organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7-Di­meth­oxy­isobenzo­furan-1(3H)-one

aLaboratory of Toxicology & Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China, and bSchool of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
*Correspondence e-mail: kaixiaocn@gmail.com

(Received 17 July 2009; accepted 6 August 2009; online 15 August 2009)

The asymmetric unit of the title compound, C10H10O4, which has been isolated from rhizoma Polygonum Cuspidatum, a Chinese folk medicine, contains two crystallographically independent mol­ecules. The mol­ecules are essentially planar, with a maximum deviation of 0.061 (2) Å from the best planes. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen-bonding inter­actions, with a stacking direction of the mol­ecules parallel to [101].

Related literature

For the synthesis of 5,7-dimethoxy­phthalide, see: Talapatra & Monoj (1980[Talapatra, B. & Monoj, K. R. (1980). Indian J. Chem. Sect. B, 19, 927-929.]); Dang et al. (1999[Dang, Q., Brown, B. S., Poelje, P. D., Colby, T. J. & Erion, M. D. (1999). Bioorg. Med. Chem. Lett. 9, 1505-1510.]); Orito et al. (1995[Orito, K., Miyazawa, M. & Suginome, H. (1995). Tetrahedron, 51, 2489-2496.]). For the title compound as an inter­mediate, see: Zuo et al. (2008[Zuo, L., Yao, S. Y. & Duan, W. H. (2008). Chin. J. Org. Chem. 28, 1982-1985.]); Lee et al. (2001[Lee, Y., Fujiwara, Y., Ujita, K., Nagatomo, M., Ohata, H. & Shimizu, I. (2001). Bull. Chem. Soc. Jpn, 74, 1437-1443.]). For the title compound as a by­product, see: Fürstner et al. (2000[Fürstner, A., Thiel, O. R., Kindler, N. & Bartkowska, B. (2000). J. Org. Chem. 65, 7990-7995.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O4

  • Mr = 194.18

  • Monoclinic, P 21 /c

  • a = 8.532 (3) Å

  • b = 25.877 (10) Å

  • c = 8.374 (3) Å

  • β = 104.322 (6)°

  • V = 1791.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.12 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.987, Tmax = 0.989

  • 7489 measured reflections

  • 3216 independent reflections

  • 1766 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.131

  • S = 0.93

  • 3216 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6A—H6A⋯O1Bi 0.93 2.51 3.397 (3) 161
C8A—H8A1⋯O2Bii 0.97 2.53 3.337 (3) 140
C6B—H6B⋯O1Aiii 0.93 2.44 3.325 (3) 159
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) x, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The compound 5, 7-dimethoxyphthalide has been previously reported. It could be obtained by different synthetic strategies, e.g. from 5,7-dihydroxyphthalide (Talapatra & Monoj, 1980), 6-iodo-3-methoxybenzyl alcohols (Dang et al., 1999) or 3,5-dimethoxybenzyl alcohol (Orito et al.,1995). It could act as an intermediate product in the process of synthesizing some significant compounds, such as 5,7-dimethoxy-4-methylphthalide and 5,7-dihydroxy-4-methylphthaIide (Zuo et al., 2008), or mycophenolic acid and its analogs (Lee et al., 2001). It was also reported as a byproduct in the synthesis of zearalenone and lasiodiplodin (Fürstner et al., 2000). However, no structural details were provided. In this study, 5,7-dimethoxyphthalide was isolated from the rhizoma Polygonum cuspidatum as colorless prismatic crystals.

The molecule (Fig. 1 ) is essentially planar with a maximum deviation of 0.061 (2) Å from the best planes. The crystal packing is stabilized by weak intermolecular C—H···O hydrogen-bonding interactions with a stacking direction of the molecules parallel to [101] (Fig. 2 ).

Related literature top

For the synthesis of 5,7-dimethoxyphthalide, see: Talapatra & Monoj (1980); Dang et al. (1999); Orito et al. (1995). For the title compound as an intermediate product, see: Zuo et al. (2008); Lee et al. (2001). For the title compound as a byproduct, see: Fürstner et al. (2000).

Experimental top

The slices of the dried roots of P. cuspidatum (10 kg) were extracted with 60% aqueous acetone 3 times (24 h each) at room temperature. The solvent was evaporated in vacuo and some hydrophobic substances precipitated which were filtered off. The filtrate was concentrated to a suitable volume, then chromatographed on a Sephadex LH-20 column eluted with H2O, aqueous MeOH (10%-70%) and 50% acetone successively to give five fractions. The fraction eluated by 10% MeOH was subjected to MCI gel chromatography eluted with gradient aqueous MeOH solvent. The 30% aqueous MeOH eluate from the MCI column afforded the compound 5,7-dimethoxyphthalide as an amorphous powder. The powder was recrystallized in acetone and produced colourless prismatic crystals.

Refinement top

The H atoms were refined at calculated positions riding on the parent carbon atoms (C–H = 0.95–0.99 Å) with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(–CH3). All CH3 hydrogen atoms were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of 5,7-dimethoxyphthalide, showing the atom-labelling scheme. H atoms are shown as small spheres of arbitrary radius. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the crystal, viewed along the b axis. Dashed lines indicate intermolecular C—H···O hydrogen bonds.
5,7-Dimethoxyisobenzofuran-1(3H)-one top
Crystal data top
C10H10O4F(000) = 816
Mr = 194.18Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 715 reflections
a = 8.532 (3) Åθ = 2.6–21.3°
b = 25.877 (10) ŵ = 0.11 mm1
c = 8.374 (3) ÅT = 293 K
β = 104.322 (6)°Prism, colourless
V = 1791.5 (11) Å30.12 × 0.12 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3216 independent reflections
Radiation source: fine-focus sealed tube1766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.987, Tmax = 0.989k = 3031
7489 measured reflectionsl = 108
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
3216 reflectionsΔρmax = 0.18 e Å3
258 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (5)
Crystal data top
C10H10O4V = 1791.5 (11) Å3
Mr = 194.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.532 (3) ŵ = 0.11 mm1
b = 25.877 (10) ÅT = 293 K
c = 8.374 (3) Å0.12 × 0.12 × 0.10 mm
β = 104.322 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3216 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1766 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.989Rint = 0.062
7489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.93Δρmax = 0.18 e Å3
3216 reflectionsΔρmin = 0.19 e Å3
258 parameters
Special details top

Experimental. The powder of 5,7-dimethoxyphthalide was solved in acetone and produced colorless crystal.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.3975 (2)0.42391 (7)0.1615 (2)0.0627 (6)
O2A0.2605 (3)0.35976 (8)0.0110 (2)0.0674 (6)
O3A0.4002 (2)0.25798 (7)0.1709 (2)0.0571 (6)
O4A0.8571 (2)0.28610 (7)0.6142 (2)0.0628 (6)
C1A0.3670 (4)0.37248 (11)0.1270 (3)0.0518 (8)
C2A0.4830 (3)0.34270 (10)0.2496 (3)0.0417 (6)
C3A0.5069 (3)0.28902 (10)0.2724 (3)0.0470 (7)
C4A0.6341 (3)0.27237 (10)0.3971 (3)0.0471 (7)
H4A0.65290.23720.41410.057*
C5A0.7359 (3)0.30831 (11)0.4992 (3)0.0487 (7)
C6A0.7112 (3)0.36054 (10)0.4795 (3)0.0486 (7)
H6A0.77800.38420.54780.058*
C7A0.5835 (3)0.37640 (10)0.3545 (3)0.0452 (7)
C8A0.5296 (3)0.43027 (10)0.3046 (3)0.0542 (8)
H8A10.49420.44780.39200.065*
H8A20.61640.45000.27820.065*
C9A0.4125 (4)0.20351 (11)0.2069 (4)0.0644 (9)
H9A10.51770.19140.20250.097*
H9A20.33120.18530.12700.097*
H9A30.39680.19760.31500.097*
C10A0.9664 (4)0.31963 (13)0.7237 (4)0.0764 (10)
H10A1.02020.34150.66140.115*
H10B1.04510.29940.79990.115*
H10C0.90720.34060.78330.115*
O1B0.0885 (2)0.46776 (7)0.6553 (2)0.0582 (5)
O2B0.2380 (2)0.53224 (8)0.5190 (2)0.0674 (6)
O3B0.0891 (2)0.63386 (7)0.6714 (2)0.0551 (5)
O4B0.3667 (2)0.60524 (7)1.1150 (2)0.0539 (5)
C1B0.1230 (3)0.51938 (12)0.6263 (3)0.0522 (8)
C2B0.0013 (3)0.54864 (11)0.7460 (3)0.0454 (7)
C3B0.0172 (3)0.60196 (10)0.7725 (3)0.0415 (7)
C4B0.1434 (3)0.61849 (10)0.8969 (3)0.0440 (7)
H4B0.15900.65370.91620.053*
C5B0.2488 (3)0.58354 (10)0.9954 (3)0.0420 (6)
C6B0.2297 (3)0.53046 (10)0.9714 (3)0.0418 (6)
H6B0.29880.50691.03750.050*
C7B0.1032 (3)0.51477 (9)0.8449 (3)0.0403 (6)
C8B0.0538 (3)0.46110 (10)0.7869 (3)0.0522 (7)
H8B10.13860.44420.74770.063*
H8B20.03020.44060.87500.063*
C9B0.0723 (4)0.68778 (10)0.7035 (4)0.0620 (8)
H9B10.08630.69480.81170.093*
H9B20.15270.70620.62320.093*
H9B30.03350.69880.69730.093*
C10B0.4778 (3)0.57130 (11)1.2222 (3)0.0589 (8)
H10D0.41920.54851.27690.088*
H10E0.55310.59131.30280.088*
H10F0.53560.55141.15870.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0734 (15)0.0519 (13)0.0597 (13)0.0139 (11)0.0105 (11)0.0112 (10)
O2A0.0663 (14)0.0782 (15)0.0517 (13)0.0101 (12)0.0029 (11)0.0066 (11)
O3A0.0585 (13)0.0487 (13)0.0580 (12)0.0039 (10)0.0028 (10)0.0025 (10)
O4A0.0558 (12)0.0596 (13)0.0618 (13)0.0065 (10)0.0066 (11)0.0011 (10)
C1A0.055 (2)0.059 (2)0.0442 (18)0.0101 (16)0.0194 (16)0.0078 (15)
C2A0.0409 (16)0.0434 (16)0.0435 (16)0.0030 (13)0.0157 (13)0.0015 (13)
C3A0.0446 (17)0.0492 (18)0.0479 (18)0.0023 (14)0.0129 (14)0.0027 (14)
C4A0.0491 (17)0.0413 (16)0.0515 (17)0.0026 (13)0.0132 (15)0.0009 (13)
C5A0.0420 (17)0.0535 (19)0.0498 (17)0.0078 (14)0.0095 (14)0.0018 (14)
C6A0.0468 (18)0.0459 (17)0.0530 (18)0.0022 (13)0.0120 (15)0.0059 (13)
C7A0.0444 (17)0.0441 (17)0.0520 (17)0.0035 (13)0.0215 (14)0.0037 (14)
C8A0.064 (2)0.0491 (18)0.0544 (18)0.0077 (14)0.0233 (16)0.0054 (14)
C9A0.069 (2)0.0492 (19)0.071 (2)0.0037 (15)0.0088 (17)0.0008 (15)
C10A0.068 (2)0.078 (2)0.069 (2)0.0022 (18)0.0115 (18)0.0118 (18)
O1B0.0522 (13)0.0547 (13)0.0659 (13)0.0078 (10)0.0111 (10)0.0179 (10)
O2B0.0443 (12)0.0910 (16)0.0590 (13)0.0001 (12)0.0020 (10)0.0168 (11)
O3B0.0514 (12)0.0544 (13)0.0538 (12)0.0078 (10)0.0018 (9)0.0017 (10)
O4B0.0504 (12)0.0478 (11)0.0521 (12)0.0024 (9)0.0089 (10)0.0010 (9)
C1B0.0381 (18)0.067 (2)0.0520 (19)0.0063 (15)0.0115 (15)0.0141 (15)
C2B0.0382 (16)0.0581 (18)0.0409 (16)0.0021 (14)0.0117 (13)0.0038 (14)
C3B0.0381 (16)0.0455 (17)0.0410 (16)0.0036 (13)0.0098 (13)0.0033 (13)
C4B0.0428 (16)0.0402 (16)0.0474 (16)0.0020 (13)0.0080 (14)0.0000 (13)
C5B0.0386 (16)0.0485 (18)0.0387 (15)0.0018 (13)0.0090 (13)0.0029 (13)
C6B0.0381 (16)0.0438 (16)0.0437 (16)0.0047 (12)0.0107 (13)0.0030 (12)
C7B0.0417 (16)0.0397 (16)0.0431 (15)0.0003 (13)0.0175 (13)0.0005 (13)
C8B0.0486 (18)0.0493 (18)0.0581 (18)0.0027 (14)0.0118 (14)0.0050 (14)
C9B0.064 (2)0.050 (2)0.068 (2)0.0100 (15)0.0074 (16)0.0063 (15)
C10B0.0473 (19)0.062 (2)0.0578 (19)0.0068 (15)0.0056 (15)0.0028 (15)
Geometric parameters (Å, º) top
O1A—C1A1.373 (3)O1B—C1B1.376 (3)
O1A—C8A1.437 (3)O1B—C8B1.434 (3)
O2A—C1A1.200 (3)O2B—C1B1.202 (3)
O3A—C3A1.346 (3)O3B—C3B1.357 (3)
O3A—C9A1.440 (3)O3B—C9B1.422 (3)
O4A—C5A1.355 (3)O4B—C5B1.354 (3)
O4A—C10A1.428 (3)O4B—C10B1.434 (3)
C1A—C2A1.458 (4)C1B—C2B1.463 (4)
C2A—C7A1.377 (3)C2B—C7B1.372 (3)
C2A—C3A1.410 (4)C2B—C3B1.400 (4)
C3A—C4A1.376 (3)C3B—C4B1.368 (3)
C4A—C5A1.408 (4)C4B—C5B1.393 (3)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.371 (4)C5B—C6B1.392 (4)
C6A—C7A1.374 (3)C6B—C7B1.373 (3)
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.495 (3)C7B—C8B1.497 (3)
C8A—H8A10.9700C8B—H8B10.9700
C8A—H8A20.9700C8B—H8B20.9700
C9A—H9A10.9599C9B—H9B10.9599
C9A—H9A20.9599C9B—H9B20.9599
C9A—H9A30.9599C9B—H9B30.9599
C10A—H10A0.9599C10B—H10D0.9599
C10A—H10B0.9599C10B—H10E0.9599
C10A—H10C0.9599C10B—H10F0.9599
C1A—O1A—C8A110.8 (2)C1B—O1B—C8B110.8 (2)
C3A—O3A—C9A116.7 (2)C3B—O3B—C9B117.3 (2)
C5A—O4A—C10A117.5 (2)C5B—O4B—C10B117.7 (2)
O2A—C1A—O1A120.2 (3)O2B—C1B—O1B120.0 (3)
O2A—C1A—C2A132.1 (3)O2B—C1B—C2B132.7 (3)
O1A—C1A—C2A107.7 (2)O1B—C1B—C2B107.3 (2)
C7A—C2A—C3A119.4 (2)C7B—C2B—C3B120.2 (2)
C7A—C2A—C1A108.8 (2)C7B—C2B—C1B109.1 (3)
C3A—C2A—C1A131.8 (3)C3B—C2B—C1B130.6 (3)
O3A—C3A—C4A125.1 (3)O3B—C3B—C4B124.3 (2)
O3A—C3A—C2A116.7 (2)O3B—C3B—C2B118.0 (2)
C4A—C3A—C2A118.2 (2)C4B—C3B—C2B117.7 (2)
C3A—C4A—C5A120.4 (3)C3B—C4B—C5B121.3 (2)
C3A—C4A—H4A119.8C3B—C4B—H4B119.4
C5A—C4A—H4A119.8C5B—C4B—H4B119.4
O4A—C5A—C6A124.8 (3)O4B—C5B—C6B123.7 (2)
O4A—C5A—C4A113.5 (2)O4B—C5B—C4B114.9 (2)
C6A—C5A—C4A121.6 (3)C6B—C5B—C4B121.3 (2)
C5A—C6A—C7A117.1 (2)C7B—C6B—C5B116.4 (2)
C5A—C6A—H6A121.5C7B—C6B—H6B121.8
C7A—C6A—H6A121.5C5B—C6B—H6B121.8
C6A—C7A—C2A123.3 (2)C2B—C7B—C6B123.1 (2)
C6A—C7A—C8A128.5 (3)C2B—C7B—C8B107.9 (2)
C2A—C7A—C8A108.2 (2)C6B—C7B—C8B129.0 (2)
O1A—C8A—C7A104.5 (2)O1B—C8B—C7B104.8 (2)
O1A—C8A—H8A1110.9O1B—C8B—H8B1110.8
C7A—C8A—H8A1110.9C7B—C8B—H8B1110.8
O1A—C8A—H8A2110.9O1B—C8B—H8B2110.8
C7A—C8A—H8A2110.9C7B—C8B—H8B2110.8
H8A1—C8A—H8A2108.9H8B1—C8B—H8B2108.9
O3A—C9A—H9A1109.5O3B—C9B—H9B1109.5
O3A—C9A—H9A2109.5O3B—C9B—H9B2109.5
H9A1—C9A—H9A2109.5H9B1—C9B—H9B2109.5
O3A—C9A—H9A3109.5O3B—C9B—H9B3109.5
H9A1—C9A—H9A3109.5H9B1—C9B—H9B3109.5
H9A2—C9A—H9A3109.5H9B2—C9B—H9B3109.5
O4A—C10A—H10A109.5O4B—C10B—H10D109.5
O4A—C10A—H10B109.5O4B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
O4A—C10A—H10C109.5O4B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C8A—O1A—C1A—O2A179.8 (2)C8B—O1B—C1B—O2B179.5 (2)
C8A—O1A—C1A—C2A0.5 (3)C8B—O1B—C1B—C2B1.5 (3)
O2A—C1A—C2A—C7A178.2 (3)O2B—C1B—C2B—C7B178.6 (3)
O1A—C1A—C2A—C7A1.0 (3)O1B—C1B—C2B—C7B0.3 (3)
O2A—C1A—C2A—C3A0.6 (5)O2B—C1B—C2B—C3B0.5 (5)
O1A—C1A—C2A—C3A179.8 (3)O1B—C1B—C2B—C3B178.5 (2)
C9A—O3A—C3A—C4A6.2 (4)C9B—O3B—C3B—C4B3.4 (4)
C9A—O3A—C3A—C2A172.6 (2)C9B—O3B—C3B—C2B177.8 (2)
C7A—C2A—C3A—O3A177.0 (2)C7B—C2B—C3B—O3B180.0 (2)
C1A—C2A—C3A—O3A4.3 (4)C1B—C2B—C3B—O3B2.0 (4)
C7A—C2A—C3A—C4A1.9 (4)C7B—C2B—C3B—C4B1.1 (4)
C1A—C2A—C3A—C4A176.8 (3)C1B—C2B—C3B—C4B179.1 (2)
O3A—C3A—C4A—C5A178.2 (2)O3B—C3B—C4B—C5B179.5 (2)
C2A—C3A—C4A—C5A0.6 (4)C2B—C3B—C4B—C5B0.7 (4)
C10A—O4A—C5A—C6A0.5 (4)C10B—O4B—C5B—C6B0.2 (4)
C10A—O4A—C5A—C4A179.9 (2)C10B—O4B—C5B—C4B179.1 (2)
C3A—C4A—C5A—O4A178.9 (2)C3B—C4B—C5B—O4B179.2 (2)
C3A—C4A—C5A—C6A0.7 (4)C3B—C4B—C5B—C6B0.2 (4)
O4A—C5A—C6A—C7A179.0 (2)O4B—C5B—C6B—C7B179.6 (2)
C4A—C5A—C6A—C7A0.6 (4)C4B—C5B—C6B—C7B0.8 (4)
C5A—C6A—C7A—C2A0.8 (4)C3B—C2B—C7B—C6B0.6 (4)
C5A—C6A—C7A—C8A179.5 (3)C1B—C2B—C7B—C6B179.0 (2)
C3A—C2A—C7A—C6A2.1 (4)C3B—C2B—C7B—C8B179.8 (2)
C1A—C2A—C7A—C6A176.9 (2)C1B—C2B—C7B—C8B1.8 (3)
C3A—C2A—C7A—C8A178.9 (2)C5B—C6B—C7B—C2B0.4 (4)
C1A—C2A—C7A—C8A2.1 (3)C5B—C6B—C7B—C8B178.7 (2)
C1A—O1A—C8A—C7A1.7 (3)C1B—O1B—C8B—C7B2.5 (3)
C6A—C7A—C8A—O1A176.6 (2)C2B—C7B—C8B—O1B2.6 (3)
C2A—C7A—C8A—O1A2.3 (3)C6B—C7B—C8B—O1B178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H6A···O1Bi0.932.513.397 (3)161
C8A—H8A1···O2Bii0.972.533.337 (3)140
C6B—H6B···O1Aiii0.932.443.325 (3)159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H10O4
Mr194.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.532 (3), 25.877 (10), 8.374 (3)
β (°) 104.322 (6)
V3)1791.5 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.12 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.987, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7489, 3216, 1766
Rint0.062
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.131, 0.93
No. of reflections3216
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H6A···O1Bi0.932.513.397 (3)160.7
C8A—H8A1···O2Bii0.972.533.337 (3)140.4
C6B—H6B···O1Aiii0.932.443.325 (3)158.6
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (20872179) and the Science and Technology Commission of Shanghai Municipality (STCSM) (08DZ1971504).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDang, Q., Brown, B. S., Poelje, P. D., Colby, T. J. & Erion, M. D. (1999). Bioorg. Med. Chem. Lett. 9, 1505–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFürstner, A., Thiel, O. R., Kindler, N. & Bartkowska, B. (2000). J. Org. Chem. 65, 7990–7995.  Web of Science PubMed Google Scholar
First citationLee, Y., Fujiwara, Y., Ujita, K., Nagatomo, M., Ohata, H. & Shimizu, I. (2001). Bull. Chem. Soc. Jpn, 74, 1437–1443.  Web of Science CrossRef CAS Google Scholar
First citationOrito, K., Miyazawa, M. & Suginome, H. (1995). Tetrahedron, 51, 2489–2496.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalapatra, B. & Monoj, K. R. (1980). Indian J. Chem. Sect. B, 19, 927–929.  Google Scholar
First citationZuo, L., Yao, S. Y. & Duan, W. H. (2008). Chin. J. Org. Chem. 28, 1982–1985.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds