 (2) | C4—H4C | 0.9600 |
O6—H6O | 0.87 (2) | C5—C6 | 1.497 (2) |
N1—C2 | 1.284 (2) | C7—C8 | 1.518 (2) |
N2—C5 | 1.281 (2) | C7—H7A | 0.9700 |
N3—C6 | 1.329 (2) | C7—H7B | 0.9700 |
N3—C7 | 1.453 (2) | C8—H8A | 0.9700 |
N3—H3N | 0.86 (2) | C8—H8B | 0.9700 |
N4—C9 | 1.491 (2) | C9—C10 | 1.505 (2) |
N4—C8 | 1.494 (2) | C9—H9A | 0.9700 |
N4—H4N | 0.970 (19) | C9—H9B | 0.9700 |
N4—H5N | 0.895 (18) | C10—H10A | 0.9700 |
C1—C2 | 1.515 (2) | C10—H10B | 0.9700 |
N1—O3—H3O | 102.4 (12) | H4B—C4—H4C | 109.5 |
N2—O4—H4O | 99.8 (12) | N2—C5—C4 | 127.62 (17) |
C10—O6—H6O | 110.1 (13) | N2—C5—C6 | 113.55 (15) |
C2—N1—O3 | 111.74 (14) | C4—C5—C6 | 118.83 (16) |
C5—N2—O4 | 114.45 (14) | O5—C6—N3 | 123.72 (18) |
C6—N3—C7 | 121.71 (16) | O5—C6—C5 | 119.22 (16) |
C6—N3—H3N | 118.4 (13) | N3—C6—C5 | 117.05 (16) |
C7—N3—H3N | 119.8 (13) | N3—C7—C8 | 112.78 (15) |
C9—N4—C8 | 110.61 (14) | N3—C7—H7A | 109.0 |
C9—N4—H4N | 112.3 (11) | C8—C7—H7A | 109.0 |
C8—N4—H4N | 108.9 (11) | N3—C7—H7B | 109.0 |
C9—N4—H5N | 110.3 (12) | C8—C7—H7B | 109.0 |
C8—N4—H5N | 108.5 (12) | H7A—C7—H7B | 107.8 |
H4N—N4—H5N | 106.1 (16) | N4—C8—C7 | 113.05 (15) |
O2—C1—O1 | 125.82 (17) | N4—C8—H8A | 109.0 |
O2—C1—C2 | 115.20 (16) | C7—C8—H8A | 109.0 |
O1—C1—C2 | 118.98 (17) | N4—C8—H8B | 109.0 |
N1—C2—C3 | 126.33 (17) | C7—C8—H8B | 109.0 |
N1—C2—C1 | 115.17 (16) | H8A—C8—H8B | 107.8 |
C3—C2—C1 | 118.46 (16) | N4—C9—C10 | 112.47 (15) |
C2—C3—H3A | 109.5 | N4—C9—H9A | 109.1 |
C2—C3—H3C | 109.5 | C10—C9—H9A | 109.1 |
H3A—C3—H3C | 109.5 | N4—C9—H9B | 109.1 |
C2—C3—H3B | 109.5 | C10—C9—H9B | 109.1 |
H3A—C3—H3B | 109.5 | H9A—C9—H9B | 107.8 |
H3C—C3—H3B | 109.5 | O6—C10—C9 | 112.58 (15) |
C5—C4—H4A | 109.5 | O6—C10—H10A | 109.1 |
C5—C4—H4B | 109.5 | C9—C10—H10A | 109.1 |
H4A—C4—H4B | 109.5 | O6—C10—H10B | 109.1 |
C5—C4—H4C | 109.5 | C9—C10—H10B | 109.1 |
H4A—C4—H4C | 109.5 | H10A—C10—H10B | 107.8 |
O3—N1—C2—C3 | −1.2 (3) | N2—C5—C6—O5 | 170.68 (17) |
O3—N1—C2—C1 | 176.22 (14) | C4—C5—C6—O5 | −9.1 (3) |
O2—C1—C2—N1 | −174.16 (17) | N2—C5—C6—N3 | −9.8 (2) |
O1—C1—C2—N1 | 7.0 (2) | C4—C5—C6—N3 | 170.42 (17) |
O2—C1—C2—C3 | 3.4 (2) | C6—N3—C7—C8 | 73.0 (2) |
O1—C1—C2—C3 | −175.41 (17) | C9—N4—C8—C7 | −176.88 (15) |
O4—N2—C5—C4 | 0.4 (3) | N3—C7—C8—N4 | 72.22 (18) |
O4—N2—C5—C6 | −179.41 (14) | C8—N4—C9—C10 | −171.87 (14) |
C7—N3—C6—O5 | −0.2 (3) | N4—C9—C10—O6 | 60.2 (2) |
C7—N3—C6—C5 | −179.75 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O5i | 0.90 (2) | 1.78 (2) | 2.677 (2) | 173 (2) |
O4—H4O···O2ii | 0.95 (2) | 1.63 (2) | 2.5733 (18) | 172.3 (19) |
O6—H6O···O2 | 0.87 (2) | 2.25 (2) | 3.101 (2) | 163.4 (18) |
N3—H3N···O6ii | 0.86 (2) | 2.11 (2) | 2.940 (2) | 162.6 (18) |
N4—H4N···O1iii | 0.970 (19) | 1.93 (2) | 2.838 (2) | 155.1 (15) |
N4—H5N···O1iv | 0.895 (18) | 1.921 (19) | 2.796 (2) | 165.1 (17) |
Symmetry codes: (i) −x−1, y−1/2, −z+3/2; (ii) −x, −y, −z+2; (iii) x+1, y, z; (iv) −x−1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C7H16N3O3+·C3H4NO3− |
Mr | 292.30 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 9.355 (2), 6.996 (1), 20.606 (4) |
β (°) | 96.99 (3) |
V (Å3) | 1338.6 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.30 × 0.24 × 0.20 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (North et al., 1968) |
Tmin, Tmax | 0.957, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8410, 3090, 1887 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.088, 0.92 |
No. of reflections | 3090 |
No. of parameters | 201 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.25 |
Computer programs: COLLECT (Bruker, 2004), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O5i | 0.90 (2) | 1.78 (2) | 2.677 (2) | 173 (2) |
O4—H4O···O2ii | 0.95 (2) | 1.63 (2) | 2.5733 (18) | 172.3 (19) |
O6—H6O···O2 | 0.87 (2) | 2.25 (2) | 3.101 (2) | 163.4 (18) |
N3—H3N···O6ii | 0.86 (2) | 2.11 (2) | 2.940 (2) | 162.6 (18) |
N4—H4N···O1iii | 0.970 (19) | 1.93 (2) | 2.838 (2) | 155.1 (15) |
N4—H5N···O1iv | 0.895 (18) | 1.921 (19) | 2.796 (2) | 165.1 (17) |
Symmetry codes: (i) −x−1, y−1/2, −z+3/2; (ii) −x, −y, −z+2; (iii) x+1, y, z; (iv) −x−1, −y, −z+2. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).
References
Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395–401. CSD CrossRef Web of Science Google Scholar
Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168. Web of Science CrossRef CAS Google Scholar
Costes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. (1998). J. Chem. Soc. Dalton Trans. pp. 1307–1314. Web of Science CSD CrossRef Google Scholar
Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fritsky, I. O. (1999). J. Chem. Soc. Dalton Trans. pp. 825–826. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Karaczyn, A., Kozłowski, H., Głowiak, T. & Prisyazhnaya, E. V. (1999). Z. Naturforsch. Teil B, 54, 456–460. CAS Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Gumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans. pp. 4201–4208. Web of Science CrossRef Google Scholar
Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. Web of Science CrossRef PubMed Google Scholar
Kukushkin, V. Yu., Tudela, D. & Pombeiro, A. J. L. (1996). Coord. Chem. Rev. 156, 333–362. CrossRef CAS Web of Science Google Scholar
Lau, H.-P. & Gutsche, C. D. (1978). J. Am. Chem. Soc. 100, 1857–1869. CrossRef CAS Web of Science Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665. Web of Science CSD CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915. CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276. CSD CrossRef Web of Science Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oximes are classical type of chelating ligands traditionally widely used in coordination and analytical chemistry (Kukushkin et al., 1996; Chaudhuri, 2003). They are also important bridging ligands extensively used in molecular magnetism for obtaining of polynuclear complexes (Cervera et al., 1997; Costes et al., 1998; Moroz et al., 2008). The presence of an additional donor function in the vicinity to the oxime group may result in important increase of chelating efficiency and ability to form polynuclear species. For example, amide derivatives of 2-hydroxyiminopropanoic acid were shown to act as highly efficient chelators with respect to Cu(II), Ni(II) and Al(III) (Onindo et al., 1995; Sliva et al., 1997a; Sliva, et al., 1997b; Gumienna-Kontecka et al., 2000). Recently, owing to their strong σ-donor capacity, open-chain tetradentate oxime and amide ligands were shown to efficiently stabilize unusual oxidation states of metal ions, such as Cu3+ and Ni3+ (Kanderal et al., 2005; Fritsky et al., 2006). The present investigation is dedicated to the study of the molecular structure of the title compound (I), which is a new polynucleative ligand containing several donor functions: oxime, amine, amide and alcohol.
The structure of (I) is ionic and and comprises cations of N-[2-(2-hydroxy-ethylammonium)ethyl]-2-hydroxyiminopropanamide and 2-(hydroxyimino)propanoate anions (Fig. 1). The cation has a Γ-shaped conformation and consists of two nearly planar CH3C(=NOH)C(O)NHCH2 and CH2CH2NH2CH2 fragments. The dihedral plane between their mean planes, defined by the non-hydrogen atoms, is 75.8 (1)°. The hydroxyl group is situated nearly perpendicular to the CH2CH2NH2CH2 moiety: the torsion angle N4/C9/C10/O6 is 60.2 (2)°. The observed conformation of the CH3C(=NOH)C(O)NHCH2 moiety is the same as that observed in the structure of N,N'-bis(2-hydroxyiminopropionylpropane)-1,2-diamine and its homologues (Duda et al., 1997; Fritsky, Karaczyn et al., 1999). The oxime group is trans to the amide-carbonyl. It is noted that the CH3C(=NOH)C(O)NHCH2 moiety deviates somewhat from planarity because of a twisting of the oxime and amide groups along the C5—C6 bond. The dihedral angle between the corresponding least square planes is 9.5 (1)°. The C=N, C=O, N—O, C—N bond lengths are typical for 2-hydroxyiminopropanoic acid and its amide derivatives (Duda et al., 1997; Fritsky, 1999; Mokhir et al., 2002).
The elements of the structure are united into a 3-D network by extensive system of the O—H···O and N—H···O hydrogen bonds (Table 1).