metal-organic compounds
Bis(2-aminobenzothiazole-κN1)bis(thiocyanato-κN)zinc(II)
aDepartment of Chemistry, Konyang University, Nonsan 320-711, Republic of Korea, and bCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea
*Correspondence e-mail: ihkim@konyang.ac.kr
The ZnII ion in the title complex, [Zn(NCS)2(C7H6N2S)2], is tetrahedrally coordinated within an N4 donor set defined by two N atoms of two terminal isothiocyanate ligands and by two heterocyclic N atoms of two different 2-aminobenzothiazole ligands. This arrangement is stabilized by intramolecular N—H⋯N hydrogen bonds. In the molecules are linked through N—H⋯S hydrogen bonds to form a two-dimensional array.
Related literature
For related literature on organic–inorganic hybrid supramolecular complexes, see: Batten & Robson (1998); Braga et al. (1998); Iwamoto (1996). For the use of pseudo-halides in the construction of supramolecular assemblies, see: Vrieze & Koten (1987); Cortes et al. (1997); Yun et al. (2004); Kim et al. (2001, 2008). For the coordination chemistry of imidazole and thiazole derivatives, see: Balch et al. (1993); Costes et al. (1991); Suh et al. (2005, 2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809030931/tk2521sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809030931/tk2521Isup2.hkl
A water-methanolic (1:1) solution (20 ml) of potassium thiocyanate (2 mmol, 0.19 g) was added to a water-methanolic (1:1) solution (20 ml) of Zn(NO3)2.6H2O (1 mmol, 0.30 g). To this mixture, a water-methanolic (1:1) solution (20 ml) of 2-aminobenzothiazole (3 mmol, 0.45 g) was introduced, with stirring. The small amount of precipitates formed from the resulting solution were filtered off. The filtered solution was allowed to stand at room temperature. After a few days silver blocks were obtained. Elemental analysis found: C 40.41, H 2.67, N 18.11, S 26.59, Zn 13.60%; C16H12N6S4Zn requires: C 39.87, H 2.51, N 17.44, S 26.61, Zn 13.56%.
Positional parameters for the H atoms were calculated geometrically and constrained to ride on their attached atoms with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. |
[Zn(NCS)2(C7H6N2S)2] | Z = 2 |
Mr = 481.93 | F(000) = 488 |
Triclinic, P1 | Dx = 1.600 Mg m−3 Dm = 1.59 Mg m−3 Dm measured by flotation method |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4379 (1) Å | Cell parameters from 9879 reflections |
b = 9.4900 (1) Å | θ = 2.5–28.1° |
c = 13.3037 (2) Å | µ = 1.66 mm−1 |
α = 97.735 (1)° | T = 296 K |
β = 107.302 (1)° | Block, silver |
γ = 94.232 (1)° | 0.41 × 0.28 × 0.21 mm |
V = 1000.52 (2) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 4901 independent reflections |
Radiation source: fine-focus sealed tube | 4238 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 28.3°, θmin = 1.6° |
Absorption correction: multi scan (SADABS; Bruker, 2001) | h = −11→11 |
Tmin = 0.550, Tmax = 0.722 | k = −12→12 |
19351 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0335P)2 + 0.369P] where P = (Fo2 + 2Fc2)/3 |
4901 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
[Zn(NCS)2(C7H6N2S)2] | γ = 94.232 (1)° |
Mr = 481.93 | V = 1000.52 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.4379 (1) Å | Mo Kα radiation |
b = 9.4900 (1) Å | µ = 1.66 mm−1 |
c = 13.3037 (2) Å | T = 296 K |
α = 97.735 (1)° | 0.41 × 0.28 × 0.21 mm |
β = 107.302 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4901 independent reflections |
Absorption correction: multi scan (SADABS; Bruker, 2001) | 4238 reflections with I > 2σ(I) |
Tmin = 0.550, Tmax = 0.722 | Rint = 0.028 |
19351 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.63 e Å−3 |
4901 reflections | Δρmin = −0.60 e Å−3 |
244 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.33334 (3) | 0.77964 (2) | 0.744958 (17) | 0.04196 (8) | |
S1 | 0.11604 (9) | 0.33772 (8) | 0.79681 (7) | 0.0884 (3) | |
C1 | 0.2117 (3) | 0.4851 (2) | 0.78611 (17) | 0.0523 (5) | |
N1 | 0.2812 (2) | 0.5896 (2) | 0.77780 (16) | 0.0613 (5) | |
S2 | −0.15336 (6) | 0.99430 (6) | 0.72597 (4) | 0.05379 (13) | |
C2 | 0.0121 (2) | 0.9254 (2) | 0.72033 (14) | 0.0431 (4) | |
N2 | 0.1339 (2) | 0.8781 (2) | 0.71756 (15) | 0.0588 (5) | |
S11 | 0.80227 (6) | 0.93870 (7) | 1.02664 (4) | 0.05593 (14) | |
C12 | 0.6289 (2) | 0.8274 (2) | 0.94188 (15) | 0.0439 (4) | |
N13 | 0.52630 (18) | 0.88677 (16) | 0.86862 (12) | 0.0395 (3) | |
C14 | 0.5820 (2) | 1.0329 (2) | 0.87934 (15) | 0.0412 (4) | |
C15 | 0.5032 (3) | 1.1285 (2) | 0.81714 (17) | 0.0511 (5) | |
H15A | 0.4031 | 1.0990 | 0.7625 | 0.061* | |
C16 | 0.5770 (3) | 1.2695 (2) | 0.8383 (2) | 0.0650 (6) | |
H16A | 0.5260 | 1.3349 | 0.7968 | 0.078* | |
C17 | 0.7250 (4) | 1.3142 (3) | 0.9199 (2) | 0.0728 (7) | |
H17A | 0.7721 | 1.4091 | 0.9322 | 0.087* | |
C18 | 0.8037 (3) | 1.2210 (3) | 0.9829 (2) | 0.0666 (6) | |
H18A | 0.9029 | 1.2515 | 1.0381 | 0.080* | |
C19 | 0.7310 (2) | 1.0799 (2) | 0.96185 (16) | 0.0495 (5) | |
N20 | 0.6088 (2) | 0.6899 (2) | 0.95306 (15) | 0.0591 (5) | |
H20A | 0.5240 | 0.6334 | 0.9106 | 0.071* | |
H20B | 0.6807 | 0.6578 | 1.0027 | 0.071* | |
S21 | 0.44673 (11) | 0.79917 (8) | 0.43370 (5) | 0.0764 (2) | |
C22 | 0.3431 (3) | 0.8192 (3) | 0.52843 (18) | 0.0590 (5) | |
N23 | 0.4067 (2) | 0.76110 (17) | 0.61379 (13) | 0.0458 (4) | |
C24 | 0.5455 (2) | 0.6922 (2) | 0.60632 (16) | 0.0468 (4) | |
C25 | 0.6394 (3) | 0.6195 (2) | 0.6816 (2) | 0.0583 (5) | |
H25A | 0.6128 | 0.6118 | 0.7438 | 0.070* | |
C26 | 0.7738 (3) | 0.5585 (3) | 0.6631 (3) | 0.0790 (8) | |
H26A | 0.8379 | 0.5088 | 0.7131 | 0.095* | |
C27 | 0.8139 (4) | 0.5707 (4) | 0.5707 (3) | 0.0895 (10) | |
H27A | 0.9055 | 0.5296 | 0.5599 | 0.107* | |
C28 | 0.7221 (4) | 0.6415 (3) | 0.4953 (3) | 0.0801 (8) | |
H28A | 0.7495 | 0.6489 | 0.4333 | 0.096* | |
C29 | 0.5858 (3) | 0.7027 (2) | 0.51366 (18) | 0.0580 (5) | |
N30 | 0.2092 (3) | 0.8888 (3) | 0.51170 (19) | 0.0971 (9) | |
H30A | 0.1575 | 0.8984 | 0.5586 | 0.116* | |
H30B | 0.1741 | 0.9243 | 0.4540 | 0.116* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.03854 (12) | 0.04733 (13) | 0.03935 (13) | 0.00595 (9) | 0.01096 (9) | 0.00711 (9) |
S1 | 0.0599 (4) | 0.0743 (4) | 0.1198 (6) | −0.0084 (3) | −0.0023 (4) | 0.0550 (4) |
C1 | 0.0425 (10) | 0.0574 (11) | 0.0531 (12) | 0.0052 (9) | 0.0048 (8) | 0.0190 (9) |
N1 | 0.0610 (11) | 0.0563 (10) | 0.0661 (12) | −0.0027 (9) | 0.0190 (9) | 0.0155 (9) |
S2 | 0.0406 (2) | 0.0668 (3) | 0.0544 (3) | 0.0127 (2) | 0.0152 (2) | 0.0070 (2) |
C2 | 0.0407 (9) | 0.0515 (10) | 0.0338 (9) | 0.0031 (8) | 0.0079 (7) | 0.0053 (7) |
N2 | 0.0448 (9) | 0.0739 (12) | 0.0547 (11) | 0.0161 (8) | 0.0120 (8) | 0.0036 (9) |
S11 | 0.0412 (3) | 0.0730 (3) | 0.0447 (3) | 0.0075 (2) | 0.0039 (2) | 0.0007 (2) |
C12 | 0.0407 (9) | 0.0573 (11) | 0.0344 (9) | 0.0084 (8) | 0.0123 (7) | 0.0076 (8) |
N13 | 0.0372 (7) | 0.0487 (8) | 0.0335 (8) | 0.0062 (6) | 0.0115 (6) | 0.0077 (6) |
C14 | 0.0392 (9) | 0.0484 (9) | 0.0403 (10) | 0.0048 (7) | 0.0211 (7) | 0.0025 (7) |
C15 | 0.0553 (12) | 0.0523 (11) | 0.0507 (12) | 0.0096 (9) | 0.0230 (9) | 0.0094 (9) |
C16 | 0.0811 (17) | 0.0519 (12) | 0.0756 (16) | 0.0145 (11) | 0.0418 (14) | 0.0134 (11) |
C17 | 0.0772 (17) | 0.0495 (12) | 0.097 (2) | −0.0037 (12) | 0.0448 (15) | −0.0048 (13) |
C18 | 0.0529 (12) | 0.0634 (14) | 0.0774 (17) | −0.0043 (11) | 0.0255 (12) | −0.0152 (12) |
C19 | 0.0417 (10) | 0.0582 (11) | 0.0483 (11) | 0.0033 (8) | 0.0195 (8) | −0.0032 (9) |
N20 | 0.0611 (11) | 0.0609 (10) | 0.0503 (11) | 0.0088 (9) | 0.0041 (8) | 0.0213 (8) |
S21 | 0.1069 (6) | 0.0854 (4) | 0.0525 (4) | 0.0214 (4) | 0.0440 (4) | 0.0158 (3) |
C22 | 0.0754 (15) | 0.0659 (13) | 0.0435 (12) | 0.0224 (11) | 0.0250 (10) | 0.0133 (10) |
N23 | 0.0508 (9) | 0.0488 (8) | 0.0403 (9) | 0.0130 (7) | 0.0164 (7) | 0.0072 (7) |
C24 | 0.0438 (10) | 0.0428 (9) | 0.0506 (11) | 0.0013 (8) | 0.0161 (8) | −0.0041 (8) |
C25 | 0.0482 (11) | 0.0591 (12) | 0.0647 (14) | 0.0136 (9) | 0.0143 (10) | 0.0034 (10) |
C26 | 0.0526 (13) | 0.0797 (17) | 0.097 (2) | 0.0223 (12) | 0.0147 (13) | −0.0010 (15) |
C27 | 0.0536 (15) | 0.097 (2) | 0.112 (3) | 0.0153 (14) | 0.0316 (16) | −0.0227 (19) |
C28 | 0.0709 (17) | 0.0879 (18) | 0.0829 (19) | −0.0006 (14) | 0.0436 (15) | −0.0206 (15) |
C29 | 0.0603 (13) | 0.0569 (12) | 0.0562 (13) | −0.0002 (10) | 0.0271 (10) | −0.0092 (10) |
N30 | 0.116 (2) | 0.142 (2) | 0.0636 (15) | 0.0820 (19) | 0.0421 (14) | 0.0543 (15) |
Zn—N2 | 1.9482 (18) | C18—C19 | 1.387 (3) |
Zn—N1 | 1.9610 (18) | C18—H18A | 0.9300 |
Zn—N23 | 2.0089 (16) | N20—H20A | 0.8600 |
Zn—N13 | 2.0257 (15) | N20—H20B | 0.8600 |
S1—C1 | 1.607 (2) | S21—C22 | 1.733 (2) |
C1—N1 | 1.150 (3) | S21—C29 | 1.739 (3) |
S2—C2 | 1.602 (2) | C22—N23 | 1.315 (3) |
C2—N2 | 1.160 (3) | C22—N30 | 1.328 (3) |
S11—C12 | 1.731 (2) | N23—C24 | 1.405 (2) |
S11—C19 | 1.738 (2) | C24—C25 | 1.379 (3) |
C12—N13 | 1.317 (2) | C24—C29 | 1.387 (3) |
C12—N20 | 1.337 (3) | C25—C26 | 1.381 (3) |
N13—C14 | 1.406 (2) | C25—H25A | 0.9300 |
C14—C15 | 1.383 (3) | C26—C27 | 1.386 (5) |
C14—C19 | 1.396 (3) | C26—H26A | 0.9300 |
C15—C16 | 1.389 (3) | C27—C28 | 1.361 (5) |
C15—H15A | 0.9300 | C27—H27A | 0.9300 |
C16—C17 | 1.382 (4) | C28—C29 | 1.396 (3) |
C16—H16A | 0.9300 | C28—H28A | 0.9300 |
C17—C18 | 1.372 (4) | N30—H30A | 0.8600 |
C17—H17A | 0.9300 | N30—H30B | 0.8600 |
N2—Zn—N1 | 109.42 (9) | C18—C19—S11 | 128.30 (19) |
N2—Zn—N23 | 108.31 (8) | C14—C19—S11 | 110.17 (15) |
N1—Zn—N23 | 110.24 (8) | C12—N20—H20A | 120.0 |
N2—Zn—N13 | 112.85 (7) | C12—N20—H20B | 120.0 |
N1—Zn—N13 | 108.15 (7) | H20A—N20—H20B | 120.0 |
N23—Zn—N13 | 107.85 (6) | C22—S21—C29 | 89.42 (11) |
N1—C1—S1 | 179.1 (2) | N23—C22—N30 | 124.7 (2) |
C1—N1—Zn | 163.33 (19) | N23—C22—S21 | 115.26 (17) |
N2—C2—S2 | 178.5 (2) | N30—C22—S21 | 119.99 (18) |
C2—N2—Zn | 165.33 (19) | C22—N23—C24 | 111.00 (17) |
C12—S11—C19 | 89.28 (10) | C22—N23—Zn | 126.00 (15) |
N13—C12—N20 | 124.72 (18) | C24—N23—Zn | 122.79 (13) |
N13—C12—S11 | 115.89 (15) | C25—C24—C29 | 120.2 (2) |
N20—C12—S11 | 119.39 (15) | C25—C24—N23 | 125.73 (19) |
C12—N13—C14 | 110.52 (16) | C29—C24—N23 | 114.10 (19) |
C12—N13—Zn | 125.21 (13) | C24—C25—C26 | 118.8 (2) |
C14—N13—Zn | 123.77 (12) | C24—C25—H25A | 120.6 |
C15—C14—C19 | 119.82 (18) | C26—C25—H25A | 120.6 |
C15—C14—N13 | 126.06 (18) | C25—C26—C27 | 120.5 (3) |
C19—C14—N13 | 114.12 (17) | C25—C26—H26A | 119.7 |
C14—C15—C16 | 118.4 (2) | C27—C26—H26A | 119.7 |
C14—C15—H15A | 120.8 | C28—C27—C26 | 121.4 (3) |
C16—C15—H15A | 120.8 | C28—C27—H27A | 119.3 |
C17—C16—C15 | 121.1 (2) | C26—C27—H27A | 119.3 |
C17—C16—H16A | 119.5 | C27—C28—C29 | 118.2 (3) |
C15—C16—H16A | 119.5 | C27—C28—H28A | 120.9 |
C18—C17—C16 | 121.2 (2) | C29—C28—H28A | 120.9 |
C18—C17—H17A | 119.4 | C24—C29—C28 | 120.9 (3) |
C16—C17—H17A | 119.4 | C24—C29—S21 | 110.20 (16) |
C17—C18—C19 | 118.0 (2) | C28—C29—S21 | 128.9 (2) |
C17—C18—H18A | 121.0 | C22—N30—H30A | 120.0 |
C19—C18—H18A | 121.0 | C22—N30—H30B | 120.0 |
C18—C19—C14 | 121.5 (2) | H30A—N30—H30B | 120.0 |
N2—Zn—N1—C1 | 16.6 (7) | N13—C14—C19—S11 | 0.15 (19) |
N23—Zn—N1—C1 | −102.4 (7) | C12—S11—C19—C18 | 179.7 (2) |
N13—Zn—N1—C1 | 139.9 (7) | C12—S11—C19—C14 | −0.90 (14) |
N1—Zn—N2—C2 | 44.1 (7) | C29—S21—C22—N23 | 0.9 (2) |
N23—Zn—N2—C2 | 164.3 (7) | C29—S21—C22—N30 | −178.9 (2) |
N13—Zn—N2—C2 | −76.3 (7) | N30—C22—N23—C24 | 178.5 (2) |
C19—S11—C12—N13 | 1.57 (15) | S21—C22—N23—C24 | −1.3 (3) |
C19—S11—C12—N20 | −179.42 (17) | N30—C22—N23—Zn | −6.6 (4) |
N20—C12—N13—C14 | 179.31 (18) | S21—C22—N23—Zn | 173.67 (10) |
S11—C12—N13—C14 | −1.7 (2) | N2—Zn—N23—C22 | 7.0 (2) |
N20—C12—N13—Zn | −8.6 (3) | N1—Zn—N23—C22 | 126.68 (19) |
S11—C12—N13—Zn | 170.34 (8) | N13—Zn—N23—C22 | −115.45 (19) |
N2—Zn—N13—C12 | 139.20 (15) | N2—Zn—N23—C24 | −178.63 (14) |
N1—Zn—N13—C12 | 18.00 (17) | N1—Zn—N23—C24 | −58.93 (16) |
N23—Zn—N13—C12 | −101.21 (15) | N13—Zn—N23—C24 | 58.94 (15) |
N2—Zn—N13—C14 | −49.73 (15) | C22—N23—C24—C25 | −179.3 (2) |
N1—Zn—N13—C14 | −170.92 (13) | Zn—N23—C24—C25 | 5.6 (3) |
N23—Zn—N13—C14 | 69.87 (14) | C22—N23—C24—C29 | 1.1 (3) |
C12—N13—C14—C15 | −178.80 (18) | Zn—N23—C24—C29 | −174.00 (14) |
Zn—N13—C14—C15 | 9.0 (2) | C29—C24—C25—C26 | 0.3 (3) |
C12—N13—C14—C19 | 1.0 (2) | N23—C24—C25—C26 | −179.3 (2) |
Zn—N13—C14—C19 | −171.23 (12) | C24—C25—C26—C27 | 0.3 (4) |
C19—C14—C15—C16 | 0.8 (3) | C25—C26—C27—C28 | −0.6 (5) |
N13—C14—C15—C16 | −179.38 (18) | C26—C27—C28—C29 | 0.3 (4) |
C14—C15—C16—C17 | −0.5 (3) | C25—C24—C29—C28 | −0.6 (3) |
C15—C16—C17—C18 | −0.2 (4) | N23—C24—C29—C28 | 179.0 (2) |
C16—C17—C18—C19 | 0.5 (4) | C25—C24—C29—S21 | 179.88 (16) |
C17—C18—C19—C14 | −0.1 (3) | N23—C24—C29—S21 | −0.5 (2) |
C17—C18—C19—S11 | 179.27 (18) | C27—C28—C29—C24 | 0.3 (4) |
C15—C14—C19—C18 | −0.6 (3) | C27—C28—C29—S21 | 179.8 (2) |
N13—C14—C19—C18 | 179.61 (18) | C22—S21—C29—C24 | −0.17 (17) |
C15—C14—C19—S11 | 179.95 (14) | C22—S21—C29—C28 | −179.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N20—H20A···N1 | 0.86 | 2.24 | 3.027 (3) | 152 |
N20—H20B···S1i | 0.86 | 2.70 | 3.5015 (19) | 156 |
N30—H30A···N2 | 0.86 | 2.21 | 3.002 (3) | 152 |
N30—H30B···S2ii | 0.86 | 2.57 | 3.404 (2) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn(NCS)2(C7H6N2S)2] |
Mr | 481.93 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.4379 (1), 9.4900 (1), 13.3037 (2) |
α, β, γ (°) | 97.735 (1), 107.302 (1), 94.232 (1) |
V (Å3) | 1000.52 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.66 |
Crystal size (mm) | 0.41 × 0.28 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.550, 0.722 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19351, 4901, 4238 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.079, 1.05 |
No. of reflections | 4901 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.60 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N20—H20A···N1 | 0.86 | 2.24 | 3.027 (3) | 152 |
N20—H20B···S1i | 0.86 | 2.70 | 3.5015 (19) | 156 |
N30—H30A···N2 | 0.86 | 2.21 | 3.002 (3) | 152 |
N30—H30B···S2ii | 0.86 | 2.57 | 3.404 (2) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+2, −z+1. |
References
Balch, A. L., Noll, B. C. & Safari, N. (1993). Inorg. Chem. 32, 2901–2905. CSD CrossRef CAS Web of Science Google Scholar
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. Web of Science CrossRef Google Scholar
Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cortes, R., Urtiaga, M. K., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1997). Inorg. Chem. 36, 5016–5021. CSD CrossRef CAS Web of Science Google Scholar
Costes, J. P., Dahan, F. & Laurent, J. P. (1991). Inorg. Chem. 30, 1887–1892. CSD CrossRef CAS Web of Science Google Scholar
Iwamoto, T. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, pp. 643–690. Oxford: Pergamon Press. Google Scholar
Kim, C. H., Moon, H. S. & Lee, S. G. (2008). Anal. Sci. Technol. 21, 562–568. Google Scholar
Kim, I. H., Suh, S. W., Kim, C. H., Kim, J. G. & Suh, I. H. (2001). Korean J. Crystallogr. 12, 207–211. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol. 18, 391–395. Google Scholar
Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vrieze, K. & Koten, G. V. (1987). Comprehensive Coordination Chemistry, Vol. 2, pp. 225–244. Oxford: Pergamon Press. Google Scholar
Yun, S. S., Moon, H. S., Kim, C. H. & Lee, S. G. (2004). J. Coord. Chem. 57, 321–327. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic-inorganic hybrid supramolecular complexes of 1-, 2-, and 3-D frameworks has attracted great interest recently (Iwamoto, 1996; Batten & Robson, 1998), as they have useful properties, viz. electronic, magnetic, optical, catalytic, etc. (Braga et al., 1998). For designing novel multi-dimensional frameworks, we (Kim et al., 2001; Kim et al., 2008) and others (Cortes et al., 1997; Yun et al., 2004) have used the coordination properties of various pseudohalide ions and complementary organic ligands. Pseudo-halide ions, e.g. CN-, SCN-, N3-, are known to build up 1-, 2- and 3-D structures by bridging metal centers (Vrieze & Koten, 1987). The of use of complementary organic ligands, such as aliphatic and aromatic amines is also known to play an important role in stabilizing multi-dimensional structures. In particulae, aromatic heterocycles such as imidazole and thiazole derivatives represent an important class of ligands in coordination chemistry (Balch et al., 1993; Costes et al., 1991). However, frameworks of metal complexes containing thiazole derivatives have been considerably less investigated. Our research is focused on the development of novel supramolecular framework structures utilizing the terminal and bridging properties of pseudo-halide ions, and the coordination behaviour of thiazole derivatives as complementary organic ligands (Suh et al., 2005, 2007). Herein, we present the synthesis and structure determination of the title complex, (I), with 2-aminobenzothiazole, Fig. 1.