inorganic compounds
Titanium germanium antimonide, TiGeSb
aDepartment of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
*Correspondence e-mail: arthur.mar@ualberta.ca
TiGeSb adopts the PbFCl- or ZrSiS-type structure, with Ti atoms (4mm symmetry) centred within monocapped square antiprisms generated by the stacking of denser square nets of Ge atoms (m2 symmetry) alternating with less dense square nets of Sb atoms (4mm symmetry).
Related literature
For PbFCl- or ZrSiS-type structures, see: Tremel & Hoffmann (1987). For a previous report on TiGeSb, see: Dashjav & Kleinke (2002). The Ti—Ge—Sb phase diagram at 670 K was reported by Kozlov & Pavlyuk (2004). For the related ZrGeSb, see: Lam & Mar (1997). For background to solid solutions in this class of compounds, see: Soheilnia et al. (2003); Kozlov & Pavlyuk (2004). Metallic radii were taken from Pauling (1960).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809031559/wm2247sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809031559/wm2247Isup2.hkl
A 0.25 g mixture of Ti (99.98%, Cerac), Ge (99.999%, Cerac), and Sb (99.995%, Aldrich) powders in a 1:1:3 molar ratio was placed in an evacuated fused-silica tube. The tube was heated at 873 K for 2 d and 1273 K for 2 d. Silver plate-shaped crystals were obtained, which were found by semiquantitative energy-dispersive X-ray (EDX) analysis to have a composition (at%) of 32 (2)% Ti, 35 (2)% Ge, and 33 (2)% Sb, in good agreement with the formula TiGeSb.
Analysis of Weissenberg photographs on a plate-shaped crystal, subsequently transferred to the four-circle diffractometer, established Laue symmetry 4/mmm and provided approximate cell parameters of a = 3.71 Å and c = 8.22 Å. In the final Fourier map based on origin choice 2 of
P4/nmm the maximum peak and deepest hole are located 0.67 Å and 0.02 Å, respectively, from the Sb atom.Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell
CAD-4-PC (Enraf–Nonius, 1993); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Projection of the TiGeSb structure approximately along the a axis. Displacement ellipsoids are drawn at the 90% probability level. |
TiGeSb | Dx = 7.146 Mg m−3 |
Mr = 242.24 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4/nmm | Cell parameters from 24 reflections |
Hall symbol: -P 4a 2a | θ = 11.0–23.3° |
a = 3.7022 (5) Å | µ = 28.18 mm−1 |
c = 8.2137 (12) Å | T = 295 K |
V = 112.58 (3) Å3 | Plate, silver |
Z = 2 | 0.12 × 0.11 × 0.01 mm |
F(000) = 210 |
Enraf–Nonius CAD-4 diffractometer | 178 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.125 |
Graphite monochromator | θmax = 34.8°, θmin = 2.5° |
θ/2θ scans | h = −5→5 |
Absorption correction: numerical (SHELXTL; Sheldrick, 2008) | k = −5→5 |
Tmin = 0.117, Tmax = 0.718 | l = −13→13 |
1906 measured reflections | 3 standard reflections every 120 min |
181 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.044P)2 + 0.3679P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max < 0.001 |
S = 1.17 | Δρmax = 1.95 e Å−3 |
181 reflections | Δρmin = −2.53 e Å−3 |
10 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.038 (9) |
TiGeSb | Z = 2 |
Mr = 242.24 | Mo Kα radiation |
Tetragonal, P4/nmm | µ = 28.18 mm−1 |
a = 3.7022 (5) Å | T = 295 K |
c = 8.2137 (12) Å | 0.12 × 0.11 × 0.01 mm |
V = 112.58 (3) Å3 |
Enraf–Nonius CAD-4 diffractometer | 178 reflections with I > 2σ(I) |
Absorption correction: numerical (SHELXTL; Sheldrick, 2008) | Rint = 0.125 |
Tmin = 0.117, Tmax = 0.718 | 3 standard reflections every 120 min |
1906 measured reflections | intensity decay: none |
181 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 10 parameters |
wR(F2) = 0.081 | 0 restraints |
S = 1.17 | Δρmax = 1.95 e Å−3 |
181 reflections | Δρmin = −2.53 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ti | 0.2500 | 0.2500 | 0.24875 (16) | 0.0054 (3) | |
Ge | 0.7500 | 0.2500 | 0.0000 | 0.0063 (3) | |
Sb | 0.2500 | 0.2500 | 0.61556 (6) | 0.0063 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti | 0.0060 (4) | 0.0060 (4) | 0.0043 (6) | 0.000 | 0.000 | 0.000 |
Ge | 0.0065 (4) | 0.0065 (4) | 0.0059 (4) | 0.000 | 0.000 | 0.000 |
Sb | 0.0056 (3) | 0.0056 (3) | 0.0076 (4) | 0.000 | 0.000 | 0.000 |
Ti—Gei | 2.7570 (10) | Ge—Geix | 2.6179 (3) |
Ti—Geii | 2.7570 (10) | Ge—Tii | 2.7570 (10) |
Ti—Geiii | 2.7570 (10) | Ge—Tix | 2.7570 (10) |
Ti—Ge | 2.7570 (10) | Ge—Tiiii | 2.7570 (10) |
Ti—Sbiv | 2.8452 (7) | Sb—Tiiv | 2.8452 (7) |
Ti—Sbv | 2.8452 (7) | Sb—Tiv | 2.8452 (7) |
Ti—Sbvi | 2.8452 (7) | Sb—Tivi | 2.8452 (7) |
Ti—Sbvii | 2.8452 (7) | Sb—Tivii | 2.8452 (7) |
Ti—Sb | 3.0129 (14) | Sb—Sbv | 3.2337 (7) |
Ge—Geviii | 2.6179 (4) | Sb—Sbiv | 3.2337 (7) |
Ge—Gei | 2.6179 (4) | Sb—Sbvii | 3.2337 (7) |
Ge—Geiii | 2.6179 (4) | Sb—Sbvi | 3.2337 (7) |
Gei—Ti—Geii | 56.69 (2) | Tii—Ge—Tix | 123.31 (2) |
Gei—Ti—Geiii | 84.35 (4) | Geviii—Ge—Ti | 118.344 (11) |
Geii—Ti—Geiii | 56.69 (2) | Gei—Ge—Ti | 61.656 (11) |
Gei—Ti—Ge | 56.69 (2) | Geiii—Ge—Ti | 61.656 (11) |
Geii—Ti—Ge | 84.35 (4) | Geix—Ge—Ti | 118.344 (11) |
Geiii—Ti—Ge | 56.69 (2) | Tii—Ge—Ti | 123.31 (2) |
Gei—Ti—Sbiv | 136.65 (2) | Tix—Ge—Ti | 84.35 (4) |
Geii—Ti—Sbiv | 136.65 (2) | Geviii—Ge—Tiiii | 61.656 (11) |
Geiii—Ti—Sbiv | 81.574 (14) | Gei—Ge—Tiiii | 118.344 (11) |
Ge—Ti—Sbiv | 81.574 (14) | Geiii—Ge—Tiiii | 61.656 (11) |
Gei—Ti—Sbv | 81.574 (14) | Geix—Ge—Tiiii | 118.344 (11) |
Geii—Ti—Sbv | 81.574 (14) | Tii—Ge—Tiiii | 84.35 (4) |
Geiii—Ti—Sbv | 136.65 (2) | Tix—Ge—Tiiii | 123.31 (2) |
Ge—Ti—Sbv | 136.65 (2) | Ti—Ge—Tiiii | 123.31 (2) |
Sbiv—Ti—Sbv | 133.88 (5) | Tiiv—Sb—Tiv | 133.88 (5) |
Gei—Ti—Sbvi | 136.65 (2) | Tiiv—Sb—Tivi | 81.17 (2) |
Geii—Ti—Sbvi | 81.574 (14) | Tiv—Sb—Tivi | 81.17 (2) |
Geiii—Ti—Sbvi | 81.574 (14) | Tiiv—Sb—Tivii | 81.17 (2) |
Ge—Ti—Sbvi | 136.65 (2) | Tiv—Sb—Tivii | 81.17 (2) |
Sbiv—Ti—Sbvi | 81.17 (2) | Tivi—Sb—Tivii | 133.88 (5) |
Sbv—Ti—Sbvi | 81.17 (2) | Tiiv—Sb—Ti | 113.06 (3) |
Gei—Ti—Sbvii | 81.574 (14) | Tiv—Sb—Ti | 113.06 (3) |
Geii—Ti—Sbvii | 136.65 (2) | Tivi—Sb—Ti | 113.06 (3) |
Geiii—Ti—Sbvii | 136.65 (2) | Tivii—Sb—Ti | 113.06 (3) |
Ge—Ti—Sbvii | 81.574 (14) | Tiiv—Sb—Sbv | 167.11 (4) |
Sbiv—Ti—Sbvii | 81.17 (2) | Tiv—Sb—Sbv | 59.01 (3) |
Sbv—Ti—Sbvii | 81.17 (2) | Tivi—Sb—Sbv | 103.295 (14) |
Sbvi—Ti—Sbvii | 133.88 (5) | Tivii—Sb—Sbv | 103.295 (14) |
Gei—Ti—Sb | 137.823 (19) | Ti—Sb—Sbv | 54.051 (16) |
Geii—Ti—Sb | 137.823 (19) | Tiiv—Sb—Sbiv | 59.01 (3) |
Geiii—Ti—Sb | 137.823 (19) | Tiv—Sb—Sbiv | 167.11 (4) |
Ge—Ti—Sb | 137.823 (19) | Tivi—Sb—Sbiv | 103.295 (14) |
Sbiv—Ti—Sb | 66.94 (3) | Tivii—Sb—Sbiv | 103.295 (14) |
Sbv—Ti—Sb | 66.94 (3) | Ti—Sb—Sbiv | 54.051 (16) |
Sbvi—Ti—Sb | 66.94 (3) | Sbv—Sb—Sbiv | 108.10 (3) |
Sbvii—Ti—Sb | 66.94 (3) | Tiiv—Sb—Sbvii | 103.295 (14) |
Geviii—Ge—Gei | 180.0 | Tiv—Sb—Sbvii | 103.295 (14) |
Geviii—Ge—Geiii | 90.0 | Tivi—Sb—Sbvii | 167.11 (4) |
Gei—Ge—Geiii | 90.0 | Tivii—Sb—Sbvii | 59.01 (3) |
Geviii—Ge—Geix | 90.0 | Ti—Sb—Sbvii | 54.051 (16) |
Gei—Ge—Geix | 90.0 | Sbv—Sb—Sbvii | 69.840 (16) |
Geiii—Ge—Geix | 180.0 | Sbiv—Sb—Sbvii | 69.840 (16) |
Geviii—Ge—Tii | 118.344 (11) | Tiiv—Sb—Sbvi | 103.295 (14) |
Gei—Ge—Tii | 61.656 (11) | Tiv—Sb—Sbvi | 103.295 (14) |
Geiii—Ge—Tii | 118.344 (11) | Tivi—Sb—Sbvi | 59.01 (3) |
Geix—Ge—Tii | 61.656 (11) | Tivii—Sb—Sbvi | 167.11 (4) |
Geviii—Ge—Tix | 61.656 (11) | Ti—Sb—Sbvi | 54.051 (16) |
Gei—Ge—Tix | 118.344 (11) | Sbv—Sb—Sbvi | 69.840 (16) |
Geiii—Ge—Tix | 118.344 (11) | Sbiv—Sb—Sbvi | 69.840 (16) |
Geix—Ge—Tix | 61.656 (11) | Sbvii—Sb—Sbvi | 108.10 (3) |
Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x, −y, −z+1; (vi) −x, −y+1, −z+1; (vii) −x+1, −y, −z+1; (viii) −x+2, −y+1, −z; (ix) −x+2, −y, −z; (x) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | TiGeSb |
Mr | 242.24 |
Crystal system, space group | Tetragonal, P4/nmm |
Temperature (K) | 295 |
a, c (Å) | 3.7022 (5), 8.2137 (12) |
V (Å3) | 112.58 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 28.18 |
Crystal size (mm) | 0.12 × 0.11 × 0.01 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | Numerical (SHELXTL; Sheldrick, 2008) |
Tmin, Tmax | 0.117, 0.718 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1906, 181, 178 |
Rint | 0.125 |
(sin θ/λ)max (Å−1) | 0.803 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.081, 1.17 |
No. of reflections | 181 |
No. of parameters | 10 |
Δρmax, Δρmin (e Å−3) | 1.95, −2.53 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1993), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008), ATOMS (Dowty, 1999).
Ti—Ge | 2.7570 (10) | Ti—Sb | 3.0129 (14) |
Ti—Sbi | 2.8452 (7) | Ge—Geii | 2.6179 (4) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z. |
Acknowledgements
The Natural Sciences and Engineering Research Council of Canada supported this work.
References
Dashjav, E. & Kleinke, H. (2002). Z. Anorg. Allg. Chem. 628, 2176. CrossRef Google Scholar
Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Enraf–Nonius (1993). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kozlov, A. Yu. & Pavlyuk, V. V. (2004). J. Alloys Compd, 367, 76–79. Web of Science CrossRef CAS Google Scholar
Lam, R. & Mar, A. (1997). J. Solid State Chem. 134, 388–394. Web of Science CrossRef CAS Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soheilnia, N., Assoud, A. & Kleinke, H. (2003). Inorg. Chem. 42, 7319–7325. Web of Science CrossRef PubMed CAS Google Scholar
Tremel, W. & Hoffmann, M. (1987). J. Am. Chem. Soc. 109, 124–140. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
After a report of the ternary antimonide ZrGeSb (Lam & Mar, 1997), the corresponding Ti and Hf analogues were later described in a conference proceeding, but full crystallographic details have not been forthcoming (Dashjav & Kleinke, 2002). The complete structure of TiGeSb, which is absent in the Ti—Ge—Sb phase diagram at 670 K (Kozlov & Pavlyuk, 2004) but was prepared here at 1273 K, is presented. Common to many equiatomic compounds of the formulation MAB (M = large transition-metal atom; A, B = main group atoms), TiGeSb adopts the PbFCl- or ZrSiS-type structure, among other names (Tremel & Hoffmann, 1987). Square nets of each type of atom, with the Ge net being twice as dense as the other two, are stacked along the c axis (Fig. 1). The Zr atoms are nine-coordinate, centred within monocapped square antiprisms. The Ge–Ge distances are 0.13 Å longer than the sum of the Pauling metallic radii (2.48 Å; Pauling, 1960), indicative of weak polyanionic bonding. The solid solutions ZrGexSb1-x and HfGexSb1-x (up to x = 0.2) form related orthorhombic PbCl2-type structures (Soheilnia et al., 2003), whereas TiGexSb1-x adopts a NiAs-type structure (Kozlov & Pavlyuk, 2004).