organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(4S)-4-Benzyl-2-thioxo-1,3-thia­zol­idin-3-yl]propan-1-one

aInstitute of Life Sciences, Hyderabad Central University Campus, Gachibowli, Hyderabad 500 046, India, and bDepartment of Analytical Research, Discovery Research, Dr Reddy's Laboratories Ltd, Miyapur, Hyderabad 500 049, India
*Correspondence e-mail: jiqbal@ilsresearch.org, peddy_vishu@yahoo.co.in

(Received 22 July 2009; accepted 29 July 2009; online 15 August 2009)

The analysis of the title chiral auxiliary compound, C13H15NOS2, has enabled the determination of the absolute configuration at the benzyl-bearing ring C atom as S. In the crystal structure, mol­ecules aggregate into helical chains along the b axis via C—H⋯O contacts.

Related literature

For background to the use of N-acyl thia­zolidinethio­nes as versatile chiral auxiliaries for asymmetric aldol reactions, see: Crimmins & Chaudhary (2000[Crimmins, M. T. & Chaudhary, K. (2000). Org. Lett. 2, 775-777.]); Crimmins et al. (2005[Crimmins, M. T., Christie, H. S., Chaudhary, K. & Long, A. (2005). J. Am. Chem. Soc. 127, 13810-13812.]); Crimmins & Haley (2006[Crimmins, M. T. & Haley, M. W. (2006). Org. Lett. 8, 4223-4225.]); Crimmins & Dechert (2009[Crimmins, M. T. & Dechert, A.-M. R. (2009). Org. Lett. 11, 1635-1638.]). For the synthesis, see: McKennon & Meyer (1993[McKennon, M. J. & Meyer, A. I. (1993). J. Org. Chem. 58, 3568-3571.]); Delaunay et al. (1995[Delaunay, D., Toupet, L. & Le Corre, M. J. (1995). Org. Chem. 60, 6604-6607.]); Lu et al. (2009[Lu, C., Nie, J., Yang, G. & Chen, Z. (2009). Can. J. Chem. 87, 30-32.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NOS2

  • Mr = 265.39

  • Monoclinic, P 21

  • a = 8.850 (6) Å

  • b = 7.189 (5) Å

  • c = 10.595 (7) Å

  • β = 95.537 (6)°

  • V = 670.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.831, Tmax = 0.925

  • 7301 measured reflections

  • 2734 independent reflections

  • 2361 reflections with F2 > 2σ(F2)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.048

  • S = 0.86

  • 2734 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1138 Friedel pairs

  • Flack parameter: −0.05 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.95 2.55 3.408 (4) 150
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Pflugrath, 1999[Pflugrath, J. W. (1999). Acta Cryst. D55, 1718-1725.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2006[Molecular Structure Corporation & Rigaku (2006). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: X-SEED (Barbour et al., 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

N-Acyl thiazolidinethiones, e.g. (I), are versatile chiral auxiliaries for asymmetric aldol reactions Crimmins & Chaudhary (2000). Many complex natural products have been synthesized using these auxiliaries (Crimmins et al. 2005; Crimmins & Haley, 2006; Crimmins & Dechert, 2009). The synthesis of (I) starts from amino alcohol 2 which was converted to thiazolidinethione 3 by reacting with carbon disulfide followed by treatment with propionyl chloride (Fig. 3) (Crimmins & Chaudhary, 2000).

The single crystal analysis of (I), Fig. 1, allowed the determination of the absolute configuration of C1 as S. The crystal structure shows the molecules to aggregate into helical chains along the screw axis via C9—H9···O1 contacts (Fig. 2, Table 1).

Related literature top

For background to the use of N-acyl thiazolidinethiones as versatile chiral auxiliaries for asymmetric aldol reactions, see: Crimmins & Chaudhary (2000); Crimmins et al. (2005); Crimmins & Haley (2006); Crimmins & Dechert (2009). For the synthesis, see: McKennon & Meyer (1993); Delaunay et al. (1995); Lu et al. (2009).

Experimental top

To a solution of β-amino alcohol 2 (10 mmol) (McKennon & Meyer, 1993) in aqueous 1.0 N potassium hydroxide (50 ml) was added carbon disulfide (50 mmol, 3.0 ml) slowly. The reaction mixture was refluxed at 110 °C for 12 h to give the desired thiazolidinethione 3 (Delaunay et al. 1995). To a solution of compound 3 (0.478 mmol) in dichloromethane (DCM, 3 ml) was added triethylamine (0.956 mmol) and the temperature was maintained at -40 to -78 °C. To that mixture was added propionyl chloride (0.574 mmol) drop wise. The mixture was stirred for 1–2 h, diluted with DCM (10 ml), washed with water (2 x 10 ml), dried over anhydrous Na2SO4 and concentrated low vacuum to give (I) as a light-yellow solid; mp. 374–376 K (lit. mp. 374.1 K (Lu et al. 2009)).

Compound (I) (50 mg) was dissolved in 2:1 DCM/EtOAC (1.0 ml) and left in freezer (10 °C) until fine crystals appeared. Crystals were separated from soluton and washed with hexane and dried under vacuum.

Refinement top

The H atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.95 Å, and with Uiso(H) set to 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Pflugrath, 1999); cell refinement: CrystalClear (Pflugrath, 1999); data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: X-SEED (Barbour et al., 2001); software used to prepare material for publication: CrystalStructure (Molecular Structure Corporation & Rigaku, 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of (I) showing the formation of helical chains. The C-H···O contacts are shown as dashed lines.
[Figure 3] Fig. 3. Synthesis of (I).
1-[(4S)-4-Benzyl-2-thioxo-1,3-thiazolidin-3-yl]propan-1-one top
Crystal data top
C13H15NOS2F(000) = 280
Mr = 265.39Dx = 1.314 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 3674 reflections
a = 8.850 (6) Åθ = 2.3–27.4°
b = 7.189 (5) ŵ = 0.38 mm1
c = 10.595 (7) ÅT = 298 K
β = 95.537 (6)°Prism, yellow
V = 670.9 (8) Å30.50 × 0.40 × 0.20 mm
Z = 2
Data collection top
Rigaku Mercury
diffractometer
2361 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.038
ω scansθmax = 27.4°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1111
Tmin = 0.831, Tmax = 0.925k = 69
7301 measured reflectionsl = 1313
2734 independent reflections
Refinement top
Refinement on F2 Chebychev polynomial with 3 parameters (Carruthers & Watkin, 1979) 10359.0000 14093.9000 3595.6900
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max < 0.001
wR(F2) = 0.048Δρmax = 0.32 e Å3
S = 0.86Δρmin = 0.35 e Å3
2734 reflectionsAbsolute structure: Flack (1983), 1138 Friedel pairs
170 parametersAbsolute structure parameter: 0.05 (6)
H-atom parameters constrained
Crystal data top
C13H15NOS2V = 670.9 (8) Å3
Mr = 265.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.850 (6) ŵ = 0.38 mm1
b = 7.189 (5) ÅT = 298 K
c = 10.595 (7) Å0.50 × 0.40 × 0.20 mm
β = 95.537 (6)°
Data collection top
Rigaku Mercury
diffractometer
2734 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2361 reflections with F2 > 2σ(F2)
Tmin = 0.831, Tmax = 0.925Rint = 0.038
7301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.048Δρmax = 0.32 e Å3
S = 0.86Δρmin = 0.35 e Å3
2734 reflectionsAbsolute structure: Flack (1983), 1138 Friedel pairs
170 parametersAbsolute structure parameter: 0.05 (6)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55104 (6)1.08609 (10)0.94969 (5)0.0574 (2)
S20.80540 (7)1.31770 (10)1.04864 (6)0.0630 (2)
O10.96079 (17)1.0605 (2)0.69074 (15)0.0720 (6)
N10.79082 (15)1.1039 (2)0.83154 (13)0.0410 (4)
C10.6994 (2)0.9543 (2)0.76431 (19)0.0436 (6)
C20.5366 (2)0.9806 (2)0.79429 (19)0.0498 (7)
C30.7324 (2)1.1748 (2)0.93706 (19)0.0462 (6)
C40.7616 (2)0.7610 (2)0.80159 (19)0.0469 (6)
C50.7183 (2)0.6180 (2)0.70140 (17)0.0441 (6)
C60.5872 (2)0.5119 (2)0.7014 (2)0.0561 (7)
C70.5469 (3)0.3871 (3)0.6051 (2)0.0673 (9)
C80.6379 (3)0.3610 (3)0.5087 (2)0.0704 (9)
C90.7667 (3)0.4651 (3)0.5063 (2)0.0719 (9)
C100.8074 (2)0.5935 (3)0.60097 (19)0.0569 (7)
C110.9289 (2)1.1496 (2)0.7801 (2)0.0501 (7)
C121.0320 (2)1.3001 (3)0.8384 (2)0.0545 (7)
C131.1629 (2)1.3369 (4)0.7610 (2)0.0861 (10)
H10.703300.969700.675600.0520*
H60.524300.526000.768600.0670*
H70.455700.317500.605300.0790*
H80.610000.272600.444000.0830*
H90.830300.446000.440200.0870*
H100.895400.668100.596800.0690*
H210.483801.060700.733900.0600*
H220.485500.864400.794800.0590*
H410.721300.723500.877500.0550*
H420.869100.767500.815700.0560*
H1211.070801.262100.921100.0650*
H1220.974801.411100.843800.0650*
H1311.193001.463400.770500.1050*
H1321.245801.258600.789300.1050*
H1331.132301.312000.674300.1050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0512 (2)0.0621 (3)0.0611 (3)0.0066 (3)0.0167 (2)0.0116 (3)
S20.0587 (3)0.0640 (4)0.0664 (3)0.0025 (3)0.0059 (2)0.0247 (3)
O10.0664 (9)0.0751 (11)0.0796 (10)0.0150 (9)0.0330 (8)0.0265 (10)
N10.0401 (7)0.0364 (8)0.0470 (8)0.0001 (7)0.0062 (6)0.0019 (7)
C10.0419 (10)0.0430 (11)0.0458 (10)0.0008 (8)0.0035 (8)0.0002 (8)
C20.0417 (10)0.0508 (13)0.0561 (12)0.0027 (9)0.0011 (8)0.0019 (9)
C30.0427 (10)0.0438 (11)0.0513 (11)0.0037 (8)0.0008 (8)0.0042 (9)
C40.0510 (11)0.0393 (11)0.0487 (11)0.0028 (8)0.0031 (8)0.0011 (8)
C50.0453 (10)0.0389 (12)0.0467 (10)0.0008 (8)0.0027 (8)0.0025 (8)
C60.0647 (13)0.0460 (13)0.0569 (12)0.0083 (10)0.0017 (10)0.0087 (9)
C70.0828 (17)0.0465 (14)0.0678 (15)0.0207 (11)0.0179 (13)0.0093 (11)
C80.104 (2)0.0511 (15)0.0517 (13)0.0052 (13)0.0146 (13)0.0034 (11)
C90.0992 (19)0.0603 (15)0.0580 (14)0.0079 (15)0.0176 (13)0.0055 (12)
C100.0579 (11)0.0527 (12)0.0617 (12)0.0015 (12)0.0134 (9)0.0026 (12)
C110.0415 (11)0.0480 (13)0.0617 (12)0.0026 (8)0.0095 (9)0.0011 (9)
C120.0430 (10)0.0488 (12)0.0711 (13)0.0016 (10)0.0032 (9)0.0073 (11)
C130.0543 (13)0.086 (2)0.121 (2)0.0223 (15)0.0242 (13)0.0216 (19)
Geometric parameters (Å, º) top
S1—C21.806 (2)C12—C131.506 (3)
S1—C31.744 (2)C1—H10.9500
S2—C31.650 (2)C2—H210.9500
O1—C111.199 (3)C2—H220.9500
N1—C11.486 (2)C4—H410.9500
N1—C31.374 (3)C4—H420.9500
N1—C111.424 (2)C6—H60.9500
C1—C21.517 (3)C7—H70.9500
C1—C41.532 (2)C8—H80.9500
C4—C51.501 (3)C9—H90.9500
C5—C61.389 (3)C10—H100.9500
C5—C101.395 (3)C12—H1210.9500
C6—C71.380 (3)C12—H1220.9500
C7—C81.373 (3)C13—H1310.9500
C8—C91.366 (4)C13—H1320.9500
C9—C101.385 (3)C13—H1330.9500
C11—C121.509 (3)
C2—S1—C393.92 (9)C1—C2—H21110.00
C1—N1—C3115.36 (14)C1—C2—H22111.00
C1—N1—C11115.55 (14)H21—C2—H22109.00
C3—N1—C11129.05 (14)C1—C4—H41109.00
N1—C1—C2107.08 (13)C1—C4—H42109.00
N1—C1—C4111.56 (15)C5—C4—H41108.00
C2—C1—C4112.58 (14)C5—C4—H42109.00
S1—C2—C1104.96 (13)H41—C4—H42109.00
S1—C3—S2118.18 (11)C5—C6—H6119.00
S1—C3—N1110.37 (12)C7—C6—H6120.00
S2—C3—N1131.43 (14)C6—C7—H7120.00
C1—C4—C5112.21 (15)C8—C7—H7119.00
C4—C5—C6122.19 (16)C7—C8—H8120.00
C4—C5—C10120.09 (16)C9—C8—H8121.00
C6—C5—C10117.67 (16)C8—C9—H9119.00
C5—C6—C7120.91 (19)C10—C9—H9120.00
C6—C7—C8120.7 (2)C5—C10—H10119.00
C7—C8—C9119.3 (2)C9—C10—H10120.00
C8—C9—C10120.7 (2)C11—C12—H121109.00
C5—C10—C9120.65 (18)C11—C12—H122109.00
O1—C11—N1117.07 (15)C13—C12—H121109.00
O1—C11—C12121.82 (17)C13—C12—H122109.00
N1—C11—C12121.09 (16)H121—C12—H122109.00
C11—C12—C13111.70 (18)C12—C13—H131109.00
N1—C1—H1109.00C12—C13—H132110.00
C2—C1—H1109.00C12—C13—H133109.00
C4—C1—H1108.00H131—C13—H132109.00
S1—C2—H21110.00H131—C13—H133110.00
S1—C2—H22111.00H132—C13—H133109.00
C3—S1—C2—C122.91 (12)C4—C1—C2—S193.51 (15)
C2—S1—C3—S2171.92 (11)N1—C1—C4—C5155.93 (15)
C2—S1—C3—N19.64 (13)C2—C1—C4—C583.7 (2)
C3—N1—C1—C225.15 (19)C1—C4—C5—C691.3 (2)
C3—N1—C1—C498.44 (17)C1—C4—C5—C1086.0 (2)
C11—N1—C1—C2156.77 (15)C4—C5—C6—C7177.20 (17)
C11—N1—C1—C479.65 (19)C10—C5—C6—C70.1 (3)
C1—N1—C3—S17.69 (18)C4—C5—C10—C9178.46 (18)
C1—N1—C3—S2170.47 (14)C6—C5—C10—C91.1 (3)
C11—N1—C3—S1174.53 (14)C5—C6—C7—C81.9 (3)
C11—N1—C3—S27.3 (3)C6—C7—C8—C92.4 (3)
C1—N1—C11—O12.2 (2)C7—C8—C9—C101.2 (3)
C1—N1—C11—C12179.47 (16)C8—C9—C10—C50.6 (3)
C3—N1—C11—O1175.56 (17)O1—C11—C12—C137.3 (3)
C3—N1—C11—C122.8 (3)N1—C11—C12—C13174.42 (17)
N1—C1—C2—S129.44 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.553.408 (4)150
Symmetry code: (i) x+2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H15NOS2
Mr265.39
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)8.850 (6), 7.189 (5), 10.595 (7)
β (°) 95.537 (6)
V3)670.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.831, 0.925
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
7301, 2734, 2361
Rint0.038
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.048, 0.86
No. of reflections2734
No. of parameters170
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.35
Absolute structureFlack (1983), 1138 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: CrystalClear (Pflugrath, 1999), CrystalStructure (Molecular Structure Corporation & Rigaku, 2006), SIR2004 (Burla et al., 2005), CRYSTALS (Betteridge et al., 2003), X-SEED (Barbour et al., 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.553.408 (4)150
Symmetry code: (i) x+2, y1/2, z+1.
 

Footnotes

ILS Publication No. ILS-MCO-0904.

Acknowledgements

NRG thanks the Institute of Life Sciences for allowing him to pursue this work as part of his PhD thesis.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.  CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCrimmins, M. T. & Chaudhary, K. (2000). Org. Lett. 2, 775–777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCrimmins, M. T., Christie, H. S., Chaudhary, K. & Long, A. (2005). J. Am. Chem. Soc. 127, 13810–13812.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCrimmins, M. T. & Dechert, A.-M. R. (2009). Org. Lett. 11, 1635–1638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCrimmins, M. T. & Haley, M. W. (2006). Org. Lett. 8, 4223–4225.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDelaunay, D., Toupet, L. & Le Corre, M. J. (1995). Org. Chem. 60, 6604–6607.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLu, C., Nie, J., Yang, G. & Chen, Z. (2009). Can. J. Chem. 87, 30–32.  Web of Science CrossRef CAS Google Scholar
First citationMcKennon, M. J. & Meyer, A. I. (1993). J. Org. Chem. 58, 3568–3571.  CrossRef CAS Web of Science Google Scholar
First citationMolecular Structure Corporation & Rigaku (2006). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPflugrath, J. W. (1999). Acta Cryst. D55, 1718–1725.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds