metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(3-carb­­oxy-5-nitro­benzoato-κO1)copper(II)]-μ-1,3-di-4-pyridylpropane-κ2N:N′]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 7 August 2009; accepted 12 August 2009; online 19 August 2009)

In the title compound, [Cu(C8H4NO6)2(C13H14N2)]n, the square-planar coordinated CuII ion lies on an inversion centre and is coordinated by two protonated 5-nitro­isophthalate ligands. The CuII ions are linked into a one-dimensional coordination polymer by tethering 1,3-di-4-pyridylpropane ligands, whose central methyl­ene C atoms are situated on twofold rotation axes. The chains are oriented parallel to the c axis, and stack into a supra­molecular three-dimensional structure through O—H⋯O hydrogen-bonding inter­actions.

Related literature

For some recent divalent copper dicarboxyl­ate coordination polymers containing 1,3-di-4-pyridylpropane, see: Wang et al. (2009[Wang, G. R., Li, Z. G., Jia, H. Q., Hu, N. H. & Xu, J. W. (2009). CrystEngComm, 11, 292-297.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H4NO6)2(C13H14N2)]

  • Mr = 682.05

  • Monoclinic, C 2/c

  • a = 25.2976 (8) Å

  • b = 5.3702 (2) Å

  • c = 21.3122 (7) Å

  • β = 115.865 (2)°

  • V = 2605.29 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 173 K

  • 0.22 × 0.22 × 0.11 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.821, Tmax = 0.905

  • 10349 measured reflections

  • 2401 independent reflections

  • 2087 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.08

  • 2401 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.85 (4) 1.86 (2) 2.668 (3) 158 (4)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), was prepared by the hydrothermal reaction of copper nitrate, 5-nitroisophthalic acid (nip) and 1,3-di-4-pyridylpropame (dpp). Its asymmetric unit contains a copper atom on an inversion centre, one singly protonated nip (Hnip) ligand, and one-half of a dpp ligand, whose central methylene carbon atom is situated on a 2-fold axis. Operation of the inversion centre at Cu reveals a square planar coordination environment with trans O atom donors from protonated nip ligands and trans N donors from two dpp ligands (Fig. 1). The Hnip ligands are bound to Cu in a simple monodentate fashion via an O atom belonging to the non-protonated carboxylate terminus.

Operation of the 2-fold rotation axes indicates that dpp ligands connect neighboring Cu atoms into a one-dimensional [Cu(Hnip)2(dpp)]n coordination polymer chain (Fig. 2), which is oriented parallel to the c-axis. The methylene groups within the dpp ligands adopt a gauche-gauche conformation, providing a Cu···Cu separation of 10.656 (4) Å. Neighboring chains aggregate by hydrogen-bonding mechanisms (Table 1) involving the hydroxyl groups of the protonated Hnip ligands and unligated O atoms of the monodentate Hnip carboxylate groups, thus forming the three-dimensional supramolecular structure (Fig. 3).

Related literature top

For some recent divalent copper dicarboxylate coordination polymers containing 1,3-di-4-pyridylpropane, see: Wang et al. (2009).

Experimental top

All starting materials were obtained commercially. A mixture of copper nitrate trihydrate (90 mg, 0.37 mmol), 5-nitroisophthalic acid (79 mg, 0.37 mmol), 1,3-di-4-pyridylpropane (73 mg, 0.37 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr Acid Digestion bomb, which was then heated under autogenous pressure at 363 K for 24 h. Blue blocks of (I) were obtained along with a light-blue amorphous powder.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 - 0.99 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atom bound to the protonated carboxylate O atom was found in a difference Fourier map, restrained with O—H = 0.89 Å, and refined with Uiso = 1.2Ueq(O).

The maximum and minimum residual electron density peaks of 1.10 and -0.31 e Å-3, respectively, were located 1.08 Å and 0.68 Å from the C14 and C17 atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of (I), showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: dark blue Cu, light blue N, orange O, black C. Symmetry codes: (i) -x, -y, -z (ii) -x, y, -z + 1/2.
[Figure 2] Fig. 2. A view of the coordination polymer chain motif in (I).
[Figure 3] Fig. 3. Stacking diagram for (I), viewed down the b axis. Hydrogen bonding contacts are indicated as dashed bars.
catena-Poly[[bis(3-carboxy-5-nitrobenzoato-κO1)copper(II)]-µ- 1,3-di-4-pyridylpropane-κ2N:N'] top
Crystal data top
[Cu(C8H4NO6)2(C13H14N2)]F(000) = 1396
Mr = 682.05Dx = 1.739 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10349 reflections
a = 25.2976 (8) Åθ = 1.8–25.4°
b = 5.3702 (2) ŵ = 0.92 mm1
c = 21.3122 (7) ÅT = 173 K
β = 115.865 (2)°Block, blue
V = 2605.29 (15) Å30.22 × 0.22 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2401 independent reflections
Radiation source: fine-focus sealed tube2087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 25.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3028
Tmin = 0.821, Tmax = 0.905k = 66
10349 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0535P)2 + 8.8582P]
where P = (Fo2 + 2Fc2)/3
2401 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 1.10 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
[Cu(C8H4NO6)2(C13H14N2)]V = 2605.29 (15) Å3
Mr = 682.05Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.2976 (8) ŵ = 0.92 mm1
b = 5.3702 (2) ÅT = 173 K
c = 21.3122 (7) Å0.22 × 0.22 × 0.11 mm
β = 115.865 (2)°
Data collection top
Bruker APEXII
diffractometer
2401 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2087 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.905Rint = 0.032
10349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.10 e Å3
2401 reflectionsΔρmin = 0.31 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.00000.00000.01865 (18)
O10.07835 (8)0.1413 (4)0.04676 (10)0.0209 (5)
O20.11395 (9)0.1584 (4)0.00388 (11)0.0273 (5)
O30.31946 (10)0.1103 (5)0.04659 (13)0.0332 (6)
H3A0.3473 (12)0.154 (7)0.0365 (19)0.040*
O40.37815 (10)0.2063 (5)0.10363 (13)0.0374 (6)
O50.30010 (10)0.7828 (4)0.22279 (12)0.0325 (6)
O60.20769 (10)0.7829 (4)0.19827 (11)0.0279 (5)
N10.01902 (10)0.2420 (5)0.07966 (12)0.0207 (5)
N20.25020 (11)0.6974 (5)0.19249 (12)0.0222 (6)
C10.17873 (12)0.1639 (6)0.07286 (14)0.0180 (6)
C20.22615 (12)0.0740 (6)0.06286 (14)0.0178 (6)
H20.22130.06940.03480.021*
C30.28055 (12)0.1922 (6)0.09360 (14)0.0189 (6)
C40.28838 (12)0.3992 (6)0.13549 (14)0.0187 (6)
H40.32520.48230.15620.022*
C50.24125 (13)0.4817 (5)0.14633 (14)0.0187 (6)
C60.18627 (12)0.3712 (6)0.11546 (14)0.0178 (6)
H60.15450.43490.12310.021*
C70.11985 (12)0.0359 (6)0.03800 (14)0.0190 (6)
C80.33175 (12)0.0985 (6)0.08267 (15)0.0230 (7)
C110.06442 (14)0.2091 (7)0.14297 (17)0.0299 (7)
H110.08970.07090.14920.036*
C120.07641 (14)0.3641 (7)0.19921 (16)0.0300 (8)
H120.10880.33050.24280.036*
C130.04037 (13)0.5719 (6)0.19170 (16)0.0255 (7)
C140.00464 (13)0.6150 (6)0.12500 (16)0.0270 (7)
H140.02900.75790.11640.032*
C150.01359 (13)0.4504 (6)0.07206 (16)0.0265 (7)
H150.04450.48440.02740.032*
C160.05196 (14)0.7391 (7)0.25328 (16)0.0297 (7)
H16A0.08410.85490.25860.036*
H16B0.06620.63440.29570.036*
C170.00000.8934 (9)0.25000.0293 (10)
H17A0.01371.00230.20840.035*0.50
H17B0.01371.00230.29160.035*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0127 (3)0.0208 (3)0.0223 (3)0.0016 (2)0.0075 (2)0.0009 (2)
O10.0152 (9)0.0220 (12)0.0241 (10)0.0019 (9)0.0072 (8)0.0005 (9)
O20.0225 (10)0.0269 (13)0.0338 (12)0.0092 (10)0.0135 (9)0.0115 (10)
O30.0267 (12)0.0337 (14)0.0471 (14)0.0025 (11)0.0235 (11)0.0139 (12)
O40.0198 (11)0.0438 (15)0.0491 (14)0.0036 (11)0.0153 (10)0.0089 (12)
O50.0296 (12)0.0306 (14)0.0346 (12)0.0131 (10)0.0116 (10)0.0145 (11)
O60.0330 (12)0.0236 (12)0.0294 (11)0.0015 (10)0.0158 (10)0.0040 (10)
N10.0171 (12)0.0233 (14)0.0213 (12)0.0037 (11)0.0079 (10)0.0006 (11)
N20.0278 (14)0.0191 (14)0.0196 (12)0.0036 (11)0.0103 (11)0.0000 (10)
C10.0160 (13)0.0193 (15)0.0174 (13)0.0025 (12)0.0061 (11)0.0026 (12)
C20.0197 (14)0.0177 (15)0.0157 (13)0.0016 (12)0.0075 (11)0.0016 (11)
C30.0177 (14)0.0212 (16)0.0172 (13)0.0008 (12)0.0071 (11)0.0022 (12)
C40.0152 (13)0.0203 (15)0.0173 (13)0.0032 (12)0.0039 (11)0.0017 (12)
C50.0223 (14)0.0176 (15)0.0139 (13)0.0015 (12)0.0059 (11)0.0002 (12)
C60.0161 (13)0.0194 (16)0.0173 (13)0.0022 (12)0.0066 (11)0.0038 (12)
C70.0169 (14)0.0216 (17)0.0158 (13)0.0018 (12)0.0046 (11)0.0030 (12)
C80.0175 (14)0.0279 (17)0.0222 (15)0.0001 (13)0.0072 (12)0.0001 (13)
C110.0274 (16)0.0300 (19)0.0332 (17)0.0041 (14)0.0142 (14)0.0028 (15)
C120.0304 (17)0.032 (2)0.0257 (16)0.0019 (15)0.0105 (13)0.0022 (14)
C130.0227 (15)0.0277 (18)0.0283 (16)0.0034 (13)0.0129 (13)0.0012 (14)
C140.0239 (15)0.0255 (18)0.0327 (17)0.0002 (14)0.0133 (13)0.0007 (14)
C150.0217 (15)0.0339 (19)0.0236 (15)0.0000 (14)0.0098 (13)0.0031 (14)
C160.0268 (17)0.034 (2)0.0261 (16)0.0030 (15)0.0092 (13)0.0004 (14)
C170.033 (2)0.030 (3)0.025 (2)0.0000.0131 (19)0.000
Geometric parameters (Å, º) top
Cu1—O11.9427 (19)C3—C81.500 (4)
Cu1—O1i1.9427 (19)C4—C51.383 (4)
Cu1—N1i2.022 (2)C4—H40.9500
Cu1—N12.022 (2)C5—C61.386 (4)
O1—C71.276 (3)C6—H60.9500
O2—C71.243 (4)C11—C121.380 (5)
O3—C81.318 (4)C11—H110.9500
O3—H3A0.85 (4)C12—C131.405 (5)
O4—C81.206 (4)C12—H120.9500
O5—N21.229 (3)C13—C141.399 (4)
O6—N21.224 (3)C13—C161.510 (5)
N1—C111.349 (4)C14—C151.372 (5)
N1—C151.358 (4)C14—H140.9500
N2—C51.472 (4)C15—H150.9500
C1—C21.393 (4)C16—C171.529 (4)
C1—C61.396 (4)C16—H16A0.9900
C1—C71.509 (4)C16—H16B0.9900
C2—C31.392 (4)C17—C16ii1.530 (4)
C2—H20.9500C17—H17A0.9900
C3—C41.385 (4)C17—H17B0.9900
O1—Cu1—O1i180.00 (11)O2—C7—C1120.7 (3)
O1—Cu1—N1i89.75 (9)O1—C7—C1115.1 (3)
O1i—Cu1—N1i90.25 (9)O4—C8—O3124.6 (3)
O1—Cu1—N190.25 (9)O4—C8—C3123.3 (3)
O1i—Cu1—N189.75 (9)O3—C8—C3112.1 (2)
N1i—Cu1—N1180.0N1—C11—C12124.0 (3)
C7—O1—Cu1118.18 (18)N1—C11—H11118.0
C8—O3—H3A112 (3)C12—C11—H11118.0
C11—N1—C15115.8 (3)C11—C12—C13119.6 (3)
C11—N1—Cu1122.9 (2)C11—C12—H12120.2
C15—N1—Cu1121.3 (2)C13—C12—H12120.2
O6—N2—O5123.6 (3)C14—C13—C12116.5 (3)
O6—N2—C5118.5 (2)C14—C13—C16123.2 (3)
O5—N2—C5117.9 (2)C12—C13—C16120.2 (3)
C2—C1—C6119.6 (3)C15—C14—C13119.9 (3)
C2—C1—C7119.9 (3)C15—C14—H14120.1
C6—C1—C7120.6 (2)C13—C14—H14120.1
C3—C2—C1120.7 (3)N1—C15—C14124.0 (3)
C3—C2—H2119.7N1—C15—H15118.0
C1—C2—H2119.7C14—C15—H15118.0
C4—C3—C2120.2 (3)C13—C16—C17116.5 (2)
C4—C3—C8118.6 (3)C13—C16—H16A108.2
C2—C3—C8121.2 (3)C17—C16—H16A108.2
C5—C4—C3118.3 (3)C13—C16—H16B108.2
C5—C4—H4120.9C17—C16—H16B108.2
C3—C4—H4120.9H16A—C16—H16B107.3
C4—C5—C6122.9 (3)C16—C17—C16ii114.4 (4)
C4—C5—N2118.1 (3)C16—C17—H17A108.7
C6—C5—N2118.9 (3)C16ii—C17—H17A108.7
C5—C6—C1118.3 (3)C16—C17—H17B108.7
C5—C6—H6120.9C16ii—C17—H17B108.7
C1—C6—H6120.9H17A—C17—H17B107.6
O2—C7—O1124.2 (3)
N1i—Cu1—O1—C794.8 (2)Cu1—O1—C7—C1176.93 (17)
N1—Cu1—O1—C785.2 (2)C2—C1—C7—O24.5 (4)
O1—Cu1—N1—C1117.8 (2)C6—C1—C7—O2175.1 (3)
O1i—Cu1—N1—C11162.2 (2)C2—C1—C7—O1175.8 (2)
O1—Cu1—N1—C15161.9 (2)C6—C1—C7—O14.6 (4)
O1i—Cu1—N1—C1518.1 (2)C4—C3—C8—O46.5 (5)
C6—C1—C2—C31.5 (4)C2—C3—C8—O4173.9 (3)
C7—C1—C2—C3178.9 (3)C4—C3—C8—O3174.8 (3)
C1—C2—C3—C41.0 (4)C2—C3—C8—O34.8 (4)
C1—C2—C3—C8179.4 (3)C15—N1—C11—C124.0 (5)
C2—C3—C4—C50.8 (4)Cu1—N1—C11—C12176.3 (2)
C8—C3—C4—C5178.9 (3)N1—C11—C12—C130.7 (5)
C3—C4—C5—C62.1 (4)C11—C12—C13—C143.1 (5)
C3—C4—C5—N2178.3 (2)C11—C12—C13—C16178.3 (3)
O6—N2—C5—C4174.7 (3)C12—C13—C14—C153.4 (5)
O5—N2—C5—C44.8 (4)C16—C13—C14—C15178.0 (3)
O6—N2—C5—C65.0 (4)C11—N1—C15—C143.6 (4)
O5—N2—C5—C6175.5 (3)Cu1—N1—C15—C14176.7 (2)
C4—C5—C6—C11.5 (4)C13—C14—C15—N10.1 (5)
N2—C5—C6—C1178.8 (2)C14—C13—C16—C1724.3 (5)
C2—C1—C6—C50.3 (4)C12—C13—C16—C17157.2 (3)
C7—C1—C6—C5179.9 (2)C13—C16—C17—C16ii62.0 (2)
Cu1—O1—C7—O23.4 (4)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2iii0.85 (4)1.86 (2)2.668 (3)158 (4)
Symmetry code: (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H4NO6)2(C13H14N2)]
Mr682.05
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)25.2976 (8), 5.3702 (2), 21.3122 (7)
β (°) 115.865 (2)
V3)2605.29 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.22 × 0.22 × 0.11
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.821, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
10349, 2401, 2087
Rint0.032
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.08
No. of reflections2401
No. of parameters213
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.10, 0.31

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.85 (4)1.86 (2)2.668 (3)158 (4)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G. R., Li, Z. G., Jia, H. Q., Hu, N. H. & Xu, J. W. (2009). CrystEngComm, 11, 292–297.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds