metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1096-m1097

(1,10-Phenanthroline-κ2N,N′)(tri­phenyl­phosphine-κP)silver(I) tri­fluoro­methane­sulfonate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bDepartment of Physics, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 17 June 2009; accepted 13 August 2009; online 19 August 2009)

The structure of the title complex, [Ag(C12H8N2)(C18H15P)]CF3SO3, is based on a distorted trigonal–planar N2P coordination of the AgI ion, provided by two N atoms of the bidentate phenanthroline ligand and one P atom of the triphenyl­phosphine ligand. The phenanthroline ligand and one phenyl ring of the triphenyl­phosphine ligand almost lie in one plane (maximum deviation = 0.014 Å from the best planes). The crystal structure may be stabilized by an inter­molecular C—H⋯O hydrogen bond between the phenanthroline ligand and the O atom of the trifluoro­methane­sulfonate anion.

Related literature

For related structures, see: Di Nicola et al. (2007[Di Nicola, C., Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2007). Inorg. Chim. Acta, 360, 1433-1450.]); Jin et al. (1999[Jin, Q. H., Xin, X. L., Zhu, F. J. & Li, Y. (1999). Z. Kristallogr. New Cryst. Struct. 214, 503-504.], 2009[Jin, Q. H., Hu, K. Y. S. L. L., Wang, R., Zuo, X., Zhang, C. L. & Lu, X. M. (2009). Polyhedron, doi: 10.1016/j.poly.2009.06.036.]); Effendy et al. (2007a[Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2007a). Inorg. Chim. Acta, 360, 1424-1432.],b[Effendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2007b). Inorg. Chim. Acta, 360, 1451-1465.]); Awaleh et al. (2005a[Awaleh, M. O., Badia, A. & Brisse, F. (2005a). Inorg. Chem. 44, 7833-7845.],b[Awaleh, M. O., Badia, A. & Brisse, F. (2005b). Cryst. Growth Des. 5, 1897-1906.]); Pettinari et al. (2007[Pettinari, C., Ngoune, J., Skelton, B. W. & White, A. H. (2007). Inorg. Chem. Commun. 10, 329-331.]). For general background, see: Howells & Mccown (1977[Howells, R. D. & Mccown, J. D. (1977). Chem. Rev. 77, 19-92.]); Bowmaker et al. (2005[Bowmaker, G. A., Effendy, Marfuah, S., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4371-4388.]); Lawrance (1986[Lawrance, G. A. (1986). Chem. Rev. 86, 17-33.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C12H8N2)(C18H15P)]CF3SO3

  • Mr = 699.42

  • Triclinic, [P \overline 1]

  • a = 10.9832 (2) Å

  • b = 11.7533 (2) Å

  • c = 12.2642 (3) Å

  • α = 77.711 (1)°

  • β = 76.183 (1)°

  • γ = 73.440 (1)°

  • V = 1455.66 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.735, Tmax = 0.832

  • 18629 measured reflections

  • 9515 independent reflections

  • 6777 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.133

  • S = 1.00

  • 9515 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N2 2.2798 (18)
Ag1—N1 2.292 (2)
Ag1—P1 2.3469 (5)
N2—Ag1—N1 73.53 (8)
N2—Ag1—P1 147.77 (6)
N1—Ag1—P1 138.03 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H16⋯O2 0.93 2.36 3.285 (6) 173

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A recent report (Di Nicola et al., 2007) describes complexes between silver nitrate, a tertiary phosphine ligand and oligodentate bases, L that are derivatives of 2,2'-bipyridyl, which resulted in adducts with general formula AgNO3:PR3:L(1:1:1). The silver coordination environment in these complexes is dominated by the quasi-planar N2AgP or O2AgP coordination. We have likewise studied mixed-ligand Ag(I) complexes of N-heterocyclic and PPh3 ligands, viz [AgBr(phen)(PPh3)] and [AgX(2-Apy)(PPh3)]2 (X = Br, Cl, NO3; 2-Apy= 2-aminopyridine) (Jin et al., 1999, Jin et al., 2009) and have synthesized the title complex [Ag(phen)(PPh3)](OTf). Furthermore, we have studied the role of several weakly coordinating anions (nitrate, nitrite, acetate, perchlorate trifluoroacetate and trifluoromethanesulfonate) in silver complexes.

The molecular structure of the title complex is depicted in Fig.1. The coordination polyhedron of the silver atom adopts a distorted trigonal-planar geometry, formed by two nitrogen atoms of phen with Ag—N distances of 2.3469 (5) Å and 2.2797 (19) Å, and by one phosphorus atom of the PPh3 ligand with a Ag—P distance of 2.292 (2) Å. The trifluoromethanesulfonate anion is present as a counter anion and, as expected, shows no direct coordination to the metal center, in contrast to the complex [AgBr(phen)(PPh3)] where the silver atom is coordinated to two nitrogen atoms of phen (Ag—N 2.376 (8) Å), one phosphorus atom of PPh3 (Ag—P, 2.375 (3) Å) and in addition to one bromide anion (Jin et al., 1999), adopting a distorted tetrahedron as coordination polyhedron.

The molecular structure of the title complex shows little differences in comparison with the structures of compounds AgX:PPh3:L, where X = nitrate (Di Nicola et al., 2007), nitrite (Pettinari et al., 2007), acetate (Effendy et al., 2007a), perchlorate (Effendy et al., 2007b) and trifluoroacetate (Awaleh et al., 2005a). Considering the large steric hindrance and the weak coordination ability (Awaleh et al., 2005b; Howells et al., 1977; Lawrance et al.,1986) of the trifluoromethanesulfonate anion, there is only one C—H···O hydrogen-bond between the phenanthroline ligand and the O atom of the anion with the distance O···H of 2.609Å and the angle C—H···O of 173°.

In the title complex, the P—Ag—N1, P—Ag—N2 and N1—Ag—N2 angles are 147.77 (6)°, 138.03 (6)° and 73.54 (8) ° with a sum of 359.54 °, which comfirms the trigonal-planar environment around the silver atom. In the silver nitrate complex, the P—Ag—N (132.66 (9)°, 131.76 (8)°) (Di Nicola et al., 2007) angles are similar. However, contributing to the role of the nitrate anion, the coordination environment of silver changes from distorted trigonal planar to tetrahedral. The P—Ag—N angles in the other complexes are: 136.94 (5)°, 139.60 (5)°, 71.40 (6)° in the perchlorate (Effendy et al., 2007b), 129.4 (1)°, 135.7 (1)°, 71.7 (2)° in trifluoroacetate (Awaleh et al., 2005a), 116.52 (6)°, 126.12 (7)°, 70.5 (1)° in acetate (Effendy et al., 2007a) and 126.72 (8)°, 127.18 (9)°, 70.77 (12)° in the nitrite (Pettinari et al.,2007) anion.

Hence, we should consider two types of anions in the complexes AgX:PR3:L, viz tetrahedral or distorted trigonal-planar anions and planar or quasi-planar anions (Awaleh et al., 2005a; Awaleh et al., 2005b; Bowmaker et al., 2005). Nitrate, nitrite and acetate belong to the former type, whereas perchlorate, trifluoroacetate and trifluoromethanesulfonate can play a role in both of them because of large steric hindrance and the weak coordination ability.

Related literature top

For related structures, see: Di Nicola et al. (2007); Jin et al. (1999, 2009); Effendy et al. (2007a,b); Awaleh et al. (2005a,b); Pettinari et al. (2007). For general background, see: Howells & Mccown (1977); Bowmaker et al. (2005); Lawrance (1986).

Experimental top

A mixture of AgOTf, Ph3P and phen in the molar ratio of 1:1:1 in MeOH was stirred for 1 h at ambient temperature, then filtered. Subsequent slow evaporation of the filtrate resulted in the formation of colorless crystals of the title complex. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared. Analysis found (percentage): C 53.22, H 3.29, N 4.01; calculated: C 53.19, H 3.29, N 4.02.

Refinement top

All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded (Ueq(H) = 1.2Ueq(C)).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule of the title complex; hydrogen atoms are omitted for clarity. Atoms are displayed as ellipsoids at the 35% probability level.
(1,10-Phenanthroline-κ2N,N')(triphenylphosphine- κP)silver(I) trifluoromethanesulfonate top
Crystal data top
[Ag(C12H8N2)(C18H15P)]CF3SO3Z = 2
Mr = 699.42F(000) = 704
Triclinic, P1Dx = 1.596 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9832 (2) ÅCell parameters from 5045 reflections
b = 11.7533 (2) Åθ = 2.3–32.9°
c = 12.2642 (3) ŵ = 0.87 mm1
α = 77.711 (1)°T = 293 K
β = 76.183 (1)°Block, colourless
γ = 73.440 (1)°0.4 × 0.3 × 0.2 mm
V = 1455.66 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
9515 independent reflections
Radiation source: fine-focus sealed tube6777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1515
Tmin = 0.735, Tmax = 0.832k = 1716
18629 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.075P)2 + 0.38P]
where P = (Fo2 + 2Fc2)/3
9515 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Ag(C12H8N2)(C18H15P)]CF3SO3γ = 73.440 (1)°
Mr = 699.42V = 1455.66 (5) Å3
Triclinic, P1Z = 2
a = 10.9832 (2) ÅMo Kα radiation
b = 11.7533 (2) ŵ = 0.87 mm1
c = 12.2642 (3) ÅT = 293 K
α = 77.711 (1)°0.4 × 0.3 × 0.2 mm
β = 76.183 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
9515 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6777 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.832Rint = 0.021
18629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
9515 reflectionsΔρmin = 0.66 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.09032 (2)0.931304 (15)0.211327 (16)0.05664 (9)
P10.18488 (6)0.77307 (5)0.10540 (5)0.04241 (13)
C240.0779 (3)1.12309 (19)0.36019 (18)0.0491 (6)
C250.3066 (4)1.2209 (4)0.3869 (4)0.0981 (15)
H210.37871.27460.42050.118*
S10.61400 (9)0.77152 (8)0.31032 (8)0.0748 (2)
C10.0853 (2)0.75012 (19)0.01682 (19)0.0455 (5)
C30.1327 (3)0.6742 (3)0.0638 (3)0.0631 (7)
H60.22070.63720.07860.076*
C20.0452 (3)0.8068 (3)0.0342 (3)0.0644 (7)
H100.07820.86140.08520.077*
C40.3400 (2)0.77960 (19)0.01460 (18)0.0433 (4)
C60.4324 (3)0.6788 (2)0.0199 (2)0.0566 (6)
H50.41660.60310.00640.068*
C70.4818 (3)0.9018 (3)0.0982 (3)0.0707 (8)
H20.49790.97720.12610.085*
C50.3678 (3)0.8918 (2)0.0246 (2)0.0562 (6)
H10.30880.96030.00080.067*
C100.1297 (3)0.5596 (3)0.2319 (2)0.0602 (7)
H150.05750.58010.19810.072*
C80.2170 (2)0.63074 (19)0.20106 (18)0.0438 (5)
C110.1495 (4)0.4583 (3)0.3128 (3)0.0778 (10)
H140.08940.41180.33420.093*
C90.3237 (3)0.5981 (2)0.2526 (2)0.0544 (6)
H110.38280.64560.23350.065*
C120.5478 (3)0.6894 (3)0.0929 (3)0.0652 (7)
H40.60820.62130.11580.078*
C130.5725 (3)0.8001 (3)0.1309 (3)0.0677 (8)
H30.65040.80710.17890.081*
C140.1276 (3)0.7833 (3)0.0234 (3)0.0766 (9)
H90.21560.82010.00940.092*
C160.0513 (3)0.6529 (3)0.1223 (3)0.0715 (8)
H70.08460.60220.17680.086*
C150.0786 (3)0.7058 (3)0.1007 (3)0.0714 (8)
H80.13360.68890.13880.086*
C180.3430 (4)0.4952 (3)0.3324 (3)0.0685 (8)
H120.41530.47330.36620.082*
C170.2555 (4)0.4256 (3)0.3616 (3)0.0763 (9)
H130.26880.35610.41480.092*
O10.5839 (4)0.7776 (4)0.4276 (3)0.1266 (12)
O20.5105 (4)0.7955 (3)0.2518 (4)0.1519 (17)
O30.7108 (4)0.8336 (4)0.2534 (4)0.1455 (16)
C190.6933 (5)0.6175 (4)0.2985 (6)0.1103 (17)
F10.7991 (3)0.5804 (4)0.3393 (4)0.1752 (17)
F20.7172 (6)0.5954 (4)0.1989 (4)0.218 (3)
C230.0474 (3)1.1023 (2)0.38492 (18)0.0513 (6)
C210.0633 (4)1.1640 (3)0.4660 (2)0.0763 (11)
C220.0480 (7)1.2472 (3)0.5189 (3)0.1041 (18)
H190.03851.28790.57230.125*
C200.2638 (4)1.0021 (3)0.3561 (3)0.0752 (9)
H160.33270.94730.32030.090*
N10.1478 (2)1.02361 (18)0.33127 (18)0.0522 (5)
N20.09368 (19)1.06137 (17)0.28528 (15)0.0489 (5)
C260.1838 (4)1.2062 (2)0.4146 (2)0.0757 (10)
C270.2110 (3)1.0794 (3)0.2637 (3)0.0708 (8)
H230.22171.03670.21230.085*
C280.1636 (6)1.2669 (3)0.4930 (3)0.1029 (17)
H200.23291.32230.52770.124*
C290.3190 (4)1.1595 (4)0.3146 (4)0.0990 (14)
H220.39961.16930.29720.119*
C310.2848 (6)1.0623 (5)0.4377 (4)0.1018 (17)
H170.36701.04750.45360.122*
C300.1856 (6)1.1398 (5)0.4908 (3)0.1008 (17)
H180.19881.17770.54480.121*
F30.6223 (5)0.5475 (3)0.3633 (5)0.213 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.06687 (15)0.04557 (11)0.05563 (12)0.00722 (8)0.00064 (9)0.02543 (8)
P10.0462 (3)0.0368 (2)0.0428 (3)0.0074 (2)0.0011 (2)0.0152 (2)
C240.0684 (16)0.0344 (9)0.0358 (9)0.0065 (9)0.0011 (9)0.0071 (7)
C250.072 (2)0.074 (2)0.094 (3)0.0230 (17)0.021 (2)0.0052 (19)
S10.0677 (5)0.0771 (5)0.0829 (5)0.0120 (4)0.0169 (4)0.0249 (4)
C10.0490 (13)0.0417 (10)0.0443 (11)0.0082 (8)0.0041 (9)0.0133 (8)
C30.0536 (15)0.0689 (16)0.0681 (16)0.0009 (12)0.0068 (12)0.0380 (13)
C20.0545 (16)0.0662 (16)0.0732 (18)0.0011 (12)0.0090 (13)0.0345 (13)
C40.0472 (12)0.0395 (9)0.0426 (10)0.0110 (8)0.0056 (9)0.0077 (8)
C60.0523 (15)0.0434 (11)0.0633 (15)0.0094 (10)0.0063 (11)0.0083 (10)
C70.075 (2)0.0628 (16)0.077 (2)0.0352 (15)0.0136 (16)0.0069 (14)
C50.0613 (16)0.0413 (11)0.0690 (16)0.0161 (10)0.0162 (13)0.0062 (10)
C100.0700 (18)0.0622 (15)0.0540 (14)0.0303 (13)0.0077 (12)0.0061 (11)
C80.0538 (13)0.0407 (9)0.0377 (9)0.0145 (9)0.0004 (9)0.0133 (8)
C110.107 (3)0.0724 (19)0.0640 (18)0.0527 (19)0.0103 (18)0.0020 (15)
C90.0615 (16)0.0525 (12)0.0524 (13)0.0168 (11)0.0113 (11)0.0106 (10)
C120.0510 (15)0.0647 (16)0.0652 (16)0.0060 (12)0.0046 (12)0.0074 (13)
C130.0497 (16)0.082 (2)0.0651 (17)0.0229 (14)0.0056 (13)0.0055 (14)
C140.0515 (17)0.086 (2)0.098 (2)0.0036 (14)0.0254 (16)0.0410 (18)
C160.071 (2)0.0799 (19)0.0713 (18)0.0068 (15)0.0163 (15)0.0411 (15)
C150.071 (2)0.0742 (18)0.077 (2)0.0096 (15)0.0304 (16)0.0228 (15)
C180.093 (2)0.0581 (15)0.0577 (15)0.0160 (15)0.0278 (15)0.0039 (12)
C170.118 (3)0.0585 (16)0.0554 (16)0.0331 (17)0.0203 (17)0.0037 (12)
O10.105 (2)0.169 (4)0.097 (2)0.019 (2)0.0043 (18)0.050 (2)
O20.161 (3)0.090 (2)0.238 (5)0.013 (2)0.143 (4)0.038 (2)
O30.148 (3)0.117 (3)0.172 (4)0.072 (3)0.034 (3)0.043 (2)
C190.094 (3)0.070 (2)0.161 (5)0.011 (2)0.041 (3)0.002 (3)
F10.092 (2)0.166 (3)0.236 (4)0.038 (2)0.057 (2)0.031 (3)
F20.336 (7)0.123 (3)0.175 (4)0.056 (3)0.082 (4)0.096 (3)
C230.0848 (19)0.0382 (10)0.0355 (10)0.0281 (11)0.0072 (10)0.0027 (8)
C210.146 (3)0.0638 (16)0.0408 (12)0.068 (2)0.0155 (16)0.0002 (11)
C220.216 (6)0.0626 (19)0.0432 (15)0.068 (3)0.011 (2)0.0225 (13)
C200.071 (2)0.080 (2)0.080 (2)0.0389 (17)0.0279 (17)0.0172 (16)
N10.0608 (13)0.0474 (10)0.0525 (11)0.0202 (9)0.0160 (9)0.0014 (8)
N20.0510 (12)0.0468 (10)0.0441 (10)0.0026 (8)0.0093 (8)0.0096 (8)
C260.104 (3)0.0428 (12)0.0515 (14)0.0004 (13)0.0185 (15)0.0092 (10)
C270.0586 (18)0.0790 (19)0.0655 (17)0.0017 (14)0.0208 (14)0.0024 (14)
C280.173 (5)0.0529 (16)0.061 (2)0.023 (2)0.029 (3)0.0266 (14)
C290.060 (2)0.108 (3)0.093 (3)0.011 (2)0.0072 (19)0.009 (2)
C310.120 (4)0.131 (4)0.089 (3)0.094 (3)0.059 (3)0.040 (3)
C300.171 (5)0.109 (3)0.061 (2)0.103 (4)0.035 (3)0.011 (2)
F30.209 (5)0.103 (2)0.335 (7)0.079 (3)0.087 (4)0.042 (3)
Geometric parameters (Å, º) top
Ag1—N22.2798 (18)C11—H140.9300
Ag1—N12.292 (2)C9—C181.384 (4)
Ag1—P12.3469 (5)C9—H110.9300
P1—C41.812 (2)C12—C131.365 (4)
P1—C11.819 (3)C12—H40.9300
P1—C81.823 (2)C13—H30.9300
C24—N21.353 (3)C14—C151.364 (5)
C24—C261.418 (3)C14—H90.9300
C24—C231.422 (4)C16—C151.370 (5)
C25—C291.308 (7)C16—H70.9300
C25—C261.423 (7)C15—H80.9300
C25—H210.9300C18—C171.371 (5)
S1—O11.409 (3)C18—H120.9300
S1—O21.417 (3)C17—H130.9300
S1—O31.421 (4)C19—F21.253 (7)
S1—C191.791 (5)C19—F11.298 (6)
C1—C31.381 (3)C19—F31.307 (6)
C1—C21.384 (4)C23—N11.355 (3)
C3—C161.375 (4)C23—C211.416 (3)
C3—H60.9300C21—C301.385 (7)
C2—C141.387 (5)C21—C221.442 (7)
C2—H100.9300C22—C281.326 (7)
C4—C61.391 (3)C22—H190.9300
C4—C51.397 (3)C20—N11.323 (4)
C6—C121.387 (4)C20—C311.435 (6)
C6—H50.9300C20—H160.9300
C7—C51.376 (4)N2—C271.327 (4)
C7—C131.385 (5)C26—C281.403 (6)
C7—H20.9300C27—C291.394 (5)
C5—H10.9300C27—H230.9300
C10—C111.380 (4)C28—H200.9300
C10—C81.382 (4)C29—H220.9300
C10—H150.9300C31—C301.337 (7)
C8—C91.384 (4)C31—H170.9300
C11—C171.356 (5)C30—H180.9300
N2—Ag1—N173.53 (8)C7—C13—H3119.9
N2—Ag1—P1147.77 (6)C15—C14—C2119.6 (3)
N1—Ag1—P1138.03 (6)C15—C14—H9120.2
C4—P1—C1106.47 (11)C2—C14—H9120.2
C4—P1—C8104.71 (10)C15—C16—C3120.4 (3)
C1—P1—C8103.84 (10)C15—C16—H7119.8
C4—P1—Ag1115.16 (7)C3—C16—H7119.8
C1—P1—Ag1115.70 (7)C14—C15—C16120.1 (3)
C8—P1—Ag1109.82 (7)C14—C15—H8119.9
N2—C24—C26121.2 (3)C16—C15—H8119.9
N2—C24—C23118.8 (2)C17—C18—C9120.1 (3)
C26—C24—C23120.0 (3)C17—C18—H12120.0
C29—C25—C26120.5 (3)C9—C18—H12120.0
C29—C25—H21119.7C11—C17—C18119.9 (3)
C26—C25—H21119.7C11—C17—H13120.0
O1—S1—O2118.2 (3)C18—C17—H13120.0
O1—S1—O3111.0 (3)F2—C19—F1109.1 (6)
O2—S1—O3113.3 (3)F2—C19—F3108.5 (6)
O1—S1—C19105.7 (3)F1—C19—F3102.2 (5)
O2—S1—C19103.3 (2)F2—C19—S1113.4 (4)
O3—S1—C19103.5 (3)F1—C19—S1112.9 (4)
C3—C1—C2118.2 (3)F3—C19—S1110.1 (4)
C3—C1—P1123.0 (2)N1—C23—C21121.9 (3)
C2—C1—P1118.73 (18)N1—C23—C24119.3 (2)
C16—C3—C1120.6 (3)C21—C23—C24118.8 (3)
C16—C3—H6119.7C30—C21—C23117.7 (4)
C1—C3—H6119.7C30—C21—C22123.6 (4)
C1—C2—C14121.0 (3)C23—C21—C22118.7 (4)
C1—C2—H10119.5C28—C22—C21121.5 (3)
C14—C2—H10119.5C28—C22—H19119.2
C6—C4—C5118.1 (2)C21—C22—H19119.2
C6—C4—P1123.43 (18)N1—C20—C31120.8 (4)
C5—C4—P1118.47 (19)N1—C20—H16119.6
C12—C6—C4121.0 (2)C31—C20—H16119.6
C12—C6—H5119.5C20—N1—C23119.3 (3)
C4—C6—H5119.5C20—N1—Ag1126.7 (2)
C5—C7—C13120.2 (3)C23—N1—Ag1113.81 (17)
C5—C7—H2119.9C27—N2—C24118.7 (2)
C13—C7—H2119.9C27—N2—Ag1126.7 (2)
C7—C5—C4120.5 (3)C24—N2—Ag1114.57 (16)
C7—C5—H1119.7C28—C26—C24119.4 (4)
C4—C5—H1119.7C28—C26—C25123.8 (4)
C11—C10—C8120.1 (3)C24—C26—C25116.9 (3)
C11—C10—H15120.0N2—C27—C29122.8 (4)
C8—C10—H15120.0N2—C27—H23118.6
C10—C8—C9118.8 (2)C29—C27—H23118.6
C10—C8—P1121.0 (2)C22—C28—C26121.6 (4)
C9—C8—P1119.95 (18)C22—C28—H20119.2
C17—C11—C10120.8 (3)C26—C28—H20119.2
C17—C11—H14119.6C25—C29—C27119.9 (4)
C10—C11—H14119.6C25—C29—H22120.1
C8—C9—C18120.3 (3)C27—C29—H22120.1
C8—C9—H11119.9C30—C31—C20119.8 (4)
C18—C9—H11119.9C30—C31—H17120.1
C13—C12—C6119.9 (3)C20—C31—H17120.1
C13—C12—H4120.1C31—C30—C21120.4 (4)
C6—C12—H4120.1C31—C30—H18119.8
C12—C13—C7120.2 (3)C21—C30—H18119.8
C12—C13—H3119.9
N2—Ag1—P1—C4143.08 (12)O1—S1—C19—F160.6 (5)
N1—Ag1—P1—C451.26 (12)O2—S1—C19—F1174.5 (5)
N2—Ag1—P1—C118.06 (13)O3—S1—C19—F156.2 (5)
N1—Ag1—P1—C1176.27 (11)O1—S1—C19—F352.9 (5)
N2—Ag1—P1—C899.05 (13)O2—S1—C19—F371.9 (5)
N1—Ag1—P1—C866.61 (12)O3—S1—C19—F3169.7 (5)
C4—P1—C1—C340.1 (3)N2—C24—C23—N11.4 (3)
C8—P1—C1—C370.1 (3)C26—C24—C23—N1179.3 (2)
Ag1—P1—C1—C3169.5 (2)N2—C24—C23—C21178.0 (2)
C4—P1—C1—C2142.9 (2)C26—C24—C23—C211.3 (3)
C8—P1—C1—C2106.9 (2)N1—C23—C21—C301.1 (4)
Ag1—P1—C1—C213.6 (2)C24—C23—C21—C30178.3 (2)
C2—C1—C3—C162.1 (5)N1—C23—C21—C22179.5 (2)
P1—C1—C3—C16174.9 (3)C24—C23—C21—C221.1 (3)
C3—C1—C2—C143.3 (5)C30—C21—C22—C28179.5 (3)
P1—C1—C2—C14173.8 (3)C23—C21—C22—C280.1 (5)
C1—P1—C4—C675.7 (2)C31—C20—N1—C230.9 (4)
C8—P1—C4—C633.9 (2)C31—C20—N1—Ag1176.6 (2)
Ag1—P1—C4—C6154.6 (2)C21—C23—N1—C201.0 (3)
C1—P1—C4—C5103.2 (2)C24—C23—N1—C20178.4 (2)
C8—P1—C4—C5147.2 (2)C21—C23—N1—Ag1177.19 (17)
Ag1—P1—C4—C526.5 (2)C24—C23—N1—Ag12.2 (3)
C5—C4—C6—C121.2 (4)N2—Ag1—N1—C20177.5 (2)
P1—C4—C6—C12177.6 (2)P1—Ag1—N1—C205.5 (3)
C13—C7—C5—C42.4 (5)N2—Ag1—N1—C231.63 (15)
C6—C4—C5—C72.1 (4)P1—Ag1—N1—C23170.45 (11)
P1—C4—C5—C7176.8 (2)C26—C24—N2—C270.4 (3)
C11—C10—C8—C90.1 (4)C23—C24—N2—C27178.9 (2)
C11—C10—C8—P1173.6 (3)C26—C24—N2—Ag1179.12 (18)
C4—P1—C8—C10140.7 (2)C23—C24—N2—Ag10.2 (3)
C1—P1—C8—C1029.2 (2)N1—Ag1—N2—C27179.6 (2)
Ag1—P1—C8—C1095.1 (2)P1—Ag1—N2—C279.5 (3)
C4—P1—C8—C945.7 (2)N1—Ag1—N2—C240.94 (15)
C1—P1—C8—C9157.17 (19)P1—Ag1—N2—C24169.11 (11)
Ag1—P1—C8—C978.53 (19)N2—C24—C26—C28179.0 (3)
C8—C10—C11—C171.3 (5)C23—C24—C26—C280.3 (4)
C10—C8—C9—C180.8 (4)N2—C24—C26—C250.2 (4)
P1—C8—C9—C18174.6 (2)C23—C24—C26—C25179.1 (2)
C4—C6—C12—C130.7 (5)C29—C25—C26—C28178.6 (4)
C6—C12—C13—C71.0 (5)C29—C25—C26—C240.1 (5)
C5—C7—C13—C121.9 (5)C24—N2—C27—C290.2 (4)
C1—C2—C14—C151.9 (6)Ag1—N2—C27—C29178.8 (3)
C1—C3—C16—C150.6 (6)C21—C22—C28—C261.2 (6)
C2—C14—C15—C160.9 (6)C24—C26—C28—C221.0 (5)
C3—C16—C15—C142.1 (6)C25—C26—C28—C22177.7 (3)
C8—C9—C18—C170.6 (5)C26—C25—C29—C270.3 (6)
C10—C11—C17—C181.5 (6)N2—C27—C29—C250.1 (6)
C9—C18—C17—C110.5 (5)N1—C20—C31—C301.1 (5)
O1—S1—C19—F2174.6 (5)C20—C31—C30—C211.2 (5)
O2—S1—C19—F249.8 (6)C23—C21—C30—C311.2 (5)
O3—S1—C19—F268.6 (6)C22—C21—C30—C31179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H16···O20.932.363.285 (6)173

Experimental details

Crystal data
Chemical formula[Ag(C12H8N2)(C18H15P)]CF3SO3
Mr699.42
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.9832 (2), 11.7533 (2), 12.2642 (3)
α, β, γ (°)77.711 (1), 76.183 (1), 73.440 (1)
V3)1455.66 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.735, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
18629, 9515, 6777
Rint0.021
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.133, 1.00
No. of reflections9515
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.66

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ag1—N22.2798 (18)Ag1—P12.3469 (5)
Ag1—N12.292 (2)
N2—Ag1—N173.53 (8)N1—Ag1—P1138.03 (6)
N2—Ag1—P1147.77 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H16···O20.932.3603.285 (6)173
 

Acknowledgements

This work was supported by the National Science Foundation of China (grant No. 20871085), the Committee of Education of Beijing Foundation of China (grant No. KM200610028006), the Project sponsored by SRF for ROCS and SEM, the subsidy of Beijing Personnel Bureau, the National Keystone Basic Research Program (973 Program under grant Nos. 2007CB310408, No. 2006CB302901), the State Key Laboratory of Functional Materials for Informatics and the Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Sciences.

References

First citationAwaleh, M. O., Badia, A. & Brisse, F. (2005a). Inorg. Chem. 44, 7833–7845.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAwaleh, M. O., Badia, A. & Brisse, F. (2005b). Cryst. Growth Des. 5, 1897–1906.  Web of Science CSD CrossRef CAS Google Scholar
First citationBowmaker, G. A., Effendy, Marfuah, S., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4371–4388.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Nicola, C., Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2007). Inorg. Chim. Acta, 360, 1433–1450.  Web of Science CSD CrossRef CAS Google Scholar
First citationEffendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2007b). Inorg. Chim. Acta, 360, 1451–1465.  Web of Science CSD CrossRef CAS Google Scholar
First citationEffendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2007a). Inorg. Chim. Acta, 360, 1424–1432.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowells, R. D. & Mccown, J. D. (1977). Chem. Rev. 77, 19–92.  CrossRef Web of Science Google Scholar
First citationJin, Q. H., Hu, K. Y. S. L. L., Wang, R., Zuo, X., Zhang, C. L. & Lu, X. M. (2009). Polyhedron, doi: 10.1016/j.poly.2009.06.036.  Google Scholar
First citationJin, Q. H., Xin, X. L., Zhu, F. J. & Li, Y. (1999). Z. Kristallogr. New Cryst. Struct. 214, 503–504.  CAS Google Scholar
First citationLawrance, G. A. (1986). Chem. Rev. 86, 17–33.  CrossRef CAS Web of Science Google Scholar
First citationPettinari, C., Ngoune, J., Skelton, B. W. & White, A. H. (2007). Inorg. Chem. Commun. 10, 329–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1096-m1097
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds