organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4-Dioxo-1,3-thia­zolidin-3-yl)-2-(4-iso­butyl­phen­yl)propanamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 July 2009; accepted 30 July 2009; online 8 August 2009)

In the title compound, C16H20N2O3S, the thia­zolidine ring is approximately planar [maximum deviation = 0.020 (2) Å] and forms a dihedral angle of 86.20 (11)° with the benzene ring. The mean plane through the propanamide unit forms dihedral angles of 88.54 (12) and 76.36 (12)°, respectively, with the thia­zolidine and benzene rings. In the crystal structure, mol­ecules are linked into chains along the a axis by N—H⋯O inter­actions. These chains are inter­connected into two-dimensional arrays parallel to the ab plane by three different C—H⋯O inter­actions. The crystal structure is further stabilized by weak inter­molecular C—H⋯π and N⋯O [2.713 (2) Å] inter­actions.

Related literature

For general background to the synthesis, pharmacological properties and applications of compounds incorporating ibuprofen, see: Aktay et al. (2005[Aktay, G., Tozkoparan, B. & Ertan, M. (2005). Arch. Pharm. Res. 28, 438-442.]); Palaska et al. (2002[Palaska, E., Şahin, G., Kelicen, P., Tuğba Durlu, N. & Altinok, G. (2002). Farmaco, 57, 101-107.]); Verma & Saraf (2008[Verma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897-905.]). For related structures, see: Fun et al. (2009a[Fun, H.-K., Kia, R., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009a). Acta Cryst. E65, o621.],b[Fun, H.-K., Yeap, C. S., Sujith, K. V. & Kalluraya, B. (2009b). Acta Cryst. E65, o1196-o1197.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N2O3S

  • Mr = 320.40

  • Orthorhombic, P b c a

  • a = 9.7305 (1) Å

  • b = 11.3991 (2) Å

  • c = 29.6323 (4) Å

  • V = 3286.78 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.24 × 0.21 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.981

  • 33569 measured reflections

  • 3783 independent reflections

  • 2927 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.143

  • S = 1.20

  • 3783 reflections

  • 279 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3i 0.85 (3) 1.94 (3) 2.713 (2) 151 (2)
C2—H2A⋯O1ii 0.89 (3) 2.53 (3) 3.209 (3) 133 (3)
C2—H2B⋯O2iii 0.92 (3) 2.45 (3) 3.371 (3) 174 (2)
C5—H5⋯O1iv 1.02 (3) 2.46 (2) 3.190 (3) 127.6 (18)
C2—H2ACg2ii 0.90 (3) 2.99 (3) 3.474 (3) 116 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]. Cg2 is the centroid of the C6–C11 ring ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of compounds incorporating ibuprofen has been attracting widespread attention due to their diverse pharmacological properties, such as anti-microbial, anti-inflammatory, analgesic and anti-tumor activities (Palaska et al., 2002; Aktay et al., 2005). There are numerous biologically active molecules with five-membered rings, containing two heteroatoms. For example, thiazolidine is an important scaffold known to be associated with several biological activities (Verma & Saraf, 2008). In view of the above, the synthesis of a new series of 2,4-dioxo-1,3-thiazolidins containing ibuprofen was undertaken. We report here one of these crystal structures, (I).

In (I), Fig. 1, the thiazolidine ring (C1-C3/N1/S1) is approximately planar, with a maximum deviation of 0.020 (2) Å for atom C3. The thiazolidine ring is almost perpendicular to the C6-C12 benzene ring, forming a dihedral angle of 86.20 (11)°. The mean plane through the propanamide (C4/C5/N2/O3) forms dihedral angles of 88.54 (12)° and 76.36 (12)°, respectively, with the thiazolidine and benzene rings. The bond lengths are comparable to those found in closely related structures (Fun at al., 2009a,b).

In the crystal structure (Fig. 2), the molecules are linked into chains along the a axis by N2—H1N2···O3 interactions (Table 1). These chains are interconnected into 2-D arrays parallel to the ab plane by additional C2—H2A···O1, C2—H2B···O2 and C5—H5···O1 interactions (Table 1). The crystal structure is further stabilized by short N2···O3 contacts of 2.713 (2) Å [symmetry code: -1/2+x, 1/2-y, 1-z] and by weak C2—H2A···Cg2 interactions (Table 1).

Related literature top

For general background to the synthesis, pharmacological properties and applications of compounds incorporating ibuprofen, see: Aktay et al. (2005); Palaska et al. (2002); Verma & Saraf (2008). For related structures, see: Fun et al. (2009a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Compound (I) was obtained by refluxing 4-amino-5-[1-(4-isobutylphenyl)ethyl]-4H-1,3,4-oxadiazole-2-thiol (0.005 mol) and ethylchloroacetate (0.005 mol) in a solution comprising ethanol (20 ml) and pyridine (2 ml) in an oil bath for 8 h. The solid product obtained was collected by filtration, washed with ethanol and dried. It was then recrystallized using ethanol. Single crystals were obtained by slow evaporation from an ethanol solution of (I). Yield was 84 %. M.p. 466 K.

Refinement top

All H atoms were located from difference Fourier maps and allowed to refine freely [range of C—H = 0.90 (3) - 1.02 (2) Å].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. 2-D arrays parallel to the ab plane in (I), viewed along the c axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
N-(2,4-Dioxo-1,3-thiazolidin-3-yl)-2-(4-isobutylphenyl)propanamide top
Crystal data top
C16H20N2O3SF(000) = 1360
Mr = 320.40Dx = 1.295 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5195 reflections
a = 9.7305 (1) Åθ = 2.5–30.0°
b = 11.3991 (2) ŵ = 0.21 mm1
c = 29.6323 (4) ÅT = 100 K
V = 3286.78 (8) Å3Plate, colourless
Z = 80.24 × 0.21 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3783 independent reflections
Radiation source: fine-focus sealed tube2927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.951, Tmax = 0.981k = 1413
33569 measured reflectionsl = 3836
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.7928P]
where P = (Fo2 + 2Fc2)/3
3783 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H20N2O3SV = 3286.78 (8) Å3
Mr = 320.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.7305 (1) ŵ = 0.21 mm1
b = 11.3991 (2) ÅT = 100 K
c = 29.6323 (4) Å0.24 × 0.21 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3783 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2927 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.981Rint = 0.079
33569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.44 e Å3
3783 reflectionsΔρmin = 0.26 e Å3
279 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07397 (7)0.09512 (5)0.38158 (2)0.02357 (19)
O10.15979 (17)0.01544 (15)0.50523 (6)0.0235 (4)
O20.13357 (18)0.31521 (14)0.40290 (6)0.0234 (4)
O30.03571 (16)0.26390 (15)0.51261 (6)0.0209 (4)
N10.15610 (19)0.17543 (16)0.45864 (6)0.0154 (4)
N20.1867 (2)0.25414 (17)0.49260 (6)0.0164 (4)
C10.1250 (2)0.2144 (2)0.41525 (8)0.0169 (5)
C20.0969 (3)0.0098 (2)0.42684 (8)0.0193 (5)
C30.1398 (2)0.0567 (2)0.46830 (8)0.0171 (5)
C40.0839 (2)0.28924 (18)0.52017 (8)0.0134 (5)
C50.1292 (2)0.35908 (19)0.56150 (8)0.0154 (5)
C60.1110 (2)0.27896 (19)0.60228 (8)0.0161 (5)
C70.2173 (3)0.2042 (2)0.61513 (8)0.0214 (5)
C80.2021 (3)0.1278 (2)0.65112 (9)0.0231 (6)
C90.0800 (3)0.1236 (2)0.67589 (8)0.0186 (5)
C100.0259 (3)0.1977 (2)0.66277 (8)0.0199 (5)
C110.0112 (3)0.2746 (2)0.62666 (8)0.0191 (5)
C120.0669 (3)0.0436 (2)0.71635 (8)0.0225 (5)
C130.1343 (3)0.0931 (2)0.75930 (8)0.0241 (6)
C140.0692 (4)0.2092 (3)0.77362 (11)0.0338 (7)
C150.1251 (4)0.0031 (3)0.79731 (10)0.0343 (7)
C160.0467 (3)0.4732 (2)0.56402 (9)0.0211 (5)
H2A0.018 (3)0.046 (3)0.4334 (10)0.037 (8)*
H2B0.166 (3)0.062 (2)0.4197 (9)0.029 (7)*
H50.231 (3)0.381 (2)0.5594 (8)0.014 (6)*
H70.299 (3)0.204 (2)0.5973 (9)0.027 (7)*
H80.277 (3)0.074 (2)0.6603 (9)0.023 (7)*
H100.111 (3)0.198 (2)0.6778 (8)0.016 (6)*
H110.083 (3)0.326 (3)0.6170 (9)0.028 (7)*
H12A0.107 (3)0.031 (2)0.7094 (9)0.023 (7)*
H12B0.031 (3)0.031 (2)0.7228 (8)0.015 (6)*
H130.232 (3)0.109 (2)0.7529 (10)0.034 (8)*
H14A0.109 (3)0.239 (3)0.7992 (11)0.037 (8)*
H14B0.031 (3)0.197 (3)0.7814 (10)0.038 (8)*
H14C0.075 (3)0.270 (3)0.7520 (11)0.046 (9)*
H15A0.167 (3)0.035 (3)0.8251 (11)0.042 (9)*
H15B0.029 (3)0.021 (3)0.8030 (10)0.039 (8)*
H15C0.171 (3)0.073 (3)0.7888 (10)0.036 (8)*
H16A0.054 (3)0.457 (2)0.5618 (9)0.030 (8)*
H16B0.078 (3)0.527 (2)0.5401 (9)0.024 (7)*
H16C0.063 (3)0.507 (3)0.5937 (10)0.032 (8)*
H1N20.271 (3)0.270 (2)0.4968 (9)0.031 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0388 (4)0.0173 (3)0.0146 (3)0.0015 (3)0.0018 (3)0.0025 (2)
O10.0259 (10)0.0239 (9)0.0207 (9)0.0021 (7)0.0022 (7)0.0052 (7)
O20.0339 (10)0.0151 (8)0.0213 (9)0.0008 (7)0.0007 (8)0.0013 (7)
O30.0120 (8)0.0254 (9)0.0254 (10)0.0013 (7)0.0005 (7)0.0031 (7)
N10.0155 (10)0.0149 (9)0.0157 (10)0.0010 (7)0.0002 (8)0.0018 (8)
N20.0140 (11)0.0208 (10)0.0144 (10)0.0025 (8)0.0004 (9)0.0047 (8)
C10.0174 (12)0.0183 (12)0.0150 (12)0.0025 (9)0.0029 (10)0.0019 (9)
C20.0265 (14)0.0139 (11)0.0174 (12)0.0006 (10)0.0028 (10)0.0025 (9)
C30.0137 (11)0.0194 (11)0.0182 (12)0.0041 (9)0.0027 (10)0.0002 (9)
C40.0152 (12)0.0118 (10)0.0132 (11)0.0013 (9)0.0005 (9)0.0044 (8)
C50.0152 (12)0.0153 (11)0.0158 (12)0.0012 (9)0.0000 (10)0.0026 (9)
C60.0212 (12)0.0144 (11)0.0128 (11)0.0016 (9)0.0006 (9)0.0016 (9)
C70.0200 (13)0.0241 (12)0.0200 (13)0.0020 (10)0.0044 (11)0.0015 (10)
C80.0250 (14)0.0236 (13)0.0208 (13)0.0063 (10)0.0005 (11)0.0027 (10)
C90.0284 (13)0.0162 (11)0.0113 (11)0.0060 (10)0.0025 (10)0.0024 (9)
C100.0207 (13)0.0214 (12)0.0176 (12)0.0040 (10)0.0033 (11)0.0030 (10)
C110.0204 (13)0.0182 (11)0.0186 (13)0.0010 (10)0.0032 (10)0.0004 (9)
C120.0301 (15)0.0202 (13)0.0171 (13)0.0034 (11)0.0014 (11)0.0002 (10)
C130.0297 (15)0.0264 (13)0.0163 (13)0.0029 (11)0.0020 (11)0.0050 (10)
C140.051 (2)0.0285 (15)0.0223 (15)0.0008 (14)0.0058 (15)0.0052 (13)
C150.0472 (19)0.0352 (16)0.0205 (15)0.0025 (14)0.0038 (13)0.0081 (12)
C160.0266 (14)0.0158 (12)0.0210 (14)0.0009 (10)0.0011 (11)0.0008 (10)
Geometric parameters (Å, º) top
S1—C11.758 (2)C8—H80.99 (3)
S1—C21.811 (2)C9—C101.388 (3)
O1—C31.207 (3)C9—C121.511 (3)
O2—C11.209 (3)C10—C111.391 (3)
O3—C41.220 (3)C10—H100.94 (3)
N1—N21.381 (3)C11—H110.96 (3)
N1—C31.392 (3)C12—C131.538 (4)
N1—C11.394 (3)C12—H12A0.96 (3)
N2—C41.352 (3)C12—H12B0.99 (2)
N2—H1N20.85 (3)C13—C151.526 (4)
C2—C31.503 (3)C13—C141.527 (4)
C2—H2A0.90 (3)C13—H130.99 (3)
C2—H2B0.92 (3)C14—H14A0.92 (3)
C4—C51.526 (3)C14—H14B1.01 (3)
C5—C61.525 (3)C14—H14C0.95 (3)
C5—C161.530 (3)C15—H15A0.99 (3)
C5—H51.02 (2)C15—H15B0.98 (3)
C6—C111.392 (3)C15—H15C1.01 (3)
C6—C71.393 (3)C16—H16A1.00 (3)
C7—C81.385 (3)C16—H16B0.98 (3)
C7—H70.95 (3)C16—H16C0.97 (3)
C8—C91.398 (4)
C1—S1—C293.19 (11)C10—C9—C12121.8 (2)
N2—N1—C3120.43 (19)C8—C9—C12120.6 (2)
N2—N1—C1120.79 (18)C9—C10—C11121.5 (2)
C3—N1—C1118.35 (19)C9—C10—H10121.4 (15)
C4—N2—N1118.2 (2)C11—C10—H10117.1 (15)
C4—N2—H1N2124.4 (19)C10—C11—C6120.6 (2)
N1—N2—H1N2116.8 (19)C10—C11—H11122.8 (16)
O2—C1—N1124.6 (2)C6—C11—H11116.6 (16)
O2—C1—S1125.66 (19)C9—C12—C13113.6 (2)
N1—C1—S1109.77 (16)C9—C12—H12A109.3 (16)
C3—C2—S1107.87 (16)C13—C12—H12A109.3 (16)
C3—C2—H2A107.0 (19)C9—C12—H12B109.0 (14)
S1—C2—H2A110.9 (19)C13—C12—H12B108.0 (14)
C3—C2—H2B108.1 (17)H12A—C12—H12B108 (2)
S1—C2—H2B110.2 (18)C15—C13—C14110.7 (2)
H2A—C2—H2B112 (3)C15—C13—C12109.9 (2)
O1—C3—N1123.1 (2)C14—C13—C12111.8 (2)
O1—C3—C2126.1 (2)C15—C13—H13108.6 (17)
N1—C3—C2110.7 (2)C14—C13—H13107.3 (16)
O3—C4—N2121.7 (2)C12—C13—H13108.5 (17)
O3—C4—C5123.1 (2)C13—C14—H14A111.8 (19)
N2—C4—C5115.2 (2)C13—C14—H14B109.8 (18)
C6—C5—C4106.87 (17)H14A—C14—H14B106 (3)
C6—C5—C16114.2 (2)C13—C14—H14C115 (2)
C4—C5—C16109.36 (19)H14A—C14—H14C105 (3)
C6—C5—H5107.9 (13)H14B—C14—H14C109 (3)
C4—C5—H5110.9 (13)C13—C15—H15A109.8 (18)
C16—C5—H5107.7 (13)C13—C15—H15B111.4 (18)
C11—C6—C7118.1 (2)H15A—C15—H15B111 (3)
C11—C6—C5122.1 (2)C13—C15—H15C111.5 (17)
C7—C6—C5119.8 (2)H15A—C15—H15C110 (2)
C8—C7—C6121.1 (2)H15B—C15—H15C103 (2)
C8—C7—H7121.0 (16)C5—C16—H16A110.8 (16)
C6—C7—H7117.8 (16)C5—C16—H16B109.2 (15)
C7—C8—C9121.1 (2)H16A—C16—H16B112 (2)
C7—C8—H8121.5 (15)C5—C16—H16C107.1 (17)
C9—C8—H8117.4 (15)H16A—C16—H16C107 (2)
C10—C9—C8117.6 (2)H16B—C16—H16C111 (2)
C3—N1—N2—C477.8 (3)N2—C4—C5—C16128.2 (2)
C1—N1—N2—C494.6 (2)C4—C5—C6—C1189.8 (3)
N2—N1—C1—O26.7 (3)C16—C5—C6—C1131.2 (3)
C3—N1—C1—O2179.2 (2)C4—C5—C6—C787.9 (2)
N2—N1—C1—S1174.03 (16)C16—C5—C6—C7151.0 (2)
C3—N1—C1—S11.5 (2)C11—C6—C7—C80.1 (4)
C2—S1—C1—O2178.7 (2)C5—C6—C7—C8177.9 (2)
C2—S1—C1—N10.56 (18)C6—C7—C8—C90.3 (4)
C1—S1—C2—C32.22 (19)C7—C8—C9—C100.7 (4)
N2—N1—C3—O14.9 (3)C7—C8—C9—C12177.3 (2)
C1—N1—C3—O1177.5 (2)C8—C9—C10—C110.7 (3)
N2—N1—C3—C2175.8 (2)C12—C9—C10—C11177.3 (2)
C1—N1—C3—C23.3 (3)C9—C10—C11—C60.3 (4)
S1—C2—C3—O1177.4 (2)C7—C6—C11—C100.1 (3)
S1—C2—C3—N13.3 (2)C5—C6—C11—C10177.8 (2)
N1—N2—C4—O38.5 (3)C10—C9—C12—C1398.4 (3)
N1—N2—C4—C5169.96 (18)C8—C9—C12—C1379.5 (3)
O3—C4—C5—C670.7 (3)C9—C12—C13—C15175.9 (2)
N2—C4—C5—C6107.7 (2)C9—C12—C13—C1460.8 (3)
O3—C4—C5—C1653.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.85 (3)1.94 (3)2.713 (2)151 (2)
C2—H2A···O1ii0.89 (3)2.53 (3)3.209 (3)133 (3)
C2—H2B···O2iii0.92 (3)2.45 (3)3.371 (3)174 (2)
C5—H5···O1iv1.02 (3)2.46 (2)3.190 (3)127.6 (18)
C2—H2A···Cg2ii0.90 (3)2.99 (3)3.474 (3)116 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H20N2O3S
Mr320.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)9.7305 (1), 11.3991 (2), 29.6323 (4)
V3)3286.78 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.24 × 0.21 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.951, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
33569, 3783, 2927
Rint0.079
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.143, 1.20
No. of reflections3783
No. of parameters279
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.85 (3)1.94 (3)2.713 (2)151 (2)
C2—H2A···O1ii0.89 (3)2.53 (3)3.209 (3)133 (3)
C2—H2B···O2iii0.92 (3)2.45 (3)3.371 (3)174 (2)
C5—H5···O1iv1.02 (3)2.46 (2)3.190 (3)127.6 (18)
C2—H2A···Cg2ii0.90 (3)2.99 (3)3.474 (3)116 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research Universiti Golden Goose Grant (No. 1001/PFIZIK/811012). JHG thanks USM for the award of a USM Fellowship.

References

First citationAktay, G., Tozkoparan, B. & Ertan, M. (2005). Arch. Pharm. Res. 28, 438–442.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009a). Acta Cryst. E65, o621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Sujith, K. V. & Kalluraya, B. (2009b). Acta Cryst. E65, o1196–o1197.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalaska, E., Şahin, G., Kelicen, P., Tuğba Durlu, N. & Altinok, G. (2002). Farmaco, 57, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897–905.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds