organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­droxy­imino-N′-[1-(2-pyrid­yl)ethyl­­idene]propanohydrazide

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01033 Kyiv, Ukraine, and bSCT `Institute for Syngle Crystals', National Acadamy of Science of Ukraine, Lenina Ave. 60, 61001 Kharkiv, Ukraine
*Correspondence e-mail: ysmoroz@yahoo.com

(Received 3 August 2009; accepted 21 August 2009; online 26 August 2009)

The title compound, C10H12N4O2, features an intra­molecular N—H⋯N hydrogen bond formed between the imine NH and oxime N atoms. The oxime group and the amide C=O bond are anti to each other. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds into supra­molecular zigzag chains along the c axis.

Related literature

For oxime and pyridine derivatives, see: Sliva et al. (1997b[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287-294.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Krämer et al. (2002[Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307-1314.]); Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]). For 2-hydroxy­imino­propanamide and amide derivatives of 2-hydroxy­imino­propanoic acid, see: Onindo et al. (1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]); Duda et al. (1997[Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853-3859.]); Sliva et al. (1997a[Sliva, T. Yu., Duda, A. M., Glowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273-276.]). For the preparation and characterization of 3d-metal complexes with 2-hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propano­hydra­zone, see: Moroz et al. (2008a[Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008a). Inorg. Chem. 47, 5656-5665.],b[Moroz, Y. S., Sliva, T. Yu., Kulon, K., Kozłowski, H. & Fritsky, I. O. (2008b). Acta Cryst. E64, m353-m354.]). For typical bond lengths, see: Bürgi & Dunitz (1994[Bürgi, H.-D. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2., Weinhiem: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N4O2

  • Mr = 220.24

  • Monoclinic, C c

  • a = 4.4498 (11) Å

  • b = 22.833 (7) Å

  • c = 10.955 (3) Å

  • β = 97.47 (2)°

  • V = 1103.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction KM-4/Xcalibur diffractometer with a Sapphire3 detector

  • Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.986, Tmax = 0.995

  • 3899 measured reflections

  • 958 independent reflections

  • 793 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.097

  • S = 1.10

  • 958 reflections

  • 155 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2OA⋯O1i 0.84 (5) 1.88 (5) 2.709 (4) 170 (5)
N3—H3NA⋯N4 0.87 (4) 2.30 (4) 2.640 (4) 104 (3)
Symmetry code: (i) [x+1, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our on-going work, we would like to report the structure of the title compound (I), Fig. 1, which comprises several groups capable of forming hydrogen bonding interactions: oxime, hydrazone, azomethine, and pyridine. Molecule (I) has been shown previously to form mono- and tetra-nuclear grid-like complexes with 3d-metals (Moroz et al., 2008a,b).

The C—N and N—O bond lengths in the oxime group, i.e. 1.285 (5) and 1.388 (4) Å, respectively, adopt typical values (Sliva et al., 1997b; Mokhir et al., 2002). The oxime group is in an anti- position with respect to the amide group, an observation consistent with the structures of 2-hydroxyiminopropanamide and other amide derivatives of 2-hydroxyiminopropanoic acid (Onindo et al., 1995; Duda et al., 1997; Sliva et al., 1997a). This conformation is stabilised by an N3—H···N4 intramolecular interaction, Table 1. The CH3C(=NOH)C(O)NH fragment deviates from planarity as seen in a twist between the oxime and amide groups about the C8—C9 bond; the O1-C8-C9-N4 torsion angle is -164.0 (4)°. The flattened geometry of molecule results in the appearance of short intramolecular contacts H10···O2 is 2.34 Å and H7C···H3N 2.28 Å. The C—N bond distance in the azomethine group is 1.277 (4) Å, and the N2—C6—C1 angle is 115.7 (3)°. The pyridine-N atom is situated in an anti- position with respect to the azomethine group. Finally, the C—N and C—C bond lengths within the pyridine ring are normal for 2-substituted pyridine derivatives (Krämer et al., 2002; Kovbasyuk et al., 2004).

In the crystal packing molecules are united by O2—H···O1 hydrogen bonds, Table 1, where oximic-oxygen atom acts as donor and the hydrazone-oxygen atom acts as an acceptor (Fig. 2). This interaction probably results in the elongation of the C8—O1 bond to 1.233 (4) Å as compared with its mean value 1.210 Å (Bürgi & Dunitz, 1994). Due to the presence of the O2—H···O1 hydrogen bonds, zig-zag supramolecular chains are formed along the c axis.

Related literature top

For oxime and pyridine derivatives, see: Sliva et al. (1997b); Mokhir et al. (2002); Krämer et al. (2002); Kovbasyuk et al. (2004). For 2-hydroxyiminopropanamide and amide derivatives of 2-hydroxyiminopropanoic acid, see: Onindo et al. (1995); Duda et al. (1997); Sliva et al. (1997a). For the preparation and characterization of 3d-metal complexes with 2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazone, see: Moroz et al. (2008a,b). For typical bond lengths, see: Bürgi & Dunitz (1994).

Experimental top

Compound (I) was prepared according to the reported procedure (Moroz et al., 2008b).

Refinement top

All H atoms were observed in a difference Fourier map, but C—H hydrogen atoms were placed at calculated positions and treated as riding on their parent atoms [C—H = 0.93-0.96 Å and Uiso(H) = 1.2- 1.5Ueq(C)]. The N—H and O—H hydrogen atoms were fully refined; O-H = 0.84 (5) Å and N-H = 0.87 (4) Å. In the absence of significant anomalous scattering effects, 766 Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with displacement ellipsoids shown at the 40% probability level and atom labelling.
[Figure 2] Fig. 2. A packing diagram for (I) viewed in projection down the a axis. Hydrogen bonds are indicated by dashed lines; H atoms are omitted for clarity.
2-Hydroxyimino-N'-[1-(2-pyridyl)ethylidene]propanohydrazide top
Crystal data top
C10H12N4O2F(000) = 464
Mr = 220.24Dx = 1.325 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5860 reflections
a = 4.4498 (11) Åθ = 3.6–32.0°
b = 22.833 (7) ŵ = 0.10 mm1
c = 10.955 (3) ÅT = 293 K
β = 97.47 (2)°Needles, white
V = 1103.7 (5) Å30.15 × 0.10 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction KM-4/Xcalibur
diffractometer with a Sapphire3 detector
958 independent reflections
Radiation source: Enhance (Mo) X-ray Source793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 16.1827 pixels mm-1θmax = 25.0°, θmin = 3.6°
ϕ scans and ω scans with κ offseth = 55
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2006)
k = 2526
Tmin = 0.986, Tmax = 0.995l = 1212
3899 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.2337P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
958 reflectionsΔρmax = 0.13 e Å3
155 parametersΔρmin = 0.16 e Å3
2 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H12N4O2V = 1103.7 (5) Å3
Mr = 220.24Z = 4
Monoclinic, CcMo Kα radiation
a = 4.4498 (11) ŵ = 0.10 mm1
b = 22.833 (7) ÅT = 293 K
c = 10.955 (3) Å0.15 × 0.10 × 0.05 mm
β = 97.47 (2)°
Data collection top
Oxford Diffraction KM-4/Xcalibur
diffractometer with a Sapphire3 detector
958 independent reflections
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2006)
793 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.995Rint = 0.059
3899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.13 e Å3
958 reflectionsΔρmin = 0.16 e Å3
155 parametersAbsolute structure: nd
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4385 (8)0.29326 (15)0.1660 (4)0.0601 (10)
N20.0269 (7)0.41668 (13)0.0900 (3)0.0411 (8)
N30.1840 (7)0.45542 (13)0.1431 (3)0.0418 (8)
N40.6418 (7)0.52027 (13)0.2434 (3)0.0402 (8)
O10.1686 (7)0.50958 (13)0.0301 (3)0.0624 (9)
O20.8544 (6)0.55993 (14)0.2979 (3)0.0559 (8)
C10.3464 (9)0.33542 (16)0.0958 (4)0.0439 (10)
C20.4547 (11)0.3399 (2)0.0272 (4)0.0624 (13)
H20.38910.37010.07430.075*
C30.6589 (11)0.2998 (2)0.0793 (5)0.0763 (16)
H30.73100.30190.16280.092*
C40.7553 (11)0.2573 (2)0.0090 (5)0.0706 (15)
H40.89620.22960.04230.085*
C50.6403 (13)0.2558 (2)0.1128 (6)0.0750 (15)
H50.70850.22650.16140.090*
C60.1176 (8)0.37676 (17)0.1582 (3)0.0425 (10)
C70.0053 (11)0.3692 (2)0.2922 (4)0.0607 (13)
H7A0.04160.40440.33570.091*
H7B0.20820.36110.30220.091*
H7C0.11030.33720.32460.091*
C80.2702 (8)0.50043 (16)0.0783 (3)0.0405 (9)
C90.4981 (9)0.54051 (15)0.1430 (3)0.0404 (10)
C100.5493 (13)0.59805 (19)0.0889 (5)0.0755 (16)
H10A0.36340.61190.04400.113*
H10B0.70010.59450.03420.113*
H10C0.61770.62530.15340.113*
H3NA0.239 (8)0.4565 (15)0.222 (4)0.035 (10)*
H2OA0.932 (11)0.5383 (19)0.355 (5)0.061 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.063 (2)0.045 (2)0.069 (3)0.013 (2)0.0028 (19)0.0015 (19)
N20.0370 (18)0.0396 (16)0.0439 (18)0.0042 (15)0.0056 (14)0.0027 (15)
N30.0436 (19)0.0436 (19)0.0353 (19)0.0083 (16)0.0062 (15)0.0009 (14)
N40.0361 (18)0.0403 (17)0.0408 (18)0.0022 (15)0.0078 (14)0.0055 (14)
O10.071 (2)0.0603 (18)0.0478 (17)0.0208 (16)0.0238 (15)0.0105 (14)
O20.0555 (18)0.0570 (18)0.0478 (17)0.0045 (15)0.0220 (13)0.0013 (14)
C10.036 (2)0.041 (2)0.054 (2)0.0004 (18)0.0032 (19)0.0047 (18)
C20.068 (3)0.071 (3)0.046 (2)0.025 (3)0.002 (2)0.007 (2)
C30.072 (4)0.089 (4)0.063 (3)0.026 (3)0.007 (3)0.020 (3)
C40.051 (3)0.058 (3)0.100 (4)0.020 (2)0.000 (3)0.028 (3)
C50.078 (4)0.052 (3)0.093 (4)0.028 (3)0.004 (3)0.003 (3)
C60.045 (3)0.038 (2)0.043 (2)0.0000 (18)0.0022 (19)0.0043 (17)
C70.075 (3)0.061 (3)0.044 (2)0.017 (2)0.005 (2)0.0039 (19)
C80.040 (2)0.038 (2)0.039 (2)0.0029 (18)0.0085 (17)0.0004 (17)
C90.047 (3)0.0368 (19)0.0342 (19)0.0021 (18)0.0066 (17)0.0001 (16)
C100.087 (4)0.059 (3)0.069 (3)0.024 (3)0.034 (3)0.015 (3)
Geometric parameters (Å, º) top
N1—C51.320 (6)C3—C41.345 (7)
N1—C11.330 (5)C3—H30.9300
N2—C61.277 (4)C4—C51.366 (8)
N2—N31.364 (4)C4—H40.9300
N3—C81.334 (5)C5—H50.9300
N3—H3NA0.87 (4)C6—C71.498 (5)
N4—C91.285 (5)C7—H7A0.9600
N4—O21.388 (4)C7—H7B0.9600
O1—C81.233 (4)C7—H7C0.9600
O2—H2OA0.84 (5)C8—C91.477 (5)
C1—C21.374 (6)C9—C101.471 (5)
C1—C61.488 (5)C10—H10A0.9600
C2—C31.362 (6)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C5—N1—C1117.2 (4)N2—C6—C1115.7 (3)
C6—N2—N3117.7 (3)N2—C6—C7124.4 (4)
C8—N3—N2120.1 (3)C1—C6—C7119.9 (4)
C8—N3—H3NA116 (2)C6—C7—H7A109.5
N2—N3—H3NA122 (2)C6—C7—H7B109.5
C9—N4—O2111.7 (3)H7A—C7—H7B109.5
N4—O2—H2OA97 (3)C6—C7—H7C109.5
N1—C1—C2121.7 (4)H7A—C7—H7C109.5
N1—C1—C6115.9 (3)H7B—C7—H7C109.5
C2—C1—C6122.4 (4)O1—C8—N3123.3 (4)
C3—C2—C1119.4 (5)O1—C8—C9120.0 (3)
C3—C2—H2120.3N3—C8—C9116.7 (3)
C1—C2—H2120.3N4—C9—C10125.5 (4)
C4—C3—C2119.3 (5)N4—C9—C8115.0 (3)
C4—C3—H3120.3C10—C9—C8119.5 (3)
C2—C3—H3120.3C9—C10—H10A109.5
C3—C4—C5118.1 (4)C9—C10—H10B109.5
C3—C4—H4121.0H10A—C10—H10B109.5
C5—C4—H4121.0C9—C10—H10C109.5
N1—C5—C4124.2 (5)H10A—C10—H10C109.5
N1—C5—H5117.9H10B—C10—H10C109.5
C4—C5—H5117.9
C6—N2—N3—C8175.2 (3)C2—C1—C6—N20.3 (6)
C5—N1—C1—C20.3 (6)N1—C1—C6—C70.2 (5)
C5—N1—C1—C6179.7 (4)C2—C1—C6—C7179.2 (4)
N1—C1—C2—C30.9 (7)N2—N3—C8—O10.1 (6)
C6—C1—C2—C3178.5 (4)N2—N3—C8—C9179.6 (3)
C1—C2—C3—C41.3 (8)O2—N4—C9—C100.7 (6)
C2—C3—C4—C50.7 (8)O2—N4—C9—C8179.1 (3)
C1—N1—C5—C40.9 (8)O1—C8—C9—N4164.0 (4)
C3—C4—C5—N10.5 (9)N3—C8—C9—N416.3 (5)
N3—N2—C6—C1179.7 (3)O1—C8—C9—C1014.5 (6)
N3—N2—C6—C70.8 (5)N3—C8—C9—C10165.2 (4)
N1—C1—C6—N2179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2OA···O1i0.84 (5)1.88 (5)2.709 (4)170 (5)
N3—H3NA···N40.87 (4)2.30 (4)2.640 (4)104 (3)
Symmetry code: (i) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12N4O2
Mr220.24
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)4.4498 (11), 22.833 (7), 10.955 (3)
β (°) 97.47 (2)
V3)1103.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerOxford Diffraction KM-4/Xcalibur
diffractometer with a Sapphire3 detector
Absorption correctionMulti-scan
(CrysAlis CCD; Oxford Diffraction, 2006)
Tmin, Tmax0.986, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
3899, 958, 793
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.097, 1.10
No. of reflections958
No. of parameters155
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.16
Absolute structureNd

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2OA···O1i0.84 (5)1.88 (5)2.709 (4)170 (5)
N3—H3NA···N40.87 (4)2.30 (4)2.640 (4)104 (3)
Symmetry code: (i) x+1, y+1, z+1/2.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).

References

First citationBürgi, H.-D. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2., Weinhiem: VCH.  Google Scholar
First citationDuda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationKrämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.  Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008a). Inorg. Chem. 47, 5656–5665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoroz, Y. S., Sliva, T. Yu., Kulon, K., Kozłowski, H. & Fritsky, I. O. (2008b). Acta Cryst. E64, m353–m354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOnindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Glowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds