organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2079-o2080

4-[(4-Fluoro­benzyl­­idene)amino]-3-[1-(4-iso­butyl­phen­yl)eth­yl]-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 July 2009; accepted 30 July 2009; online 8 August 2009)

In the title compound, C21H23FN4S, the benzene rings of the isobutyl­phenyl and fluoro­benzene units form dihedral angles of 75.89 (7) and 13.26 (7)°, respectively, with the triazole ring. An intra­molecular C—H⋯S hydrogen-bonding contact generates an S(6) ring motif. In the crystal packing, pairs of N—H⋯S hydrogen bonds link neighbouring mol­ecules into inversion dimers, forming R22(8) ring motifs. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For pharmacological activity of triazoles, see: Göknur et al. (2005[Göknur, A., Birsen, T. & Mevlüt, E. (2005). Arch. Pharm. Res. 28, 438-442.]). For the anti-tumor activity of triazole derivatives, see: Demirbas et al. (2002[Demirbas, N., Uğurluoğlu, R. & Demirbasx, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.], 2004[Demirbas, N., Alpay-Karaoğlu, S., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem. 39, 793-804.]). For the synthesis of related heterocyclic compounds, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1076-o1077.], 2009a[Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009a). Acta Cryst. E65, o1149-o1150.]). For a related structure, see: Fun et al. (2009b[Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009b). Acta Cryst. E65, o1242-o1243.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23FN4S

  • Mr = 382.49

  • Triclinic, [P \overline 1]

  • a = 5.7883 (1) Å

  • b = 9.9001 (1) Å

  • c = 18.4972 (3) Å

  • α = 98.132 (1)°

  • β = 97.087 (1)°

  • γ = 105.997 (1)°

  • V = 993.90 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.46 × 0.20 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.987

  • 31031 measured reflections

  • 7460 independent reflections

  • 5798 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.06

  • 7460 reflections

  • 336 parameters

  • All H-atom parameters refined

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯S1i 0.85 (2) 2.43 (2) 3.2763 (12) 172.3 (18)
C7—H7A⋯S1 0.96 (2) 2.50 (2) 3.2415 (13) 133.2 (16)
C4—H4ACg1ii 1.01 (2) 2.85 (2) 3.6276 (16) 133.8 (17)
Symmetry codes: (i) -x-1, -y+1, -z; (ii) x, y-1, z. Cg1 is the centroid of the C11–C16 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,4-Triazoles and their derivatives represent a rapidly developing field in modern heterocyclic chemistry. Similarly, ibuprofen belongs to the class of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) with diverse pharmacological activities. The analgesic, anti-asthematic, diuretic, anti-hypertensive and anti-inflammatory properties associated with these drugs have made them important chemotherapeutic agents (Göknur et al., 2005). Our earlier studies involved the synthesis of heterocyclic compounds incorporating ibuprofen and 1,2,4-triazole fragments in the structures (Fun et al., 2008, 2009a). Schiff base derivatives of 1,2,4-triazole are known to possess anti-tumor activity (Demirbas et al., 2004). Similarly, some Schiff base derivatives of acetic acid hydrazides containing 1,2,4-triazol-5-one ring have displayed anti-tumoral activity only against breast cancer, while 2-phenyl ethylidenamino and 2-phenyl ethylamino derivatives of 4-amino-1,2,4-triazol-5-ones have been found to be effective towards non-small cell lung cancer, cranial neural crest cancer, and breast cancer (Demirbas et al., 2002). In this connection and in continuation of our interest in the synthesis of chemically and biologically important heterocycles, we now report a substituted 1,2,4-triazole Schiff base carrying the ibuprofen moiety, (I).

In (I), Fig. 1, the triazole ring (C8/C9/N2–N4) is approximately planar with a maximum deviation of 0.009 (1)° at atom N2. The dihedral angles formed by the triazole ring with C1–C6 and C11–C16 benzene rings are 13.26 (7) and 75.89 (7)°, respectively. Bond lengths and angles are comparable to a closely related structure (Fun et. al., 2009b). An intramolecular C7—H7A···S1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995), Fig. 1.

In the crystal packing (Fig. 2), pairs of N3—H1N3···S1 hydrogen bonds link molecules into dimers forming R22(8) ring motifs; these stack along the a axis. The crystal structure is further stabilized by C—H···π interactions (Table 1).

Related literature top

For pharmacological activity of triazoles, see: Göknur et al. (2005). For the anti-tumor activity of triazole derivatives, see: Demirbas et al. (2002, 2004). For the synthesis of related heterocyclic compounds, see: Fun et al. (2008, 2009a). For a related structure, see: Fun et al. (2009b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of C11–C16 ring.

Experimental top

Compound (I) was obtained by refluxing 4-amino-5-[1-(4-isobutylphenyl)ethyl]-4H-1,2,4-triazole-3-thiol (0.01 mol) and 4-fluorobenzaldehyde (0.01 mol) in ethanol (50 ml) with 3 drops of concentrated sulfuric acid for 6 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Crystals were obtained from the slow evaporation of an ethanol solution of (I).

Refinement top

All H atoms were located from difference Fourier maps and allowed to refine freely [N—H = 0.85 (2) Å; range of C—H = 0.91 (2) - 1.07 (2) Å].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. The intramolecular interaction is shown by a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis, showing the R22(8) ring motifs. Intermolecular hydrogen bonds are shown by dashed lines.
4-[(4-Fluorobenzylidene)amino]-3-[1-(4-isobutylphenyl)ethyl]-1H- 1,2,4-triazole-5(4H)-thione top
Crystal data top
C21H23FN4SZ = 2
Mr = 382.49F(000) = 404
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7883 (1) ÅCell parameters from 8265 reflections
b = 9.9001 (1) Åθ = 2.3–32.9°
c = 18.4972 (3) ŵ = 0.19 mm1
α = 98.132 (1)°T = 100 K
β = 97.087 (1)°Plate, colourless
γ = 105.997 (1)°0.46 × 0.20 × 0.07 mm
V = 993.90 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7460 independent reflections
Radiation source: fine-focus sealed tube5798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 33.1°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.919, Tmax = 0.987k = 1315
31031 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.2752P]
where P = (Fo2 + 2Fc2)/3
7460 reflections(Δ/σ)max = 0.001
336 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C21H23FN4Sγ = 105.997 (1)°
Mr = 382.49V = 993.90 (3) Å3
Triclinic, P1Z = 2
a = 5.7883 (1) ÅMo Kα radiation
b = 9.9001 (1) ŵ = 0.19 mm1
c = 18.4972 (3) ÅT = 100 K
α = 98.132 (1)°0.46 × 0.20 × 0.07 mm
β = 97.087 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7460 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5798 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.987Rint = 0.037
31031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135All H-atom parameters refined
S = 1.06Δρmax = 0.63 e Å3
7460 reflectionsΔρmin = 0.29 e Å3
336 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23157 (6)0.40057 (3)0.062645 (17)0.02273 (9)
F11.07698 (17)0.46076 (11)0.34727 (5)0.0384 (2)
N20.09265 (19)0.67553 (11)0.11123 (6)0.0200 (2)
N30.2432 (2)0.66569 (12)0.04603 (6)0.0240 (2)
N40.1117 (2)0.80841 (12)0.06196 (6)0.0262 (2)
C10.7243 (2)0.63478 (14)0.23907 (7)0.0230 (2)
C20.9179 (2)0.61374 (15)0.28295 (8)0.0265 (3)
C30.8872 (3)0.48191 (16)0.30420 (8)0.0275 (3)
C40.6725 (3)0.37142 (15)0.28390 (8)0.0291 (3)
C50.4798 (3)0.39514 (15)0.24054 (8)0.0270 (3)
C60.5020 (2)0.52512 (13)0.21738 (7)0.0220 (2)
C70.2896 (2)0.54128 (14)0.17189 (7)0.0239 (2)
N10.29999 (19)0.65984 (12)0.15103 (6)0.0219 (2)
C80.1269 (2)0.57973 (13)0.07367 (6)0.0207 (2)
C90.0928 (2)0.81133 (13)0.10125 (7)0.0227 (2)
C100.3012 (3)0.94216 (14)0.13560 (7)0.0248 (3)
C110.2842 (2)0.98403 (13)0.21717 (7)0.0210 (2)
C120.4468 (2)0.96157 (14)0.27274 (7)0.0226 (2)
C130.4346 (2)1.00047 (13)0.34731 (7)0.0215 (2)
C140.2607 (2)1.06384 (13)0.36891 (7)0.0198 (2)
C150.0957 (2)1.08449 (14)0.31282 (7)0.0230 (2)
C160.1051 (2)1.04396 (14)0.23829 (7)0.0239 (2)
C170.2509 (2)1.11216 (14)0.44918 (7)0.0232 (2)
C180.3959 (2)1.26943 (14)0.48054 (7)0.0231 (2)
C190.3044 (3)1.06203 (16)0.09161 (9)0.0338 (3)
C200.6693 (3)1.29519 (17)0.48410 (9)0.0302 (3)
C210.3413 (3)1.31418 (18)0.55751 (8)0.0324 (3)
H1A0.739 (3)0.725 (2)0.2216 (10)0.031 (4)*
H2A1.074 (4)0.684 (2)0.2993 (11)0.042 (5)*
H4A0.661 (4)0.277 (2)0.3010 (11)0.042 (5)*
H5A0.325 (4)0.318 (2)0.2259 (11)0.038 (5)*
H7A0.142 (4)0.462 (2)0.1596 (11)0.037 (5)*
H10A0.470 (4)0.922 (2)0.1304 (11)0.035 (5)*
H12A0.570 (3)0.9154 (18)0.2584 (9)0.023 (4)*
H13A0.545 (3)0.985 (2)0.3849 (11)0.035 (5)*
H15A0.026 (3)1.1270 (19)0.3265 (10)0.030 (4)*
H16A0.007 (4)1.058 (2)0.2033 (11)0.040 (5)*
H17A0.314 (3)1.0534 (19)0.4791 (10)0.028 (4)*
H17B0.078 (3)1.0959 (18)0.4546 (9)0.024 (4)*
H18A0.347 (3)1.331 (2)0.4477 (11)0.035 (5)*
H19A0.140 (4)1.092 (2)0.0910 (11)0.044 (5)*
H19B0.452 (4)1.149 (2)0.1147 (12)0.047 (6)*
H19C0.323 (4)1.027 (2)0.0392 (11)0.040 (5)*
H20A0.761 (4)1.396 (2)0.5032 (12)0.047 (6)*
H20B0.714 (4)1.268 (2)0.4370 (12)0.041 (5)*
H20C0.723 (4)1.237 (2)0.5162 (12)0.043 (5)*
H21A0.164 (4)1.299 (2)0.5562 (12)0.048 (6)*
H21B0.421 (4)1.416 (2)0.5753 (12)0.042 (5)*
H21C0.394 (4)1.258 (2)0.5923 (11)0.036 (5)*
H1N30.384 (4)0.641 (2)0.0196 (11)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02380 (15)0.01846 (14)0.01925 (15)0.00197 (10)0.00281 (11)0.00094 (10)
F10.0338 (5)0.0443 (5)0.0371 (5)0.0151 (4)0.0013 (4)0.0066 (4)
N20.0209 (5)0.0188 (5)0.0150 (4)0.0010 (4)0.0017 (3)0.0006 (3)
N30.0234 (5)0.0201 (5)0.0210 (5)0.0009 (4)0.0016 (4)0.0004 (4)
N40.0311 (6)0.0190 (5)0.0210 (5)0.0011 (4)0.0011 (4)0.0012 (4)
C10.0241 (6)0.0198 (5)0.0216 (6)0.0017 (4)0.0074 (4)0.0004 (4)
C20.0224 (6)0.0273 (6)0.0250 (6)0.0024 (5)0.0057 (5)0.0021 (5)
C30.0287 (6)0.0307 (7)0.0225 (6)0.0101 (5)0.0038 (5)0.0011 (5)
C40.0341 (7)0.0237 (6)0.0285 (7)0.0065 (5)0.0055 (5)0.0056 (5)
C50.0279 (6)0.0217 (6)0.0265 (6)0.0007 (5)0.0039 (5)0.0027 (5)
C60.0235 (6)0.0202 (5)0.0192 (5)0.0023 (4)0.0054 (4)0.0002 (4)
C70.0236 (6)0.0216 (6)0.0217 (6)0.0002 (4)0.0041 (5)0.0017 (4)
N10.0207 (5)0.0236 (5)0.0171 (5)0.0009 (4)0.0028 (4)0.0015 (4)
C80.0211 (5)0.0209 (5)0.0143 (5)0.0014 (4)0.0039 (4)0.0006 (4)
C90.0273 (6)0.0192 (5)0.0159 (5)0.0012 (4)0.0024 (4)0.0020 (4)
C100.0281 (6)0.0208 (6)0.0174 (5)0.0035 (5)0.0018 (5)0.0013 (4)
C110.0227 (5)0.0161 (5)0.0178 (5)0.0029 (4)0.0007 (4)0.0018 (4)
C120.0233 (6)0.0199 (5)0.0211 (6)0.0033 (4)0.0020 (4)0.0005 (4)
C130.0232 (6)0.0198 (5)0.0189 (5)0.0049 (4)0.0007 (4)0.0024 (4)
C140.0198 (5)0.0175 (5)0.0182 (5)0.0004 (4)0.0015 (4)0.0020 (4)
C150.0183 (5)0.0237 (6)0.0246 (6)0.0038 (4)0.0007 (4)0.0036 (5)
C160.0209 (6)0.0245 (6)0.0215 (6)0.0016 (4)0.0035 (4)0.0052 (5)
C170.0230 (6)0.0245 (6)0.0199 (6)0.0039 (5)0.0038 (4)0.0029 (5)
C180.0235 (6)0.0239 (6)0.0198 (6)0.0073 (4)0.0004 (4)0.0000 (4)
C190.0446 (9)0.0252 (7)0.0250 (7)0.0006 (6)0.0034 (6)0.0071 (5)
C200.0236 (6)0.0323 (7)0.0277 (7)0.0019 (5)0.0037 (5)0.0040 (6)
C210.0293 (7)0.0391 (8)0.0261 (7)0.0126 (6)0.0033 (5)0.0062 (6)
Geometric parameters (Å, º) top
S1—C81.6821 (13)C11—C121.3904 (18)
F1—C31.3577 (16)C11—C161.3976 (19)
N2—C91.3824 (16)C12—C131.3945 (18)
N2—N11.3870 (15)C12—H12A0.989 (16)
N2—C81.3888 (15)C13—C141.3935 (17)
N3—C81.3389 (17)C13—H13A0.941 (19)
N3—N41.3772 (15)C14—C151.3980 (17)
N3—H1N30.85 (2)C14—C171.5071 (17)
N4—C91.3011 (17)C15—C161.3923 (19)
C1—C21.382 (2)C15—H15A0.958 (18)
C1—C61.4055 (18)C16—H16A0.91 (2)
C1—H1A0.977 (18)C17—C181.5392 (19)
C2—C31.387 (2)C17—H17A0.968 (18)
C2—H2A0.96 (2)C17—H17B0.988 (17)
C3—C41.379 (2)C18—C201.524 (2)
C4—C51.385 (2)C18—C211.5272 (19)
C4—H4A1.01 (2)C18—H18A0.989 (19)
C5—C61.3908 (19)C19—H19A1.07 (2)
C5—H5A0.98 (2)C19—H19B1.03 (2)
C6—C71.4618 (19)C19—H19C1.01 (2)
C7—N11.2747 (17)C20—H20A0.98 (2)
C7—H7A0.97 (2)C20—H20B0.96 (2)
C9—C101.5013 (17)C20—H20C0.97 (2)
C10—C191.528 (2)C21—H21A0.99 (2)
C10—C111.5299 (18)C21—H21B0.97 (2)
C10—H10A1.059 (19)C21—H21C0.98 (2)
C9—N2—N1118.18 (10)C11—C12—H12A118.7 (10)
C9—N2—C8108.16 (11)C13—C12—H12A120.3 (10)
N1—N2—C8133.59 (11)C14—C13—C12121.45 (11)
C8—N3—N4114.43 (11)C14—C13—H13A117.7 (12)
C8—N3—H1N3127.2 (13)C12—C13—H13A120.9 (12)
N4—N3—H1N3118.4 (13)C13—C14—C15117.37 (11)
C9—N4—N3103.92 (11)C13—C14—C17122.28 (11)
C2—C1—C6120.41 (13)C15—C14—C17120.33 (11)
C2—C1—H1A121.3 (11)C16—C15—C14121.37 (12)
C6—C1—H1A118.2 (11)C16—C15—H15A120.0 (11)
C1—C2—C3118.32 (13)C14—C15—H15A118.7 (11)
C1—C2—H2A124.2 (12)C15—C16—C11120.84 (12)
C3—C2—H2A117.5 (12)C15—C16—H16A119.0 (13)
F1—C3—C4118.41 (13)C11—C16—H16A120.2 (13)
F1—C3—C2118.51 (13)C14—C17—C18114.35 (11)
C4—C3—C2123.08 (13)C14—C17—H17A109.5 (10)
C3—C4—C5117.71 (13)C18—C17—H17A107.9 (11)
C3—C4—H4A119.6 (12)C14—C17—H17B108.3 (10)
C5—C4—H4A122.6 (12)C18—C17—H17B109.7 (10)
C4—C5—C6121.40 (13)H17A—C17—H17B106.9 (14)
C4—C5—H5A119.0 (11)C20—C18—C21109.98 (11)
C6—C5—H5A119.6 (11)C20—C18—C17111.77 (11)
C5—C6—C1119.08 (13)C21—C18—C17110.13 (12)
C5—C6—C7117.86 (12)C20—C18—H18A107.0 (11)
C1—C6—C7123.06 (12)C21—C18—H18A108.4 (11)
N1—C7—C6119.92 (12)C17—C18—H18A109.4 (12)
N1—C7—H7A121.5 (11)C10—C19—H19A111.1 (11)
C6—C7—H7A118.5 (11)C10—C19—H19B109.4 (12)
C7—N1—N2119.06 (11)H19A—C19—H19B109.8 (16)
N3—C8—N2102.50 (10)C10—C19—H19C107.9 (11)
N3—C8—S1126.62 (10)H19A—C19—H19C109.8 (15)
N2—C8—S1130.88 (10)H19B—C19—H19C108.7 (17)
N4—C9—N2110.96 (11)C18—C20—H20A111.5 (12)
N4—C9—C10126.38 (12)C18—C20—H20B113.4 (12)
N2—C9—C10122.59 (12)H20A—C20—H20B108.1 (18)
C9—C10—C19110.48 (11)C18—C20—H20C109.1 (13)
C9—C10—C11108.88 (10)H20A—C20—H20C109.1 (17)
C19—C10—C11113.34 (11)H20B—C20—H20C105.5 (17)
C9—C10—H10A110.3 (11)C18—C21—H21A111.1 (13)
C19—C10—H10A103.0 (11)C18—C21—H21B110.1 (13)
C11—C10—H10A110.7 (11)H21A—C21—H21B106.5 (17)
C12—C11—C16117.98 (12)C18—C21—H21C110.7 (11)
C12—C11—C10120.42 (12)H21A—C21—H21C107.5 (17)
C16—C11—C10121.60 (11)H21B—C21—H21C110.9 (17)
C11—C12—C13120.95 (12)
C8—N3—N4—C90.39 (15)C8—N2—C9—N41.56 (14)
C6—C1—C2—C30.56 (19)N1—N2—C9—C103.85 (17)
C1—C2—C3—F1179.96 (12)C8—N2—C9—C10178.80 (11)
C1—C2—C3—C40.3 (2)N4—C9—C10—C1926.92 (19)
F1—C3—C4—C5179.39 (12)N2—C9—C10—C19156.28 (13)
C2—C3—C4—C50.3 (2)N4—C9—C10—C1198.16 (15)
C3—C4—C5—C60.8 (2)N2—C9—C10—C1178.64 (15)
C4—C5—C6—C10.5 (2)C9—C10—C11—C12107.13 (14)
C4—C5—C6—C7179.87 (13)C19—C10—C11—C12129.48 (14)
C2—C1—C6—C50.16 (19)C9—C10—C11—C1672.11 (15)
C2—C1—C6—C7179.16 (12)C19—C10—C11—C1651.28 (17)
C5—C6—C7—N1178.23 (12)C16—C11—C12—C131.31 (18)
C1—C6—C7—N11.1 (2)C10—C11—C12—C13179.42 (11)
C6—C7—N1—N2176.62 (11)C11—C12—C13—C140.41 (19)
C9—N2—N1—C7167.93 (12)C12—C13—C14—C151.20 (18)
C8—N2—N1—C715.5 (2)C12—C13—C14—C17177.44 (12)
N4—N3—C8—N21.29 (14)C13—C14—C15—C160.28 (18)
N4—N3—C8—S1178.22 (9)C17—C14—C15—C16178.39 (12)
C9—N2—C8—N31.65 (13)C14—C15—C16—C111.5 (2)
N1—N2—C8—N3178.43 (12)C12—C11—C16—C152.23 (18)
C9—N2—C8—S1177.83 (10)C10—C11—C16—C15178.51 (11)
N1—N2—C8—S11.1 (2)C13—C14—C17—C1892.42 (15)
N3—N4—C9—N20.73 (14)C15—C14—C17—C1886.18 (14)
N3—N4—C9—C10177.84 (12)C14—C17—C18—C2066.53 (15)
N1—N2—C9—N4178.91 (11)C14—C17—C18—C21170.91 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···S1i0.85 (2)2.43 (2)3.2763 (12)172.3 (18)
C7—H7A···S10.96 (2)2.50 (2)3.2415 (13)133.2 (16)
C4—H4A···Cg1ii1.01 (2)2.85 (2)3.6276 (16)133.8 (17)
Symmetry codes: (i) x1, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC21H23FN4S
Mr382.49
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.7883 (1), 9.9001 (1), 18.4972 (3)
α, β, γ (°)98.132 (1), 97.087 (1), 105.997 (1)
V3)993.90 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.46 × 0.20 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.919, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
31031, 7460, 5798
Rint0.037
(sin θ/λ)max1)0.768
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.06
No. of reflections7460
No. of parameters336
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.63, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···S1i0.85 (2)2.43 (2)3.2763 (12)172.3 (18)
C7—H7A···S10.96 (2)2.50 (2)3.2415 (13)133.2 (16)
C4—H4A···Cg1ii1.01 (2)2.85 (2)3.6276 (16)133.8 (17)
Symmetry codes: (i) x1, y+1, z; (ii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for a Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks USM for a student assistantship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemirbas, N., Alpay-Karaoğlu, S., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem. 39, 793–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDemirbas, N., Uğurluoğlu, R. & Demirbasx, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1076–o1077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009a). Acta Cryst. E65, o1149–o1150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009b). Acta Cryst. E65, o1242–o1243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGöknur, A., Birsen, T. & Mevlüt, E. (2005). Arch. Pharm. Res. 28, 438–442.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2079-o2080
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds