organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium salicylate: a synchrotron study

aLawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA, and bAdvanced Light Source, UC Berkeley, 1 Synchrotron Road, Berkeley, CA 94720, USA
*Correspondence e-mail: klepeis2@llnl.gov

(Received 22 July 2009; accepted 27 July 2009; online 8 August 2009)

The structure of the title salt, NH4+·C7H5O3, is stabilized by substantial hydrogen bonding between ammonium cations and salicylate anions that links the components into a two-dimensional array.

Related literature

For background to organic scintillators, see: Brooks (1979[Brooks, F. (1979). Nucl. Instrum. Methods, 162, 477-505.]); Kaschuck et al. (2002[Kaschuck, Yu. A., Esposito, B., Trykov, L. A. & Semenov, V. P. (2002). Nucl. Instum. Methods A, 476, 511-515.]); Kachuk & Esposito (2005[Kachuk, Y. & Esposito, B. (2005). Nucl. Instrum. Methods A, 551, 420-428.]). For the structures of salicylate salts, see: Wiesbrock & Schmidbaur (2003a[Wiesbrock, F. & Schmidbaur, H. (2003a). CrystEngComm, 5, 503-505.],b[Wiesbrock, F. & Schmidbaur, H. (2003b). Inorg. Chem. 42, 7283-7289.]); Dinnebier et al. (2002[Dinnebier, R. E., Jelonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363-368.]). For hydrogen bonding in salicylate compounds, see: Gellert & Hsu (1983[Gellert, R. W. & Hsu, I.-N. (1983). J. Crystallogr. Spectrosc. Res. 13, 99-105.]); Drake et al. (1993[Drake, S. R., Sanderson, K. D., Hursthouse, M. B. & Abdul Malik, K. M. (1993). Inorg. Chem. 32, 1041-1044.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C7H5O3

  • Mr = 155.15

  • Monoclinic, P 21 /n

  • a = 6.0768 (6) Å

  • b = 20.089 (2) Å

  • c = 6.3353 (7) Å

  • β = 102.768 (1)°

  • V = 754.28 (14) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.77490 Å

  • μ = 0.13 mm−1

  • T = 150 K

  • 0.40 × 0.20 × 0.06 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.992

  • 7758 measured reflections

  • 2274 independent reflections

  • 1939 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.150

  • S = 1.10

  • 2274 reflections

  • 136 parameters

  • All H-atom parameters refined

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.93 (2) 1.66 (2) 2.523 (1) 153 (2)
N4—H6⋯O3i 0.92 (2) 1.87 (2) 2.787 (1) 169 (2)
N4—H7⋯O2ii 0.90 (2) 1.91 (2) 2.808 (1) 175 (1)
N4—H8⋯O2 0.93 (2) 1.88 (2) 2.776 (1) 159 (2)
N4—H9⋯O1iii 0.91 (2) 2.42 (2) 3.068 (1) 128 (2)
Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y, -z; (iii) x, y, z-1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is an increasing demand for new materials that can be used for efficient, readily available, low-cost, high-energy neutron detection devices in the presence of a strong γ-ray background. The need for inexpensive neutron scintillators with reasonable optical transparency and fast response time led us to focus on growing, developing and characterizing single crystals of candidate materials. In this regard, materials based on organic scintillators are of particular interest because of their potential for low-level neutron detection via pulse shape discrimination (PSD) (Brooks, 1979; Kaschuck et al., 2002; Kachuk & Esposito, 2005).

In search of new neutron detecting materials with enhanced performance (efficiency and cost), we considered materials that duplicate the structural features of commonly used materials, for example, salicylic acid is a common component in liquid scintillation systems. Salts of salicylic acid are good candidates for dry solid scintillators. Knowledge of these structural data is important to the development of a fundamental understanding of its scintillating properties, and more generally a predictive capability for tailoring materials to achieve desired scintillation properties. To address these challenges, we report here our measurements of the crystal structure of ammonium salicylate (I).

The asymmetric unit of (I) comprises a salicylate cation and an ammonium anion (Fig. 1). The projection of the unit cell contents on the bc plane is shown in Fig. 2. The hydrogen bonding between the carboxylate group and ammonium ions contributes to the stabilization of this crystal packing. This bonding allows two ammonium ions to connect two salicylate ions by forming alternating eight- and twelve- membered rings (Fig. 3). These alternating rings run as strips parallel to c axis and phenyl rings are outwardly attached to them in zigzag patterns. The phenyl rings are stacked along a axis. The oxygens of the hydroxyl groups form weak hydrogen bonding to the ammonium ions (see Table 1). Salicylate salts are not rare. Salicylic acid makes salts with not only ammonium but also alkali metals (Wiesbrock & Schmidbaur, 2003a, b; Dinnebier et al., 2002).

Alkali salicylates are repoted as monohydrates (Li, Cs) (Wiesbrock & Schmidbaur, 2003a, b) or anhydrous forms (K, Rb) (Dinnebier et al., 2002). Similar to (I), alkali salicylates also form double helix type ribbons with phenyl rings attached in zipper shapes. However, the difference lies in the linkage of the ribbons. Carboxylate groups, water molecules and metal ions form the ribbons of hydrated alkali salicylates whereas carboxylate groups, hydroxyl group and metal ions do those of anhydrous alkali salicylates. The connectivity forming ribbons in (I) is mainly through O···H—N hydrogen bonding between the carboxylate groups and ammonium ions (Table 1 and Fig. 3). The hydrogen bonding is comparable to that seen in other salicylate compounds (Gellert & Hsu, 1983; Drake et al., 1993). In the case of Li, the phenyl rings are perpendicular to the ribbons. With larger alkali metals, the phenyl rings tilt toward the ribbons. (I) has weak hydrogen bonding between oxygens of hyddoxyl groups and ammonium ions, which favors tilt of the phenyl rings. In this type of structure, π-π stacking or hydrogen bonding between salicylate anions may not exist due to the large interplanar distance or co-planar distance between phenyl rings.

Related literature top

For background to organic scintillators, see: Brooks (1979); Kaschuck et al. (2002); Kachuk & Esposito (2005). For the structures of salicylate salts, see: Wiesbrock & Schmidbaur (2003a,b); Dinnebier et al. (2002). For hydrogen bonding in salicylate compounds, see: Gellert & Hsu (1983); Drake et al. (1993).

Experimental top

A repeated recrystallization process was applied. The crystals of (I) with high purity were obtained (1) from saturated commercial product (99%, Sigma-Aldrich) from methanol solution or (2) by precipitation of a solution of salicylic acid (99% Sigma-Aldrich) and ammonium water. The single crystals were coated with paratone oil and mounted onto a cryo-loop pin.

Refinement top

Only non H-atoms were refined anisotropically. H-atoms were found from difference Fourier and refined isotropically and freely, O-H = 0.93 (2) Å, range of N-H = 0.91 (2) to 0.933 (19) Å, and range of C-H = 0.952 (18) to 1.00 (2) Å.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with labeling atoms. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) normal to (100).
[Figure 3] Fig. 3. The hydrogen bonding (red lines) between ammonium and carboxylate ions in (I).
Ammonium salicylate top
Crystal data top
NH4+·C7H5O3F(000) = 328
Mr = 155.15Dx = 1.366 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.77490 Å
Hall symbol: -P 2ynCell parameters from 3198 reflections
a = 6.0768 (6) Åθ = 3.8–33.5°
b = 20.089 (2) ŵ = 0.13 mm1
c = 6.3353 (7) ÅT = 150 K
β = 102.768 (1)°Plate, colorless
V = 754.28 (14) Å30.40 × 0.20 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2274 independent reflections
Radiation source: 11.3.1 ALS, LBNL, CA1939 reflections with I > 2σ(I)
Si (111) monochromatorRint = 0.053
ω scansθmax = 33.8°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 88
Tmin = 0.950, Tmax = 0.992k = 2728
7758 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0888P)2 + 0.043P]
where P = (Fo2 + 2Fc2)/3
2274 reflections(Δ/σ)max = 0.006
136 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
NH4+·C7H5O3V = 754.28 (14) Å3
Mr = 155.15Z = 4
Monoclinic, P21/nSynchrotron radiation, λ = 0.77490 Å
a = 6.0768 (6) ŵ = 0.13 mm1
b = 20.089 (2) ÅT = 150 K
c = 6.3353 (7) Å0.40 × 0.20 × 0.06 mm
β = 102.768 (1)°
Data collection top
Bruker APEXII
diffractometer
2274 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1939 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.992Rint = 0.053
7758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.150All H-atom parameters refined
S = 1.10Δρmax = 0.36 e Å3
2274 reflectionsΔρmin = 0.24 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75801 (14)0.09351 (5)0.40962 (13)0.0303 (2)
O20.24729 (14)0.05282 (4)0.06590 (12)0.0292 (2)
O31.12089 (13)0.03981 (4)0.36657 (12)0.0283 (2)
N40.47360 (16)0.05050 (5)0.26977 (15)0.0245 (2)
C10.76231 (17)0.12776 (5)0.22639 (17)0.0233 (2)
C20.5922 (2)0.17478 (6)0.1553 (2)0.0312 (3)
C30.5876 (2)0.21026 (6)0.0326 (2)0.0347 (3)
C40.7494 (2)0.19945 (6)0.1538 (2)0.0328 (3)
C50.91906 (19)0.15315 (5)0.08247 (18)0.0273 (3)
C60.92866 (16)0.11662 (5)0.10730 (16)0.0211 (2)
C71.11200 (16)0.06636 (5)0.18209 (15)0.0217 (2)
H10.884 (3)0.0660 (9)0.429 (3)0.048 (5)*
H20.482 (3)0.1790 (8)0.247 (2)0.033 (4)*
H30.461 (4)0.2423 (10)0.088 (3)0.061 (5)*
H40.742 (3)0.2241 (9)0.283 (3)0.042 (4)*
H51.036 (3)0.1449 (8)0.165 (2)0.036 (4)*
H60.368 (3)0.0433 (8)0.397 (3)0.046 (5)*
H70.563 (3)0.0162 (8)0.212 (2)0.038 (4)*
H80.399 (3)0.0624 (9)0.162 (3)0.045 (4)*
H90.563 (3)0.0840 (10)0.297 (3)0.051 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0288 (4)0.0397 (5)0.0258 (4)0.0077 (3)0.0131 (3)0.0051 (3)
O20.0235 (4)0.0393 (5)0.0276 (4)0.0052 (3)0.0119 (3)0.0037 (3)
O30.0232 (4)0.0406 (5)0.0217 (4)0.0055 (3)0.0063 (3)0.0075 (3)
N40.0232 (4)0.0297 (5)0.0214 (4)0.0017 (3)0.0064 (3)0.0013 (3)
C10.0224 (5)0.0229 (5)0.0251 (5)0.0007 (3)0.0063 (4)0.0025 (3)
C20.0279 (5)0.0271 (5)0.0399 (6)0.0057 (4)0.0102 (5)0.0013 (4)
C30.0319 (6)0.0226 (5)0.0475 (7)0.0041 (4)0.0038 (5)0.0056 (5)
C40.0310 (6)0.0273 (5)0.0383 (6)0.0021 (4)0.0039 (5)0.0117 (4)
C50.0247 (5)0.0291 (5)0.0280 (5)0.0030 (4)0.0059 (4)0.0060 (4)
C60.0187 (4)0.0217 (4)0.0223 (4)0.0018 (3)0.0033 (3)0.0000 (3)
C70.0179 (4)0.0271 (5)0.0200 (4)0.0004 (3)0.0041 (3)0.0004 (3)
Geometric parameters (Å, º) top
O1—C11.3547 (13)C2—C31.3826 (18)
O1—H10.931 (19)C2—H20.985 (17)
O2—C7i1.2487 (13)C3—C41.3915 (19)
O3—C71.2749 (12)C3—H31.00 (2)
N4—H60.925 (18)C4—C51.3878 (16)
N4—H70.902 (17)C4—H40.952 (18)
N4—H80.933 (19)C5—C61.3988 (14)
N4—H90.91 (2)C5—H50.981 (17)
C1—C21.3991 (15)C6—C71.5007 (14)
C1—C61.4065 (14)C7—O2ii1.2487 (13)
C1—O1—H1104.0 (11)C2—C3—H3120.0 (12)
H6—N4—H7118.3 (15)C4—C3—H3119.1 (12)
H6—N4—H8108.8 (16)C5—C4—C3119.32 (11)
H7—N4—H8104.2 (14)C5—C4—H4121.2 (11)
H6—N4—H9106.2 (15)C3—C4—H4119.4 (11)
H7—N4—H9108.3 (17)C4—C5—C6121.22 (11)
H8—N4—H9111.1 (15)C4—C5—H5120.8 (9)
O1—C1—C2117.78 (10)C6—C5—H5118.0 (9)
O1—C1—C6122.07 (9)C5—C6—C1118.63 (9)
C2—C1—C6120.14 (10)C5—C6—C7120.76 (9)
C3—C2—C1119.88 (11)C1—C6—C7120.61 (9)
C3—C2—H2125.3 (9)O2ii—C7—O3123.32 (9)
C1—C2—H2114.8 (9)O2ii—C7—C6120.00 (9)
C2—C3—C4120.81 (10)O3—C7—C6116.68 (9)
O1—C1—C2—C3179.03 (10)C2—C1—C6—C50.29 (15)
C6—C1—C2—C30.11 (17)O1—C1—C6—C70.95 (15)
C1—C2—C3—C40.53 (18)C2—C1—C6—C7179.95 (9)
C2—C3—C4—C50.99 (18)C5—C6—C7—O2ii5.84 (15)
C3—C4—C5—C60.81 (17)C1—C6—C7—O2ii173.93 (9)
C4—C5—C6—C10.18 (16)C5—C6—C7—O3173.62 (9)
C4—C5—C6—C7179.59 (10)C1—C6—C7—O36.62 (14)
O1—C1—C6—C5178.82 (9)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.93 (2)1.66 (2)2.523 (1)153 (2)
N4—H6···O3iii0.92 (2)1.87 (2)2.787 (1)169 (2)
N4—H7···O2iv0.90 (2)1.91 (2)2.808 (1)175 (1)
N4—H8···O20.93 (2)1.88 (2)2.776 (1)159 (2)
N4—H9···O1v0.91 (2)2.42 (2)3.068 (1)128 (2)
Symmetry codes: (iii) x1, y, z1; (iv) x+1, y, z; (v) x, y, z1.

Experimental details

Crystal data
Chemical formulaNH4+·C7H5O3
Mr155.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)6.0768 (6), 20.089 (2), 6.3353 (7)
β (°) 102.768 (1)
V3)754.28 (14)
Z4
Radiation typeSynchrotron, λ = 0.77490 Å
µ (mm1)0.13
Crystal size (mm)0.40 × 0.20 × 0.06
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.950, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
7758, 2274, 1939
Rint0.053
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.150, 1.10
No. of reflections2274
No. of parameters136
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.93 (2)1.66 (2)2.523 (1)153 (2)
N4—H6···O3i0.92 (2)1.87 (2)2.787 (1)169 (2)
N4—H7···O2ii0.90 (2)1.91 (2)2.808 (1)175 (1)
N4—H8···O20.93 (2)1.88 (2)2.776 (1)159 (2)
N4—H9···O1iii0.91 (2)2.42 (2)3.068 (1)128 (2)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z; (iii) x, y, z1.
 

Acknowledgements

This work was supported by the Laboratory Directed Research and Development program office (07-ERD-045) at LLNL and performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC57097NA27344. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), and the OBES Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy at LBNL under Contract No. DE—AC02–05CH11231.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrooks, F. (1979). Nucl. Instrum. Methods, 162, 477–505.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinnebier, R. E., Jelonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363–368.  Web of Science CrossRef CAS Google Scholar
First citationDrake, S. R., Sanderson, K. D., Hursthouse, M. B. & Abdul Malik, K. M. (1993). Inorg. Chem. 32, 1041–1044.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGellert, R. W. & Hsu, I.-N. (1983). J. Crystallogr. Spectrosc. Res. 13, 99-105.  CSD CrossRef CAS Web of Science Google Scholar
First citationKachuk, Y. & Esposito, B. (2005). Nucl. Instrum. Methods A, 551, 420–428.  Google Scholar
First citationKaschuck, Yu. A., Esposito, B., Trykov, L. A. & Semenov, V. P. (2002). Nucl. Instum. Methods A, 476, 511–515.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2003a). CrystEngComm, 5, 503–505.  Web of Science CSD CrossRef CAS Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2003b). Inorg. Chem. 42, 7283–7289.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds