metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­benzo­thia­zole-κN1)bis­­(thio­cyanato-κN)zinc(II)

aDepartment of Chemistry, Konyang University, Nonsan 320-711, Republic of Korea, and bCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea
*Correspondence e-mail: ihkim@konyang.ac.kr

(Received 30 July 2009; accepted 4 August 2009; online 8 August 2009)

The ZnII ion in the title complex, [Zn(NCS)2(C7H6N2S)2], is tetra­hedrally coordinated within an N4 donor set defined by two N atoms of two terminal isothio­cyanate ligands and by two heterocyclic N atoms of two different 2-amino­benzothia­zole ligands. This arrangement is stabilized by intra­molecular N—H⋯N hydrogen bonds. In the crystal structure, mol­ecules are linked through N—H⋯S hydrogen bonds to form a two-dimensional array.

Related literature

For related literature on organic–inorganic hybrid supra­molecular complexes, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Braga et al. (1998[Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1406.]); Iwamoto (1996[Iwamoto, T. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, pp. 643-690. Oxford: Pergamon Press.]). For the use of pseudo-halides in the construction of supra­molecular assemblies, see: Vrieze & Koten (1987[Vrieze, K. & Koten, G. V. (1987). Comprehensive Coordination Chemistry, Vol. 2, pp. 225-244. Oxford: Pergamon Press.]); Cortes et al. (1997[Cortes, R., Urtiaga, M. K., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1997). Inorg. Chem. 36, 5016-5021.]); Yun et al. (2004[Yun, S. S., Moon, H. S., Kim, C. H. & Lee, S. G. (2004). J. Coord. Chem. 57, 321-327.]); Kim et al. (2001[Kim, I. H., Suh, S. W., Kim, C. H., Kim, J. G. & Suh, I. H. (2001). Korean J. Crystallogr. 12, 207-211.], 2008[Kim, C. H., Moon, H. S. & Lee, S. G. (2008). Anal. Sci. Technol. 21, 562-568.]). For the coordination chemistry of imidazole and thia­zole derivatives, see: Balch et al. (1993[Balch, A. L., Noll, B. C. & Safari, N. (1993). Inorg. Chem. 32, 2901-2905.]); Costes et al. (1991[Costes, J. P., Dahan, F. & Laurent, J. P. (1991). Inorg. Chem. 30, 1887-1892.]); Suh et al. (2005[Suh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol. 18, 391-395.], 2007[Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C7H6N2S)2]

  • Mr = 481.93

  • Triclinic, [P \overline 1]

  • a = 8.4379 (1) Å

  • b = 9.4900 (1) Å

  • c = 13.3037 (2) Å

  • α = 97.735 (1)°

  • β = 107.302 (1)°

  • γ = 94.232 (1)°

  • V = 1000.52 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 296 K

  • 0.41 × 0.28 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.550, Tmax = 0.722

  • 19351 measured reflections

  • 4901 independent reflections

  • 4238 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.05

  • 4901 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N20—H20A⋯N1 0.86 2.24 3.027 (3) 152
N20—H20B⋯S1i 0.86 2.70 3.5015 (19) 156
N30—H30A⋯N2 0.86 2.21 3.002 (3) 152
N30—H30B⋯S2ii 0.86 2.57 3.404 (2) 162
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic-inorganic hybrid supramolecular complexes of 1-, 2-, and 3-D frameworks has attracted great interest recently (Iwamoto, 1996; Batten & Robson, 1998), as they have useful properties, viz. electronic, magnetic, optical, catalytic, etc. (Braga et al., 1998). For designing novel multi-dimensional frameworks, we (Kim et al., 2001; Kim et al., 2008) and others (Cortes et al., 1997; Yun et al., 2004) have used the coordination properties of various pseudohalide ions and complementary organic ligands. Pseudo-halide ions, e.g. CN-, SCN-, N3-, are known to build up 1-, 2- and 3-D structures by bridging metal centers (Vrieze & Koten, 1987). The of use of complementary organic ligands, such as aliphatic and aromatic amines is also known to play an important role in stabilizing multi-dimensional structures. In particulae, aromatic heterocycles such as imidazole and thiazole derivatives represent an important class of ligands in coordination chemistry (Balch et al., 1993; Costes et al., 1991). However, frameworks of metal complexes containing thiazole derivatives have been considerably less investigated. Our research is focused on the development of novel supramolecular framework structures utilizing the terminal and bridging properties of pseudo-halide ions, and the coordination behaviour of thiazole derivatives as complementary organic ligands (Suh et al., 2005, 2007). Herein, we present the synthesis and structure determination of the title complex, (I), with 2-aminobenzothiazole, Fig. 1.

Related literature top

For related literature on organic–inorganic hybrid supramolecular complexes, see: Batten & Robson (1998); Braga et al. (1998); Iwamoto (1996). For the use of pseudo-halides in the construction of supramolecular assemblies, see: Vrieze & Koten (1987); Cortes et al. (1997); Yun et al. (2004); Kim et al. (2001, 2008). For the coordination chemistry of imidazole and thiazole derivatives, see: Balch et al. (1993); Costes et al. (1991); Suh et al. (2005, 2007).

Experimental top

A water-methanolic (1:1) solution (20 ml) of potassium thiocyanate (2 mmol, 0.19 g) was added to a water-methanolic (1:1) solution (20 ml) of Zn(NO3)2.6H2O (1 mmol, 0.30 g). To this mixture, a water-methanolic (1:1) solution (20 ml) of 2-aminobenzothiazole (3 mmol, 0.45 g) was introduced, with stirring. The small amount of precipitates formed from the resulting solution were filtered off. The filtered solution was allowed to stand at room temperature. After a few days silver blocks were obtained. Elemental analysis found: C 40.41, H 2.67, N 18.11, S 26.59, Zn 13.60%; C16H12N6S4Zn requires: C 39.87, H 2.51, N 17.44, S 26.61, Zn 13.56%.

Refinement top

Positional parameters for the H atoms were calculated geometrically and constrained to ride on their attached atoms with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Bis(2-aminobenzothiazole-κN1)bis(thiocyanato-κN)zinc(II) top
Crystal data top
[Zn(NCS)2(C7H6N2S)2]Z = 2
Mr = 481.93F(000) = 488
Triclinic, P1Dx = 1.600 Mg m3
Dm = 1.59 Mg m3
Dm measured by flotation method
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4379 (1) ÅCell parameters from 9879 reflections
b = 9.4900 (1) Åθ = 2.5–28.1°
c = 13.3037 (2) ŵ = 1.66 mm1
α = 97.735 (1)°T = 296 K
β = 107.302 (1)°Block, silver
γ = 94.232 (1)°0.41 × 0.28 × 0.21 mm
V = 1000.52 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4901 independent reflections
Radiation source: fine-focus sealed tube4238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.550, Tmax = 0.722k = 1212
19351 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.369P]
where P = (Fo2 + 2Fc2)/3
4901 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Zn(NCS)2(C7H6N2S)2]γ = 94.232 (1)°
Mr = 481.93V = 1000.52 (2) Å3
Triclinic, P1Z = 2
a = 8.4379 (1) ÅMo Kα radiation
b = 9.4900 (1) ŵ = 1.66 mm1
c = 13.3037 (2) ÅT = 296 K
α = 97.735 (1)°0.41 × 0.28 × 0.21 mm
β = 107.302 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4901 independent reflections
Absorption correction: multi scan
(SADABS; Bruker, 2001)
4238 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.722Rint = 0.028
19351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.05Δρmax = 0.63 e Å3
4901 reflectionsΔρmin = 0.60 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.33334 (3)0.77964 (2)0.744958 (17)0.04196 (8)
S10.11604 (9)0.33772 (8)0.79681 (7)0.0884 (3)
C10.2117 (3)0.4851 (2)0.78611 (17)0.0523 (5)
N10.2812 (2)0.5896 (2)0.77780 (16)0.0613 (5)
S20.15336 (6)0.99430 (6)0.72597 (4)0.05379 (13)
C20.0121 (2)0.9254 (2)0.72033 (14)0.0431 (4)
N20.1339 (2)0.8781 (2)0.71756 (15)0.0588 (5)
S110.80227 (6)0.93870 (7)1.02664 (4)0.05593 (14)
C120.6289 (2)0.8274 (2)0.94188 (15)0.0439 (4)
N130.52630 (18)0.88677 (16)0.86862 (12)0.0395 (3)
C140.5820 (2)1.0329 (2)0.87934 (15)0.0412 (4)
C150.5032 (3)1.1285 (2)0.81714 (17)0.0511 (5)
H15A0.40311.09900.76250.061*
C160.5770 (3)1.2695 (2)0.8383 (2)0.0650 (6)
H16A0.52601.33490.79680.078*
C170.7250 (4)1.3142 (3)0.9199 (2)0.0728 (7)
H17A0.77211.40910.93220.087*
C180.8037 (3)1.2210 (3)0.9829 (2)0.0666 (6)
H18A0.90291.25151.03810.080*
C190.7310 (2)1.0799 (2)0.96185 (16)0.0495 (5)
N200.6088 (2)0.6899 (2)0.95306 (15)0.0591 (5)
H20A0.52400.63340.91060.071*
H20B0.68070.65781.00270.071*
S210.44673 (11)0.79917 (8)0.43370 (5)0.0764 (2)
C220.3431 (3)0.8192 (3)0.52843 (18)0.0590 (5)
N230.4067 (2)0.76110 (17)0.61379 (13)0.0458 (4)
C240.5455 (2)0.6922 (2)0.60632 (16)0.0468 (4)
C250.6394 (3)0.6195 (2)0.6816 (2)0.0583 (5)
H25A0.61280.61180.74380.070*
C260.7738 (3)0.5585 (3)0.6631 (3)0.0790 (8)
H26A0.83790.50880.71310.095*
C270.8139 (4)0.5707 (4)0.5707 (3)0.0895 (10)
H27A0.90550.52960.55990.107*
C280.7221 (4)0.6415 (3)0.4953 (3)0.0801 (8)
H28A0.74950.64890.43330.096*
C290.5858 (3)0.7027 (2)0.51366 (18)0.0580 (5)
N300.2092 (3)0.8888 (3)0.51170 (19)0.0971 (9)
H30A0.15750.89840.55860.116*
H30B0.17410.92430.45400.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.03854 (12)0.04733 (13)0.03935 (13)0.00595 (9)0.01096 (9)0.00711 (9)
S10.0599 (4)0.0743 (4)0.1198 (6)0.0084 (3)0.0023 (4)0.0550 (4)
C10.0425 (10)0.0574 (11)0.0531 (12)0.0052 (9)0.0048 (8)0.0190 (9)
N10.0610 (11)0.0563 (10)0.0661 (12)0.0027 (9)0.0190 (9)0.0155 (9)
S20.0406 (2)0.0668 (3)0.0544 (3)0.0127 (2)0.0152 (2)0.0070 (2)
C20.0407 (9)0.0515 (10)0.0338 (9)0.0031 (8)0.0079 (7)0.0053 (7)
N20.0448 (9)0.0739 (12)0.0547 (11)0.0161 (8)0.0120 (8)0.0036 (9)
S110.0412 (3)0.0730 (3)0.0447 (3)0.0075 (2)0.0039 (2)0.0007 (2)
C120.0407 (9)0.0573 (11)0.0344 (9)0.0084 (8)0.0123 (7)0.0076 (8)
N130.0372 (7)0.0487 (8)0.0335 (8)0.0062 (6)0.0115 (6)0.0077 (6)
C140.0392 (9)0.0484 (9)0.0403 (10)0.0048 (7)0.0211 (7)0.0025 (7)
C150.0553 (12)0.0523 (11)0.0507 (12)0.0096 (9)0.0230 (9)0.0094 (9)
C160.0811 (17)0.0519 (12)0.0756 (16)0.0145 (11)0.0418 (14)0.0134 (11)
C170.0772 (17)0.0495 (12)0.097 (2)0.0037 (12)0.0448 (15)0.0048 (13)
C180.0529 (12)0.0634 (14)0.0774 (17)0.0043 (11)0.0255 (12)0.0152 (12)
C190.0417 (10)0.0582 (11)0.0483 (11)0.0033 (8)0.0195 (8)0.0032 (9)
N200.0611 (11)0.0609 (10)0.0503 (11)0.0088 (9)0.0041 (8)0.0213 (8)
S210.1069 (6)0.0854 (4)0.0525 (4)0.0214 (4)0.0440 (4)0.0158 (3)
C220.0754 (15)0.0659 (13)0.0435 (12)0.0224 (11)0.0250 (10)0.0133 (10)
N230.0508 (9)0.0488 (8)0.0403 (9)0.0130 (7)0.0164 (7)0.0072 (7)
C240.0438 (10)0.0428 (9)0.0506 (11)0.0013 (8)0.0161 (8)0.0041 (8)
C250.0482 (11)0.0591 (12)0.0647 (14)0.0136 (9)0.0143 (10)0.0034 (10)
C260.0526 (13)0.0797 (17)0.097 (2)0.0223 (12)0.0147 (13)0.0010 (15)
C270.0536 (15)0.097 (2)0.112 (3)0.0153 (14)0.0316 (16)0.0227 (19)
C280.0709 (17)0.0879 (18)0.0829 (19)0.0006 (14)0.0436 (15)0.0206 (15)
C290.0603 (13)0.0569 (12)0.0562 (13)0.0002 (10)0.0271 (10)0.0092 (10)
N300.116 (2)0.142 (2)0.0636 (15)0.0820 (19)0.0421 (14)0.0543 (15)
Geometric parameters (Å, º) top
Zn—N21.9482 (18)C18—C191.387 (3)
Zn—N11.9610 (18)C18—H18A0.9300
Zn—N232.0089 (16)N20—H20A0.8600
Zn—N132.0257 (15)N20—H20B0.8600
S1—C11.607 (2)S21—C221.733 (2)
C1—N11.150 (3)S21—C291.739 (3)
S2—C21.602 (2)C22—N231.315 (3)
C2—N21.160 (3)C22—N301.328 (3)
S11—C121.731 (2)N23—C241.405 (2)
S11—C191.738 (2)C24—C251.379 (3)
C12—N131.317 (2)C24—C291.387 (3)
C12—N201.337 (3)C25—C261.381 (3)
N13—C141.406 (2)C25—H25A0.9300
C14—C151.383 (3)C26—C271.386 (5)
C14—C191.396 (3)C26—H26A0.9300
C15—C161.389 (3)C27—C281.361 (5)
C15—H15A0.9300C27—H27A0.9300
C16—C171.382 (4)C28—C291.396 (3)
C16—H16A0.9300C28—H28A0.9300
C17—C181.372 (4)N30—H30A0.8600
C17—H17A0.9300N30—H30B0.8600
N2—Zn—N1109.42 (9)C18—C19—S11128.30 (19)
N2—Zn—N23108.31 (8)C14—C19—S11110.17 (15)
N1—Zn—N23110.24 (8)C12—N20—H20A120.0
N2—Zn—N13112.85 (7)C12—N20—H20B120.0
N1—Zn—N13108.15 (7)H20A—N20—H20B120.0
N23—Zn—N13107.85 (6)C22—S21—C2989.42 (11)
N1—C1—S1179.1 (2)N23—C22—N30124.7 (2)
C1—N1—Zn163.33 (19)N23—C22—S21115.26 (17)
N2—C2—S2178.5 (2)N30—C22—S21119.99 (18)
C2—N2—Zn165.33 (19)C22—N23—C24111.00 (17)
C12—S11—C1989.28 (10)C22—N23—Zn126.00 (15)
N13—C12—N20124.72 (18)C24—N23—Zn122.79 (13)
N13—C12—S11115.89 (15)C25—C24—C29120.2 (2)
N20—C12—S11119.39 (15)C25—C24—N23125.73 (19)
C12—N13—C14110.52 (16)C29—C24—N23114.10 (19)
C12—N13—Zn125.21 (13)C24—C25—C26118.8 (2)
C14—N13—Zn123.77 (12)C24—C25—H25A120.6
C15—C14—C19119.82 (18)C26—C25—H25A120.6
C15—C14—N13126.06 (18)C25—C26—C27120.5 (3)
C19—C14—N13114.12 (17)C25—C26—H26A119.7
C14—C15—C16118.4 (2)C27—C26—H26A119.7
C14—C15—H15A120.8C28—C27—C26121.4 (3)
C16—C15—H15A120.8C28—C27—H27A119.3
C17—C16—C15121.1 (2)C26—C27—H27A119.3
C17—C16—H16A119.5C27—C28—C29118.2 (3)
C15—C16—H16A119.5C27—C28—H28A120.9
C18—C17—C16121.2 (2)C29—C28—H28A120.9
C18—C17—H17A119.4C24—C29—C28120.9 (3)
C16—C17—H17A119.4C24—C29—S21110.20 (16)
C17—C18—C19118.0 (2)C28—C29—S21128.9 (2)
C17—C18—H18A121.0C22—N30—H30A120.0
C19—C18—H18A121.0C22—N30—H30B120.0
C18—C19—C14121.5 (2)H30A—N30—H30B120.0
N2—Zn—N1—C116.6 (7)N13—C14—C19—S110.15 (19)
N23—Zn—N1—C1102.4 (7)C12—S11—C19—C18179.7 (2)
N13—Zn—N1—C1139.9 (7)C12—S11—C19—C140.90 (14)
N1—Zn—N2—C244.1 (7)C29—S21—C22—N230.9 (2)
N23—Zn—N2—C2164.3 (7)C29—S21—C22—N30178.9 (2)
N13—Zn—N2—C276.3 (7)N30—C22—N23—C24178.5 (2)
C19—S11—C12—N131.57 (15)S21—C22—N23—C241.3 (3)
C19—S11—C12—N20179.42 (17)N30—C22—N23—Zn6.6 (4)
N20—C12—N13—C14179.31 (18)S21—C22—N23—Zn173.67 (10)
S11—C12—N13—C141.7 (2)N2—Zn—N23—C227.0 (2)
N20—C12—N13—Zn8.6 (3)N1—Zn—N23—C22126.68 (19)
S11—C12—N13—Zn170.34 (8)N13—Zn—N23—C22115.45 (19)
N2—Zn—N13—C12139.20 (15)N2—Zn—N23—C24178.63 (14)
N1—Zn—N13—C1218.00 (17)N1—Zn—N23—C2458.93 (16)
N23—Zn—N13—C12101.21 (15)N13—Zn—N23—C2458.94 (15)
N2—Zn—N13—C1449.73 (15)C22—N23—C24—C25179.3 (2)
N1—Zn—N13—C14170.92 (13)Zn—N23—C24—C255.6 (3)
N23—Zn—N13—C1469.87 (14)C22—N23—C24—C291.1 (3)
C12—N13—C14—C15178.80 (18)Zn—N23—C24—C29174.00 (14)
Zn—N13—C14—C159.0 (2)C29—C24—C25—C260.3 (3)
C12—N13—C14—C191.0 (2)N23—C24—C25—C26179.3 (2)
Zn—N13—C14—C19171.23 (12)C24—C25—C26—C270.3 (4)
C19—C14—C15—C160.8 (3)C25—C26—C27—C280.6 (5)
N13—C14—C15—C16179.38 (18)C26—C27—C28—C290.3 (4)
C14—C15—C16—C170.5 (3)C25—C24—C29—C280.6 (3)
C15—C16—C17—C180.2 (4)N23—C24—C29—C28179.0 (2)
C16—C17—C18—C190.5 (4)C25—C24—C29—S21179.88 (16)
C17—C18—C19—C140.1 (3)N23—C24—C29—S210.5 (2)
C17—C18—C19—S11179.27 (18)C27—C28—C29—C240.3 (4)
C15—C14—C19—C180.6 (3)C27—C28—C29—S21179.8 (2)
N13—C14—C19—C18179.61 (18)C22—S21—C29—C240.17 (17)
C15—C14—C19—S11179.95 (14)C22—S21—C29—C28179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H20A···N10.862.243.027 (3)152
N20—H20B···S1i0.862.703.5015 (19)156
N30—H30A···N20.862.213.002 (3)152
N30—H30B···S2ii0.862.573.404 (2)162
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C7H6N2S)2]
Mr481.93
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.4379 (1), 9.4900 (1), 13.3037 (2)
α, β, γ (°)97.735 (1), 107.302 (1), 94.232 (1)
V3)1000.52 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.41 × 0.28 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.550, 0.722
No. of measured, independent and
observed [I > 2σ(I)] reflections
19351, 4901, 4238
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.05
No. of reflections4901
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.60

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H20A···N10.862.243.027 (3)152
N20—H20B···S1i0.862.703.5015 (19)156
N30—H30A···N20.862.213.002 (3)152
N30—H30B···S2ii0.862.573.404 (2)162
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+2, z+1.
 

References

First citationBalch, A. L., Noll, B. C. & Safari, N. (1993). Inorg. Chem. 32, 2901–2905.  CSD CrossRef CAS Web of Science Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCortes, R., Urtiaga, M. K., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1997). Inorg. Chem. 36, 5016–5021.  CSD CrossRef CAS Web of Science Google Scholar
First citationCostes, J. P., Dahan, F. & Laurent, J. P. (1991). Inorg. Chem. 30, 1887–1892.  CSD CrossRef CAS Web of Science Google Scholar
First citationIwamoto, T. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, pp. 643–690. Oxford: Pergamon Press.  Google Scholar
First citationKim, C. H., Moon, H. S. & Lee, S. G. (2008). Anal. Sci. Technol. 21, 562–568.  Google Scholar
First citationKim, I. H., Suh, S. W., Kim, C. H., Kim, J. G. & Suh, I. H. (2001). Korean J. Crystallogr. 12, 207–211.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol. 18, 391–395.  Google Scholar
First citationSuh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVrieze, K. & Koten, G. V. (1987). Comprehensive Coordination Chemistry, Vol. 2, pp. 225–244. Oxford: Pergamon Press.  Google Scholar
First citationYun, S. S., Moon, H. S., Kim, C. H. & Lee, S. G. (2004). J. Coord. Chem. 57, 321–327.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds