organic compounds
2,2,6,6-Tetrakis(biphenyl-2-yl)-4,4,8,8-tetramethylcyclotetrasiloxane
aDepartment of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and bBijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: a.l.spek@uu.nl
The title compound, [–Si(C12H9)2OSi(CH3)2O–]2, was obtained unintentionally as the product of an attempted crystallization of caesium bis(biphenyl-2,2′-diyl)fluorosilicate from dimethylformamide. In the crystal, the molecule is located on an inversion center and the siloxane ring adopts a twist-chair conformation with the two dimethyl-substituted Si atoms lying 0.7081 (5) Å out of the plane defined by the two bis(biphenyl-2-yl)-substituted Si atoms and the four O atoms. In each Si(C12H9)2 unit, the orientation of one terminal phenyl ring relative to the phenylene ring of the other biphenyl moiety suggests a parallel displaced π–π stacking interaction [centroid distance = 4.2377 (11) Å and dihedral angle = 15.40 (9)°].
Related literature
For general background to stable compounds of pentavalent, anionic silicon bearing five organic substituents, see: Couzijn et al. (2004, 2006, 2009); Deerenberg et al. (2002); de Keijzer et al. (1997). For related structures, see: Malinovskii et al. (2007); Steinfink et al. (1955); Hensen et al. (1997). For puckering analysis,, see: Evans & Boeyens (1989). Bis(biphenyl-2,2′-diyl)silane was synthesized using a slight modification of a literature procedure (Gilman & Gorsich, 1958).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 1999); cell HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 and SORTAV (Blessing, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: manual editing of SHELXL output.
Supporting information
10.1107/S1600536809031961/vm2002sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809031961/vm2002Isup2.hkl
General procedures: dimethylformamide (DMF) was distilled from phenylzinc iodide and stored in a glovebox on 3Å molecular sieves. Commercial caesium fluoride was dried in vacuo at > 373 K. Bis(biphenyl-2,2'-diyl)silane was synthesized from 1,1'-dibromobiphenyl and tetrachlorosilane using a slight modification of a literature procedure (Gilman & Gorsich, 1958).
The title compound was obtained as follows. In the purified nitrogen atmosphere of a glovebox, a flame-dried Schlenk tube was charged with caesium fluoride (71.45 mg, 470 µmol) and bis(biphenyl-2,2'-diyl)silane (73.95 mg, 222 µmol). Anhydrous DMF (3 ml) was added and the mixture was stirred in the glovebox for 2 days. 19F and 1H NMR indicated almost quantitative conversion to the desired caesium bis(biphenyl-2,2'-diyl)fluorosilicate (Couzijn et al., 2009). The clear colorless supernate was filtered through glass wool in the glovebox and evaporated on a Schlenk line to afford the crude fluorosilicate as a white solid. Recrystallization of the fluorosilicate from DMF was initially performed by cooling the Schlenk tube in a freezer outside the glovebox. After repeated attempts, colorless blocks were obtained that were shown by X-ray analysis to be the title compound. Recrystallizations of the fluorosilicate using Young-type glassware (closed with a greaseless Teflon tap) in the freezer of a glovebox invariably afforded an amorphous solid.
All H atoms were located in difference Fourier maps and refined using a riding model (including
of the methyl substituents), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).Data collection: COLLECT (Nonius, 1999); cell
HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: manual editing of SHELXL output.Fig. 1. Displacement ellipsoid plot of [–Si(C12H9)2OSi(CH3)2O–]2 with ellipsoids drawn at the 50% probability level. The parallel displaced π-π stacking interaction is indicated by a dashed line between the ring centroids. Hydrogen atoms are omitted for clarity. Symmetry operation i: 1 - x, 1 - y, 1 - z. |
C52H48O4Si4 | F(000) = 1792 |
Mr = 849.26 | Dx = 1.236 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 88729 reflections |
a = 17.3418 (2) Å | θ = 1.0–25.7° |
b = 14.6488 (2) Å | µ = 0.18 mm−1 |
c = 17.9584 (2) Å | T = 110 K |
V = 4562.09 (10) Å3 | Needle, colourless |
Z = 4 | 0.30 × 0.12 × 0.03 mm |
Nonius KappaCCD diffractometer | 3247 reflections with I > 2σ(I) |
Radiation source: rotating anode | Rint = 0.081 |
Graphite monochromator | θmax = 25.7°, θmin = 2.1° |
ϕ and ω scans | h = −21→21 |
68467 measured reflections | k = −17→17 |
4317 independent reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0428P)2 + 1.7858P] where P = (Fo2 + 2Fc2)/3 |
4317 reflections | (Δ/σ)max = 0.001 |
273 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C52H48O4Si4 | V = 4562.09 (10) Å3 |
Mr = 849.26 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 17.3418 (2) Å | µ = 0.18 mm−1 |
b = 14.6488 (2) Å | T = 110 K |
c = 17.9584 (2) Å | 0.30 × 0.12 × 0.03 mm |
Nonius KappaCCD diffractometer | 3247 reflections with I > 2σ(I) |
68467 measured reflections | Rint = 0.081 |
4317 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.26 e Å−3 |
4317 reflections | Δρmin = −0.33 e Å−3 |
273 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.42728 (3) | 0.37257 (3) | 0.49618 (3) | 0.02364 (14) | |
Si2 | 0.41400 (3) | 0.57131 (3) | 0.44096 (3) | 0.02422 (14) | |
O1 | 0.42038 (7) | 0.45998 (8) | 0.44053 (6) | 0.0257 (3) | |
O2 | 0.49862 (7) | 0.38739 (8) | 0.55394 (6) | 0.0272 (3) | |
C1 | 0.35711 (12) | 0.60943 (14) | 0.52232 (11) | 0.0382 (5) | |
H1A | 0.3064 | 0.5798 | 0.5215 | 0.057* | |
H1B | 0.3505 | 0.6758 | 0.5203 | 0.057* | |
H1C | 0.3843 | 0.5928 | 0.5682 | 0.057* | |
C2 | 0.37276 (12) | 0.60687 (14) | 0.35079 (11) | 0.0367 (5) | |
H2A | 0.4062 | 0.5858 | 0.3103 | 0.055* | |
H2B | 0.3689 | 0.6736 | 0.3492 | 0.055* | |
H2C | 0.3213 | 0.5801 | 0.3450 | 0.055* | |
C11 | 0.45192 (10) | 0.27253 (12) | 0.43560 (9) | 0.0243 (4) | |
C21 | 0.46918 (11) | 0.28754 (13) | 0.36038 (10) | 0.0298 (4) | |
H21 | 0.4646 | 0.3475 | 0.3408 | 0.036* | |
C31 | 0.49264 (11) | 0.21768 (13) | 0.31368 (10) | 0.0332 (5) | |
H31 | 0.5034 | 0.2298 | 0.2628 | 0.040* | |
C41 | 0.50025 (12) | 0.13027 (13) | 0.34161 (11) | 0.0329 (5) | |
H41 | 0.5165 | 0.0820 | 0.3100 | 0.039* | |
C51 | 0.48408 (11) | 0.11334 (13) | 0.41570 (10) | 0.0305 (4) | |
H51 | 0.4901 | 0.0533 | 0.4347 | 0.037* | |
C61 | 0.45917 (10) | 0.18265 (12) | 0.46293 (10) | 0.0240 (4) | |
C71 | 0.43948 (10) | 0.15854 (11) | 0.54194 (10) | 0.0252 (4) | |
C81 | 0.36294 (11) | 0.14336 (12) | 0.56199 (10) | 0.0307 (4) | |
H81 | 0.3233 | 0.1526 | 0.5263 | 0.037* | |
C91 | 0.34381 (12) | 0.11508 (13) | 0.63306 (11) | 0.0347 (5) | |
H91 | 0.2914 | 0.1045 | 0.6457 | 0.042* | |
C101 | 0.40081 (13) | 0.10219 (13) | 0.68579 (11) | 0.0358 (5) | |
H101 | 0.3877 | 0.0827 | 0.7346 | 0.043* | |
C111 | 0.47717 (12) | 0.11785 (13) | 0.66701 (10) | 0.0342 (5) | |
H111 | 0.5165 | 0.1096 | 0.7032 | 0.041* | |
C121 | 0.49649 (11) | 0.14550 (12) | 0.59550 (10) | 0.0300 (4) | |
H121 | 0.5490 | 0.1556 | 0.5830 | 0.036* | |
C12 | 0.33957 (11) | 0.36475 (12) | 0.55627 (10) | 0.0264 (4) | |
C22 | 0.35201 (12) | 0.35934 (12) | 0.63354 (10) | 0.0319 (5) | |
H22 | 0.4034 | 0.3554 | 0.6517 | 0.038* | |
C32 | 0.29145 (13) | 0.35950 (13) | 0.68412 (11) | 0.0386 (5) | |
H32 | 0.3015 | 0.3561 | 0.7360 | 0.046* | |
C42 | 0.21658 (13) | 0.36468 (15) | 0.65844 (12) | 0.0433 (5) | |
H42 | 0.1749 | 0.3641 | 0.6927 | 0.052* | |
C52 | 0.20213 (12) | 0.37074 (14) | 0.58287 (11) | 0.0388 (5) | |
H52 | 0.1504 | 0.3745 | 0.5658 | 0.047* | |
C62 | 0.26242 (11) | 0.37139 (12) | 0.53110 (10) | 0.0298 (4) | |
C72 | 0.24184 (11) | 0.38291 (13) | 0.45090 (11) | 0.0299 (4) | |
C82 | 0.26624 (11) | 0.32206 (13) | 0.39587 (10) | 0.0328 (5) | |
H82 | 0.2966 | 0.2707 | 0.4094 | 0.039* | |
C92 | 0.24684 (12) | 0.33543 (15) | 0.32168 (11) | 0.0392 (5) | |
H92 | 0.2643 | 0.2936 | 0.2850 | 0.047* | |
C102 | 0.20206 (12) | 0.40966 (15) | 0.30091 (11) | 0.0399 (5) | |
H102 | 0.1891 | 0.4190 | 0.2501 | 0.048* | |
C112 | 0.17661 (12) | 0.46966 (15) | 0.35464 (11) | 0.0392 (5) | |
H112 | 0.1457 | 0.5205 | 0.3409 | 0.047* | |
C122 | 0.19584 (11) | 0.45615 (14) | 0.42866 (11) | 0.0346 (5) | |
H122 | 0.1773 | 0.4977 | 0.4651 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0279 (3) | 0.0196 (3) | 0.0235 (3) | −0.0010 (2) | 0.0023 (2) | −0.0001 (2) |
Si2 | 0.0271 (3) | 0.0214 (3) | 0.0241 (3) | 0.0024 (2) | 0.0005 (2) | 0.0006 (2) |
O1 | 0.0306 (7) | 0.0207 (6) | 0.0258 (6) | −0.0004 (5) | 0.0028 (5) | 0.0004 (5) |
O2 | 0.0308 (7) | 0.0240 (6) | 0.0266 (7) | −0.0015 (5) | 0.0002 (5) | 0.0014 (5) |
C1 | 0.0389 (12) | 0.0349 (11) | 0.0409 (12) | 0.0038 (9) | 0.0085 (9) | −0.0055 (9) |
C2 | 0.0380 (12) | 0.0349 (11) | 0.0370 (11) | −0.0011 (9) | −0.0074 (9) | 0.0067 (9) |
C11 | 0.0237 (9) | 0.0242 (9) | 0.0251 (9) | −0.0016 (8) | −0.0005 (7) | −0.0011 (7) |
C21 | 0.0359 (11) | 0.0253 (10) | 0.0282 (10) | 0.0007 (8) | 0.0037 (8) | 0.0018 (8) |
C31 | 0.0392 (12) | 0.0334 (11) | 0.0270 (10) | 0.0006 (9) | 0.0067 (8) | −0.0029 (8) |
C41 | 0.0392 (12) | 0.0278 (10) | 0.0317 (10) | 0.0028 (9) | 0.0079 (9) | −0.0063 (8) |
C51 | 0.0336 (11) | 0.0220 (9) | 0.0359 (11) | 0.0030 (8) | 0.0039 (9) | −0.0004 (8) |
C61 | 0.0214 (9) | 0.0242 (9) | 0.0263 (9) | −0.0010 (7) | 0.0000 (7) | 0.0001 (7) |
C71 | 0.0314 (10) | 0.0155 (8) | 0.0286 (10) | 0.0006 (7) | 0.0010 (8) | −0.0017 (7) |
C81 | 0.0306 (11) | 0.0295 (10) | 0.0321 (10) | −0.0019 (8) | −0.0002 (8) | −0.0003 (8) |
C91 | 0.0358 (12) | 0.0348 (11) | 0.0335 (11) | −0.0058 (9) | 0.0071 (9) | 0.0017 (9) |
C101 | 0.0553 (14) | 0.0257 (10) | 0.0264 (10) | 0.0006 (9) | 0.0074 (9) | 0.0003 (8) |
C111 | 0.0422 (12) | 0.0309 (11) | 0.0295 (11) | 0.0062 (9) | −0.0052 (9) | −0.0010 (8) |
C121 | 0.0299 (10) | 0.0267 (10) | 0.0335 (11) | 0.0039 (8) | 0.0000 (8) | −0.0023 (8) |
C12 | 0.0332 (10) | 0.0194 (9) | 0.0267 (9) | −0.0025 (8) | 0.0051 (8) | −0.0018 (7) |
C22 | 0.0390 (12) | 0.0257 (10) | 0.0309 (10) | −0.0029 (9) | 0.0045 (9) | 0.0001 (8) |
C32 | 0.0524 (14) | 0.0356 (12) | 0.0278 (10) | −0.0059 (10) | 0.0092 (10) | −0.0010 (9) |
C42 | 0.0449 (14) | 0.0489 (13) | 0.0361 (12) | −0.0058 (11) | 0.0183 (10) | −0.0042 (10) |
C52 | 0.0325 (12) | 0.0449 (13) | 0.0390 (12) | −0.0043 (9) | 0.0087 (9) | −0.0041 (10) |
C62 | 0.0349 (11) | 0.0239 (10) | 0.0304 (10) | −0.0051 (8) | 0.0064 (8) | −0.0041 (8) |
C72 | 0.0239 (10) | 0.0297 (10) | 0.0360 (10) | −0.0065 (8) | 0.0053 (8) | −0.0033 (8) |
C82 | 0.0298 (11) | 0.0332 (11) | 0.0354 (11) | −0.0032 (9) | 0.0027 (8) | −0.0048 (9) |
C92 | 0.0349 (12) | 0.0465 (13) | 0.0361 (11) | −0.0050 (10) | 0.0043 (9) | −0.0096 (10) |
C102 | 0.0331 (12) | 0.0549 (14) | 0.0318 (11) | −0.0042 (10) | 0.0011 (9) | 0.0018 (10) |
C112 | 0.0297 (11) | 0.0446 (13) | 0.0432 (12) | 0.0014 (9) | 0.0020 (9) | 0.0052 (10) |
C122 | 0.0282 (11) | 0.0372 (11) | 0.0386 (11) | −0.0029 (9) | 0.0065 (9) | −0.0047 (9) |
Si1—O1 | 1.6287 (12) | C91—C101 | 1.382 (3) |
Si1—O2 | 1.6290 (13) | C91—H91 | 0.9500 |
Si1—C12 | 1.8684 (19) | C101—C111 | 1.386 (3) |
Si1—C11 | 1.8746 (17) | C101—H101 | 0.9500 |
Si2—O2i | 1.6342 (13) | C111—C121 | 1.387 (3) |
Si2—O1 | 1.6347 (12) | C111—H111 | 0.9500 |
Si2—C2 | 1.8452 (19) | C121—H121 | 0.9500 |
Si2—C1 | 1.8494 (19) | C12—C22 | 1.407 (3) |
O2—Si2i | 1.6342 (13) | C12—C62 | 1.415 (3) |
C1—H1A | 0.9800 | C22—C32 | 1.388 (3) |
C1—H1B | 0.9800 | C22—H22 | 0.9500 |
C1—H1C | 0.9800 | C32—C42 | 1.380 (3) |
C2—H2A | 0.9800 | C32—H32 | 0.9500 |
C2—H2B | 0.9800 | C42—C52 | 1.383 (3) |
C2—H2C | 0.9800 | C42—H42 | 0.9500 |
C11—C21 | 1.401 (2) | C52—C62 | 1.399 (3) |
C11—C61 | 1.411 (2) | C52—H52 | 0.9500 |
C21—C31 | 1.384 (3) | C62—C72 | 1.493 (3) |
C21—H21 | 0.9500 | C72—C122 | 1.395 (3) |
C31—C41 | 1.381 (3) | C72—C82 | 1.396 (3) |
C31—H31 | 0.9500 | C82—C92 | 1.388 (3) |
C41—C51 | 1.382 (3) | C82—H82 | 0.9500 |
C41—H41 | 0.9500 | C92—C102 | 1.387 (3) |
C51—C61 | 1.392 (2) | C92—H92 | 0.9500 |
C51—H51 | 0.9500 | C102—C112 | 1.378 (3) |
C61—C71 | 1.501 (2) | C102—H102 | 0.9500 |
C71—C121 | 1.393 (3) | C112—C122 | 1.385 (3) |
C71—C81 | 1.393 (3) | C112—H112 | 0.9500 |
C81—C91 | 1.382 (3) | C122—H122 | 0.9500 |
C81—H81 | 0.9500 | ||
O1—Si1—O2 | 109.98 (7) | C71—C81—H81 | 119.5 |
O1—Si1—C12 | 110.05 (7) | C101—C91—C81 | 120.13 (19) |
O2—Si1—C12 | 105.00 (8) | C101—C91—H91 | 119.9 |
O1—Si1—C11 | 105.97 (7) | C81—C91—H91 | 119.9 |
O2—Si1—C11 | 107.49 (7) | C91—C101—C111 | 119.62 (18) |
C12—Si1—C11 | 118.22 (8) | C91—C101—H101 | 120.2 |
O2i—Si2—O1 | 107.88 (7) | C111—C101—H101 | 120.2 |
O2i—Si2—C2 | 107.71 (8) | C101—C111—C121 | 120.29 (18) |
O1—Si2—C2 | 107.68 (8) | C101—C111—H111 | 119.9 |
O2i—Si2—C1 | 109.78 (8) | C121—C111—H111 | 119.9 |
O1—Si2—C1 | 109.94 (8) | C111—C121—C71 | 120.53 (18) |
C2—Si2—C1 | 113.66 (10) | C111—C121—H121 | 119.7 |
Si1—O1—Si2 | 141.85 (8) | C71—C121—H121 | 119.7 |
Si1—O2—Si2i | 142.12 (8) | C22—C12—C62 | 117.63 (17) |
Si2—C1—H1A | 109.5 | C22—C12—Si1 | 116.64 (14) |
Si2—C1—H1B | 109.5 | C62—C12—Si1 | 125.51 (14) |
H1A—C1—H1B | 109.5 | C32—C22—C12 | 121.96 (19) |
Si2—C1—H1C | 109.5 | C32—C22—H22 | 119.0 |
H1A—C1—H1C | 109.5 | C12—C22—H22 | 119.0 |
H1B—C1—H1C | 109.5 | C42—C32—C22 | 119.55 (19) |
Si2—C2—H2A | 109.5 | C42—C32—H32 | 120.2 |
Si2—C2—H2B | 109.5 | C22—C32—H32 | 120.2 |
H2A—C2—H2B | 109.5 | C32—C42—C52 | 120.13 (19) |
Si2—C2—H2C | 109.5 | C32—C42—H42 | 119.9 |
H2A—C2—H2C | 109.5 | C52—C42—H42 | 119.9 |
H2B—C2—H2C | 109.5 | C42—C52—C62 | 121.1 (2) |
C21—C11—C61 | 117.57 (16) | C42—C52—H52 | 119.4 |
C21—C11—Si1 | 119.05 (13) | C62—C52—H52 | 119.4 |
C61—C11—Si1 | 123.23 (13) | C52—C62—C12 | 119.58 (18) |
C31—C21—C11 | 122.07 (17) | C52—C62—C72 | 117.58 (18) |
C31—C21—H21 | 119.0 | C12—C62—C72 | 122.79 (16) |
C11—C21—H21 | 119.0 | C122—C72—C82 | 117.48 (18) |
C41—C31—C21 | 119.56 (17) | C122—C72—C62 | 119.97 (17) |
C41—C31—H31 | 120.2 | C82—C72—C62 | 122.54 (17) |
C21—C31—H31 | 120.2 | C92—C82—C72 | 121.05 (19) |
C31—C41—C51 | 119.77 (17) | C92—C82—H82 | 119.5 |
C31—C41—H41 | 120.1 | C72—C82—H82 | 119.5 |
C51—C41—H41 | 120.1 | C102—C92—C82 | 120.29 (19) |
C41—C51—C61 | 121.25 (17) | C102—C92—H92 | 119.9 |
C41—C51—H51 | 119.4 | C82—C92—H92 | 119.9 |
C61—C51—H51 | 119.4 | C112—C102—C92 | 119.40 (19) |
C51—C61—C11 | 119.77 (16) | C112—C102—H102 | 120.3 |
C51—C61—C71 | 118.35 (16) | C92—C102—H102 | 120.3 |
C11—C61—C71 | 121.87 (15) | C102—C112—C122 | 120.3 (2) |
C121—C71—C81 | 118.42 (17) | C102—C112—H112 | 119.9 |
C121—C71—C61 | 121.58 (16) | C122—C112—H112 | 119.9 |
C81—C71—C61 | 119.90 (16) | C112—C122—C72 | 121.49 (19) |
C91—C81—C71 | 121.01 (18) | C112—C122—H122 | 119.3 |
C91—C81—H81 | 119.5 | C72—C122—H122 | 119.3 |
O1—Si2—O2i—Si1i | −74.36 (14) | C81—C91—C101—C111 | 0.1 (3) |
O2—Si1—O1—Si2 | −52.51 (15) | C91—C101—C111—C121 | −0.6 (3) |
C12—Si1—O1—Si2 | 62.69 (15) | C101—C111—C121—C71 | 0.5 (3) |
C11—Si1—O1—Si2 | −168.40 (12) | C81—C71—C121—C111 | 0.1 (3) |
O2i—Si2—O1—Si1 | 84.84 (14) | C61—C71—C121—C111 | −176.07 (16) |
C2—Si2—O1—Si1 | −159.17 (13) | O1—Si1—C12—C22 | −127.17 (14) |
C1—Si2—O1—Si1 | −34.85 (16) | O2—Si1—C12—C22 | −8.85 (15) |
O1—Si1—O2—Si2i | −37.42 (15) | C11—Si1—C12—C22 | 110.94 (14) |
C12—Si1—O2—Si2i | −155.78 (13) | O1—Si1—C12—C62 | 47.32 (17) |
C11—Si1—O2—Si2i | 77.52 (14) | O2—Si1—C12—C62 | 165.63 (15) |
O1—Si1—C11—C21 | 7.60 (16) | C11—Si1—C12—C62 | −74.57 (17) |
O2—Si1—C11—C21 | −109.97 (15) | C62—C12—C22—C32 | 0.6 (3) |
C12—Si1—C11—C21 | 131.54 (15) | Si1—C12—C22—C32 | 175.55 (14) |
O1—Si1—C11—C61 | −176.83 (14) | C12—C22—C32—C42 | 0.3 (3) |
O2—Si1—C11—C61 | 65.60 (16) | C22—C32—C42—C52 | −0.8 (3) |
C12—Si1—C11—C61 | −52.89 (18) | C32—C42—C52—C62 | 0.3 (3) |
C61—C11—C21—C31 | −0.1 (3) | C42—C52—C62—C12 | 0.7 (3) |
Si1—C11—C21—C31 | 175.77 (15) | C42—C52—C62—C72 | −176.95 (19) |
C11—C21—C31—C41 | −0.7 (3) | C22—C12—C62—C52 | −1.1 (3) |
C21—C31—C41—C51 | 0.3 (3) | Si1—C12—C62—C52 | −175.54 (14) |
C31—C41—C51—C61 | 0.8 (3) | C22—C12—C62—C72 | 176.41 (17) |
C41—C51—C61—C11 | −1.6 (3) | Si1—C12—C62—C72 | 2.0 (3) |
C41—C51—C61—C71 | 177.46 (18) | C52—C62—C72—C122 | 52.9 (2) |
C21—C11—C61—C51 | 1.1 (3) | C12—C62—C72—C122 | −124.6 (2) |
Si1—C11—C61—C51 | −174.49 (14) | C52—C62—C72—C82 | −126.4 (2) |
C21—C11—C61—C71 | −177.85 (16) | C12—C62—C72—C82 | 56.1 (3) |
Si1—C11—C61—C71 | 6.5 (2) | C122—C72—C82—C92 | 1.5 (3) |
C51—C61—C71—C121 | 78.6 (2) | C62—C72—C82—C92 | −179.20 (18) |
C11—C61—C71—C121 | −102.4 (2) | C72—C82—C92—C102 | −0.5 (3) |
C51—C61—C71—C81 | −97.5 (2) | C82—C92—C102—C112 | −0.4 (3) |
C11—C61—C71—C81 | 81.5 (2) | C92—C102—C112—C122 | 0.3 (3) |
C121—C71—C81—C91 | −0.7 (3) | C102—C112—C122—C72 | 0.8 (3) |
C61—C71—C81—C91 | 175.58 (17) | C82—C72—C122—C112 | −1.7 (3) |
C71—C81—C91—C101 | 0.6 (3) | C62—C72—C122—C112 | 179.02 (17) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C52H48O4Si4 |
Mr | 849.26 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 110 |
a, b, c (Å) | 17.3418 (2), 14.6488 (2), 17.9584 (2) |
V (Å3) | 4562.09 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.18 |
Crystal size (mm) | 0.30 × 0.12 × 0.03 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 68467, 4317, 3247 |
Rint | 0.081 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.097, 1.07 |
No. of reflections | 4317 |
No. of parameters | 273 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.33 |
Computer programs: COLLECT (Nonius, 1999), HKL-2000 (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), manual editing of SHELXL output.
Si1—O1 | 1.6287 (12) | Si2—O2i | 1.6342 (13) |
Si1—O2 | 1.6290 (13) | Si2—O1 | 1.6347 (12) |
Si1—C12 | 1.8684 (19) | Si2—C2 | 1.8452 (19) |
Si1—C11 | 1.8746 (17) | Si2—C1 | 1.8494 (19) |
O1—Si1—O2 | 109.98 (7) | Si1—O1—Si2 | 141.85 (8) |
O2i—Si2—O1 | 107.88 (7) | Si1—O2—Si2i | 142.12 (8) |
O1—Si2—O2i—Si1i | −74.36 (14) | O1—Si1—O2—Si2i | −37.42 (15) |
O2—Si1—O1—Si2 | −52.51 (15) | C11—C61—C71—C81 | 81.5 (2) |
O2i—Si2—O1—Si1 | 84.84 (14) | C12—C62—C72—C82 | 56.1 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
Financial assistance for this project was provided by the Dutch Organization for Scientific Research, Chemical Sciences (NWO-CW).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Couzijn, E. P. A., Ehlers, A. W., Schakel, M. & Lammertsma, K. (2006). J. Am. Chem. Soc. 128, 13634–13639. Web of Science CrossRef PubMed CAS Google Scholar
Couzijn, E. P. A., Schakel, M., de Kanter, F. J. J., Ehlers, A. W., Lutz, M., Spek, A. L. & Lammertsma, K. (2004). Angew. Chem. Int. Ed. 43, 3440–3442. Web of Science CSD CrossRef CAS Google Scholar
Couzijn, E. P. A., Slootweg, J. C., Ehlers, A. W. & Lammertsma, K. (2009). J. Am. Chem. Soc. 131, 3741–3751. Web of Science CrossRef PubMed CAS Google Scholar
Deerenberg, S., Schakel, M., de Keijzer, A. H. J. F., Kranenburg, M., Lutz, M., Spek, A. L. & Lammertsma, K. (2002). Chem. Commun. pp. 348–349. Web of Science CSD CrossRef Google Scholar
Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gilman, H. & Gorsich, R. D. (1958). J. Am. Chem. Soc. 80, 1883–1884. CrossRef CAS Web of Science Google Scholar
Hensen, K., Gebhardt, F., Kettner, M., Pickel, P. & Bolte, M. (1997). Acta Cryst. C53, 1867–1869. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Keijzer, A. H. J. F. de, de Kanter, F. J. J., Schakel, M., Osinga, V. P. & Klumpp, G. W. (1997). J. Organomet. Chem. 548, 29–32. Google Scholar
Malinovskii, S. T., Tesuro Vallina, A. & Stoeckli-Evans, H. (2007). J. Struct. Chem. 48, 128–136. Web of Science CrossRef CAS Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steinfink, H., Post, B. & Fankuchen, I. (1955). Acta Cryst. 8, 420–424. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our research is focused on stable compounds of pentavalent, anionic silicon bearing five organic substituents (Couzijn et al., 2009; Couzijn et al., 2006; Couzijn et al., 2004). Such pentaorganosilicates are commonly proposed as intermediates for nucleophilic substitution reactions on silanes, but were only recently characterized in the condensed phase (e.g., de Keijzer et al., 1997; Deerenberg et al., 2002). In solution, these five-coordinate species undergo intramolecular substituent interchange via Berry pseudorotation and related processes. For a better understanding of the influence of the substituents on the stereomutational barrier, we synthesized bis(biphenyl-2,2'-diyl)fluorosilicate as the caesium and tetramethylammonium salts (Couzijn et al., 2009). While attempting to crystallize these salts, we obtained crystals of the title compound, [–Si(C12H9)2OSi(CH3)2O–]2, instead. This siloxane was most probably formed by reaction with silicone grease and adventitious water.
The title compound crystallizes with Ci point group symmetry, adopting a twist-chair conformation of the eight-membered siloxane ring (Fig. 1, Table 1). A ring puckering analysis (Evans & Boeyens, 1989) shows that the out-of-plane displacements in the ring can be described as a linear combination of the E3g (sin form) and E3g (cos form) normal modes, respectively, in a ratio of 0.891:0.109. The two bis(biphenyl)-substituted silicon atoms and the four oxygen atoms lie in a plane (RMS deviation 0.025 Å), whereas the two dimethyl-substituted silicon atoms are situated at 0.7081 (5)Å above and below this plane, respectively. Similar arrangements have been reported for octamethyl- (Steinfink et al., 1955) and 2,2,6,6-tetraphenyl-4,4,8,8-tetramethyltetrasiloxane (Malinovskii et al., 2007). Each Si(C12H9)2 unit features a parallel displaced π-π stacking interaction between one terminal phenyl ring and the phenylene ring of the other biphenyl moiety. The ring centroids are 4.2377 (11)Å apart and their vector makes an angle of 38.65° with the phenylene plane, while the ring planes make a dihedral angle of 15.40 (9)°.