organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-2-(4-iodo­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 22 July 2009; accepted 4 August 2009; online 8 August 2009)

In the title compound, C15H10FIO2S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane through the benzofuran fragment. The 4-iodo­phenyl ring is rotated out of the benzofuran plane by a dihedral angle of 39.4 (1)°. The crystal structure is stabilized by an inter­molecular C—H⋯O hydrogen bond and an I⋯O halogen bond [3.055 (2) Å]. The crystal structure also exhibits an inter­molecular C—H⋯π inter­action between the methyl H atom and the 4-iodo­phenyl ring of an adjacent benzofuran mol­ecule, and aromatic ππ inter­actions between the benzene rings of neighbouring benzofuran systems [centroid–centroid distance = 3.558 (3) Å].

Related literature

For the crystal structures of similar 2-(4-iodo­phen­yl)-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1061.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1088.]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Twyman & Allsop (1999[Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383-9384.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10FIO2S

  • Mr = 400.19

  • Triclinic, [P \overline 1]

  • a = 8.8989 (5) Å

  • b = 9.2370 (5) Å

  • c = 10.3357 (5) Å

  • α = 105.579 (1)°

  • β = 115.302 (1)°

  • γ = 101.671 (1)°

  • V = 689.08 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 273 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.])) Tmin = 0.650, Tmax = 0.784

  • 5972 measured reflections

  • 2957 independent reflections

  • 2689 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.09

  • 2957 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O2i 0.96 2.42 3.238 (3) 143
C15—H15BCg3ii 0.96 2.91 3.554 (3) 126
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z. Cg3 is the centroid of the C9–C14 benzene ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The benzofuran ring systems have received considerable attention in the field of their biological and pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999). This work is related to our communications on the synthesis and structures of 2-(4-iodophenyl)-3-methylsulfinyl-1-benzofuran analogues, viz. 2-(4-iodophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2008a) and 2-(4-iodophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2008b). Here we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.010 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the planes of the benzofuran and the 4-iodophenyl rings is 39.4 (1)°. The crystal packing (Fig. 2) is stabilized by an intermolecular C–H···O hydrogen bond and an I···O halogen bond (Politzer et al., 2007); the first between the methyl H atom and the SO unit, with a C15–H15C···O2i distance of 3.238 (3) Å (Table 1), the second between the iodine atom and the oxygen of the SO unit, i.e. an I···O distance of 3.055 (2) Å and a nearly linear C12–I···O2iii angle of 165.26 (8)°. The crystal packing (Fig. 3) also exhibits an intermolecular C–H···π interaction between the methyl H atom and the 4-bromophenyl ring of an adjacent molecule, with a C15–H15B···Cg3ii (Table 1; Cg3 is the centroid of the C9-C14 benzene ring). The further stability comes from aromatic ππ interaction between the furan and the benzene rings of the adjacent molecules, with a Cg1···Cg2iv distance of 3.558 (3) Å (Fig. 3; Cg1 and Cg2 are the centroids of the C1/C2/C7/O2/C8 furan ring and the C2-C7 benzene ring, respectively).

Related literature top

For the crystal structures of similar 2-(4-iodophenyl)-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2008a,b). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For a review of halogen bonding, see: Politzer et al. (2007). Cg3 is the centroid of the C9–C14 benzene ring.

Experimental top

The 77% 3-chloroperoxybenzoic acid (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 5-fluoro-2-(4-iodophenyl)-3-methylsulfanyl-1-benzofuran (310 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexan-ethyl acetate, 1 : 2 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 482-483 K; Rf = 0.71 (hexane-ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5 Ueq(C) for methyl H atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O and C–I···O interactions (dotted lines) in the crystal structure of title compound. [Symmetry code: (i) - x + 2, - y + 2, - z + 1; (iii) x, y - 1, z - 1.]
[Figure 3] Fig. 3. C–H···π and ππ interactions (dotted lines) in the crystal structure of title compound. Cg denotes the ring centroids. [Symmetry code: (ii) - x + 1, - y + 1, - z; (iv) - x + 1, - y + 1, - z + 1.]
5-Fluoro-2-(4-iodophenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C15H10FIO2SZ = 2
Mr = 400.19F(000) = 388
Triclinic, P1Dx = 1.929 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8989 (5) ÅCell parameters from 4508 reflections
b = 9.2370 (5) Åθ = 2.4–27.4°
c = 10.3357 (5) ŵ = 2.48 mm1
α = 105.579 (1)°T = 273 K
β = 115.302 (1)°Block, colorless
γ = 101.671 (1)°0.25 × 0.15 × 0.10 mm
V = 689.08 (6) Å3
Data collection top
Bruker SMART CCD
diffractometer
2957 independent reflections
Radiation source: fine-focus sealed tube2689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.4°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000))
k = 1111
Tmin = 0.650, Tmax = 0.784l = 1313
5972 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.055H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0248P)2 + 0.3594P]
where P = (Fo2 + 2Fc2)/3
2957 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C15H10FIO2Sγ = 101.671 (1)°
Mr = 400.19V = 689.08 (6) Å3
Triclinic, P1Z = 2
a = 8.8989 (5) ÅMo Kα radiation
b = 9.2370 (5) ŵ = 2.48 mm1
c = 10.3357 (5) ÅT = 273 K
α = 105.579 (1)°0.25 × 0.15 × 0.10 mm
β = 115.302 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2957 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000))
2689 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.784Rint = 0.017
5972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.09Δρmax = 0.68 e Å3
2957 reflectionsΔρmin = 0.55 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.87629 (2)0.09755 (2)0.19147 (2)0.03012 (7)
S0.81950 (8)0.77048 (7)0.37848 (7)0.02442 (13)
F0.2583 (2)0.7621 (2)0.5294 (2)0.0428 (4)
O10.4384 (2)0.3431 (2)0.1980 (2)0.0233 (4)
O20.8909 (3)0.8594 (2)0.5482 (2)0.0356 (4)
C10.6269 (3)0.6020 (3)0.3101 (3)0.0219 (5)
C20.4906 (3)0.5987 (3)0.3510 (3)0.0222 (5)
C30.4518 (3)0.7126 (3)0.4387 (3)0.0264 (5)
H30.52420.82140.49040.032*
C40.3009 (4)0.6553 (3)0.4443 (3)0.0292 (6)
C50.1882 (4)0.4941 (4)0.3707 (3)0.0310 (6)
H50.08710.46340.37830.037*
C60.2275 (3)0.3798 (3)0.2861 (3)0.0269 (5)
H60.15620.27090.23670.032*
C70.3788 (3)0.4369 (3)0.2791 (3)0.0226 (5)
C80.5907 (3)0.4480 (3)0.2194 (3)0.0220 (5)
C90.6706 (3)0.3730 (3)0.1356 (3)0.0215 (5)
C100.6734 (3)0.2185 (3)0.1215 (3)0.0254 (5)
H100.63230.16710.17240.030*
C110.7365 (3)0.1415 (3)0.0331 (3)0.0262 (5)
H110.73770.03890.02420.031*
C120.7985 (3)0.2194 (3)0.0429 (3)0.0225 (5)
C130.7989 (3)0.3733 (3)0.0283 (3)0.0225 (5)
H130.84100.42470.07860.027*
C140.7364 (3)0.4501 (3)0.0616 (3)0.0225 (5)
H140.73840.55390.07250.027*
C150.7072 (4)0.8817 (3)0.2787 (3)0.0356 (6)
H15A0.62140.89980.30760.053*
H15B0.64750.82120.16790.053*
H15C0.79290.98350.30710.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.03872 (11)0.03141 (10)0.02933 (10)0.01738 (8)0.02328 (8)0.01132 (8)
S0.0221 (3)0.0233 (3)0.0206 (3)0.0048 (2)0.0092 (3)0.0043 (2)
F0.0485 (11)0.0531 (11)0.0389 (10)0.0314 (9)0.0292 (9)0.0139 (8)
O10.0238 (9)0.0208 (8)0.0252 (9)0.0074 (7)0.0141 (7)0.0070 (7)
O20.0340 (11)0.0350 (11)0.0230 (9)0.0030 (9)0.0127 (8)0.0015 (8)
C10.0206 (12)0.0228 (12)0.0181 (11)0.0074 (10)0.0076 (10)0.0065 (10)
C20.0212 (12)0.0263 (12)0.0165 (11)0.0101 (10)0.0071 (10)0.0084 (10)
C30.0302 (13)0.0279 (13)0.0194 (12)0.0138 (11)0.0112 (11)0.0073 (10)
C40.0329 (14)0.0414 (15)0.0209 (12)0.0251 (13)0.0149 (11)0.0126 (12)
C50.0256 (13)0.0466 (16)0.0299 (14)0.0187 (12)0.0161 (12)0.0206 (13)
C60.0239 (13)0.0313 (14)0.0264 (13)0.0110 (11)0.0117 (11)0.0140 (11)
C70.0249 (12)0.0263 (12)0.0185 (11)0.0132 (10)0.0102 (10)0.0100 (10)
C80.0225 (12)0.0239 (12)0.0188 (11)0.0076 (10)0.0096 (10)0.0097 (10)
C90.0195 (12)0.0198 (11)0.0188 (11)0.0058 (9)0.0074 (10)0.0042 (9)
C100.0287 (13)0.0248 (12)0.0257 (13)0.0093 (11)0.0150 (11)0.0128 (11)
C110.0317 (14)0.0218 (12)0.0289 (13)0.0117 (11)0.0169 (11)0.0113 (11)
C120.0215 (12)0.0238 (12)0.0190 (11)0.0074 (10)0.0104 (10)0.0046 (10)
C130.0205 (12)0.0253 (12)0.0183 (11)0.0050 (10)0.0090 (10)0.0079 (10)
C140.0214 (12)0.0203 (11)0.0206 (12)0.0064 (10)0.0076 (10)0.0072 (10)
C150.0327 (15)0.0257 (14)0.0391 (16)0.0067 (12)0.0117 (13)0.0141 (12)
Geometric parameters (Å, º) top
I—C122.098 (2)C6—C71.383 (3)
I—O2i3.055 (2)C6—H60.9300
S—O21.489 (2)C8—C91.463 (3)
S—C11.776 (2)C9—C141.394 (3)
S—C151.794 (3)C9—C101.402 (3)
F—C41.364 (3)C10—C111.381 (4)
O1—C71.382 (3)C10—H100.9300
O1—C81.386 (3)C11—C121.398 (3)
C1—C81.359 (3)C11—H110.9300
C1—C21.443 (3)C12—C131.387 (3)
C2—C71.395 (3)C13—C141.387 (3)
C2—C31.396 (3)C13—H130.9300
C3—C41.373 (4)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.391 (4)C15—H15B0.9600
C5—C61.384 (4)C15—H15C0.9600
C5—H50.9300
C12—I—O2i165.26 (8)C1—C8—C9134.3 (2)
O2—S—C1106.61 (11)O1—C8—C9114.9 (2)
O2—S—C15107.29 (13)C14—C9—C10119.0 (2)
C1—S—C1597.37 (12)C14—C9—C8120.6 (2)
C7—O1—C8106.13 (18)C10—C9—C8120.3 (2)
C8—C1—C2107.4 (2)C11—C10—C9121.0 (2)
C8—C1—S125.10 (19)C11—C10—H10119.5
C2—C1—S127.23 (18)C9—C10—H10119.5
C7—C2—C3119.1 (2)C10—C11—C12119.2 (2)
C7—C2—C1105.1 (2)C10—C11—H11120.4
C3—C2—C1135.9 (2)C12—C11—H11120.4
C4—C3—C2116.3 (2)C13—C12—C11120.5 (2)
C4—C3—H3121.9C13—C12—I119.62 (17)
C2—C3—H3121.9C11—C12—I119.79 (18)
F—C4—C3118.3 (2)C14—C13—C12119.9 (2)
F—C4—C5117.1 (2)C14—C13—H13120.1
C3—C4—C5124.5 (2)C12—C13—H13120.1
C6—C5—C4119.6 (2)C13—C14—C9120.5 (2)
C6—C5—H5120.2C13—C14—H14119.8
C4—C5—H5120.2C9—C14—H14119.8
C7—C6—C5116.2 (2)S—C15—H15A109.5
C7—C6—H6121.9S—C15—H15B109.5
C5—C6—H6121.9H15A—C15—H15B109.5
O1—C7—C6125.1 (2)S—C15—H15C109.5
O1—C7—C2110.6 (2)H15A—C15—H15C109.5
C6—C7—C2124.3 (2)H15B—C15—H15C109.5
C1—C8—O1110.7 (2)
O2—S—C1—C8132.7 (2)C2—C1—C8—O10.0 (3)
C15—S—C1—C8116.8 (2)S—C1—C8—O1174.65 (16)
O2—S—C1—C240.9 (2)C2—C1—C8—C9176.3 (3)
C15—S—C1—C269.7 (2)S—C1—C8—C99.1 (4)
C8—C1—C2—C70.0 (3)C7—O1—C8—C10.0 (3)
S—C1—C2—C7174.51 (18)C7—O1—C8—C9177.1 (2)
C8—C1—C2—C3179.9 (3)C1—C8—C9—C1437.3 (4)
S—C1—C2—C35.6 (4)O1—C8—C9—C14138.8 (2)
C7—C2—C3—C41.4 (3)C1—C8—C9—C10146.1 (3)
C1—C2—C3—C4178.5 (3)O1—C8—C9—C1037.8 (3)
C2—C3—C4—F179.6 (2)C14—C9—C10—C111.4 (4)
C2—C3—C4—C50.5 (4)C8—C9—C10—C11175.2 (2)
F—C4—C5—C6178.4 (2)C9—C10—C11—C120.1 (4)
C3—C4—C5—C60.7 (4)C10—C11—C12—C130.8 (4)
C4—C5—C6—C71.0 (4)C10—C11—C12—I175.29 (19)
C8—O1—C7—C6178.8 (2)O2i—I—C12—C13117.3 (3)
C8—O1—C7—C20.0 (2)O2i—I—C12—C1158.8 (4)
C5—C6—C7—O1178.5 (2)C11—C12—C13—C140.4 (4)
C5—C6—C7—C20.1 (4)I—C12—C13—C14175.70 (18)
C3—C2—C7—O1179.9 (2)C12—C13—C14—C91.0 (4)
C1—C2—C7—O10.0 (3)C10—C9—C14—C131.8 (4)
C3—C2—C7—C61.1 (4)C8—C9—C14—C13174.8 (2)
C1—C2—C7—C6178.8 (2)
Symmetry code: (i) x, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2ii0.962.423.238 (3)143
C15—H15B···Cg3iii0.962.913.554 (3)126
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H10FIO2S
Mr400.19
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.8989 (5), 9.2370 (5), 10.3357 (5)
α, β, γ (°)105.579 (1), 115.302 (1), 101.671 (1)
V3)689.08 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000))
Tmin, Tmax0.650, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
5972, 2957, 2689
Rint0.017
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.09
No. of reflections2957
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.55

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.962.423.238 (3)143.1
C15—H15B···Cg3ii0.962.913.554 (3)125.7
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds