metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1124-m1125

{1,1′-[(2,2-Di­methyl­propane-1,3-di­yl)bis­­(nitrilo­methyl­­idyne)]di-2-naphthol­ato}dioxidomolybdenum(VI) di­chloro­methane 1.75-solvate

aChemistry Department, Shahid Bahonar University of Kerman, Kerman, Iran, bChemistry Department, Birjand University, Birjand, Iran, and cInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: i_shoaie@yahoo.com

(Received 11 August 2009; accepted 17 August 2009; online 22 August 2009)

In the crystal structure of the title compound, [Mo(C27H24N2O2)O2]·1.75CH2Cl2, the MoVI ion is coordinated by two oxide O atoms and by two O and two N atoms of the tetra­dentate 1,1′-[(2,2-dimethyl­propane-1,3-di­yl)bis­(nitrilo­methyl­idyne)]di-2-naphtholate Schiff base ligand in a distorted octa­hedral configuration. The compound crystallizes with 1.75 mol­ecules of dichloro­methane per complex mol­ecule. In the crystal, symmetry-related mol­ecules are linked by a number of C—H⋯O inter­actions involving both the Schiff base ligand and the partly disordered dichloro­methane solvent mol­ecules, leading to the formation of a two-dimensional network extending parallel to (101).

Related literature

For the chemistry of molybdenum(VI)–Schiff base complexes and related structures with O=Mo=O units (metal oxidation state +VI), see: Abbasi et al. (2008[Abbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036.]); Arnaiz et al. (2000[Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141-2147.]); Holm et al. (1996[Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Maurya et al. (1997[Maurya, M. R., Jayaswal, M. N., Puranik, V. G., Chakrabarti, P., Gopinathan, S. & Gopinathan, C. (1997). Polyhedron, 16, 3977-3983.]); Nakayima et al. (1998[Nakayima, K., Yokoyama, K., Kano, T. & Kojima, M. (1998). Inorg. Chim. Acta, 282, 209-216.]); Rao et al. (1998[Rao, C. P., Sreedhara, A., Rao, P. V., Lokanath, N. K., Sridhar, M. A., Prasad, J. S. & Rissanen, K. (1998). Polyhedron, 18, 289-297.]); Sheikhshoaie et al. (2009[Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733-738.]); Syamal & Maurya (1989[Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183-238.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C27H24N2O2)O2]·1.75CH2Cl2

  • Mr = 685.04

  • Monoclinic, C 2/c

  • a = 27.6049 (18) Å

  • b = 10.7743 (8) Å

  • c = 21.6474 (14) Å

  • β = 112.861 (7)°

  • V = 5932.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 173 K

  • 0.38 × 0.23 × 0.18 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.833, Tmax = 0.864

  • 21863 measured reflections

  • 5537 independent reflections

  • 4789 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.106

  • S = 1.12

  • 5537 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O1 2.0888 (19)
Mo1—O2 1.957 (2)
Mo1—O3 1.702 (2)
Mo1—O4 1.713 (2)
Mo1—N1 2.118 (2)
Mo1—N2 2.297 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.43 3.328 (5) 159
C11—H11⋯O4ii 0.95 2.38 3.297 (3) 161
C12—H12A⋯O4 0.99 2.47 2.974 (4) 111
C27—H27A⋯O3ii 0.98 2.55 3.490 (4) 161
C28—H28A⋯O2iii 0.99 2.40 3.213 (5) 139
C28—H28A⋯O4iii 0.99 2.53 3.429 (6) 151
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL in IPDS-I (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Numerous molybdenum(VI) Schiff base complexes have been extensively investigated for over the past twenty years, due to their importance in the domains of stereochemistry (Maurya et al., 1997), structural chemistry (Nakayima, et al., 1998; Syamal & Maurya, 1989), analytical chemistry (Rao et al., 1998), bioinorganic chemistry (Holm et al., 1996), and oxidation catalysis (Abbasi et al., 2008; Arnaiz et al., 2000; Sheikhshoaie et al., 2009). Continuing our interest in the structural chemistry of dioxidomolybdenum(VI) Schiff base complexes, we have synthesized and structurally characterized the title compound.

The molecular structure of the title complex is illustrated in Fig. 1, and geometrical parameters are available in the archived CIF. The MoVI atom is in a distorted octahedral environment being coordinated by two oxido O atoms (O1 and O2) and four atoms (two oxygen and two nitrogen atoms) of the tetradentate Schiff base ligand 1,1'-[(2,2-dimethylpropane-1,3-diyl)bis(nitrilomethylidyne)]di-2-naphtholate. The Mo—O distances of the oxido ligands (Mo1O3 and Mo1O4) are significantly shorter [1.702 (2) and 1.713 (2) Å, respectively] than the corresponding Mo—O distances to the O-atoms (O2 and O1) of the tetradentate Schiff base ligand, 1.957 (2) and 2.0888 (19) Å, respectively. The Mo—N distances, to atoms N1 and N2, are even longer being 2.118 (2) and 2.297 (2) Å, respectively.

In the crystal, molecules are linked by a number of C—H···O interactions, involving both the Schiff base ligand and the solvent molecules of crystallization, leading to the formation of a two-dimensional network extending in the (101) plane (Table 1 and Fig. 2).

Related literature top

For the chemistry of molybdenum(VI)–Schiff base complexes and related structures with OMoO units (metal oxidation state +VI), see: Abbasi et al. (2008); Arnaiz et al. (2000); Holm et al. (1996); Maurya et al. (1997); Nakayima et al. (1998); Rao et al. (1998); Sheikhshoaie et al. (2009); Syamal & Maurya (1989).

Experimental top

The title dioxidomolybdenum (VI) complex was prepared by mixing MoO2(acac)2 with the ligand, 2,2'-[(2,2-dimethylpropane-1,3-diyl)bis(nitrilomethylidyne)]-dinaphtholate, in a 1:1 molar ratio using 25 ml of dry methanol as solvent, followed by refluxing the solution for 3 h. The small reddish crystals that formed were filtered off and recrystallized from dichloromethane.

Refinement top

All H-atoms were placed in the calculated positions and treated as riding atoms: C—H = 0.95 - 0.99 Å with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for aromatic H-atoms, and 1.5 for methyl H-atoms. The compound crystallizes with 1.75 molecules of dichloromethane per molecule of complex. In one of these molecules a chlorine atom (Cl1A/Cl1B) is positionally disordered with occupancies of 0.75/0.25. Using the one-circle Stoe Image Plate Diffraction System it is not possible to measure 100% of the Ewald sphere, and here only 95% was accessible.

Computing details top

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000); cell refinement: CELL in IPDS-I (Stoe & Cie, 2000); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, with the thermal ellipsoids drawn at the 50% probability level. The dichloromethane molecules of crystallization have been omitted for clarity.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title complex. The H-atoms not involved in C—H···O interactions (dotted blue lines) were omitted for clarity.
{1,1'-[(2,2-Dimethylpropane-1,3-diyl)bis(nitrilomethylidyne)]di-2- naphtholato}dioxidomolybdenum(VI) dichloromethane 1.75-solvate top
Crystal data top
[Mo(C27H24N2O2)O2]·1.75CH2Cl2F(000) = 2780
Mr = 685.04Dx = 1.534 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7998 reflections
a = 27.6049 (18) Åθ = 2.0–26.1°
b = 10.7743 (8) ŵ = 0.79 mm1
c = 21.6474 (14) ÅT = 173 K
β = 112.861 (7)°Block, red
V = 5932.7 (7) Å30.38 × 0.23 × 0.18 mm
Z = 8
Data collection top
Stoe IPDS
diffractometer
5537 independent reflections
Radiation source: fine-focus sealed tube4789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ rotation scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 3333
Tmin = 0.833, Tmax = 0.864k = 1313
21863 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0575P)2 + 13.6226P]
where P = (Fo2 + 2Fc2)/3
5537 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Mo(C27H24N2O2)O2]·1.75CH2Cl2V = 5932.7 (7) Å3
Mr = 685.04Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.6049 (18) ŵ = 0.79 mm1
b = 10.7743 (8) ÅT = 173 K
c = 21.6474 (14) Å0.38 × 0.23 × 0.18 mm
β = 112.861 (7)°
Data collection top
Stoe IPDS
diffractometer
5537 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
4789 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.864Rint = 0.024
21863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0575P)2 + 13.6226P]
where P = (Fo2 + 2Fc2)/3
5537 reflectionsΔρmax = 1.08 e Å3
372 parametersΔρmin = 0.83 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.15195 (1)0.99201 (2)0.16605 (1)0.0203 (1)
O10.11880 (7)0.83854 (17)0.10537 (10)0.0244 (5)
O20.07965 (7)1.05359 (17)0.13420 (10)0.0243 (5)
O30.17351 (8)1.04666 (19)0.10747 (10)0.0294 (6)
O40.18137 (8)1.08694 (18)0.23387 (10)0.0292 (6)
N10.21210 (9)0.8581 (2)0.20744 (11)0.0230 (7)
N20.11991 (9)0.8840 (2)0.23353 (11)0.0226 (6)
C10.14254 (11)0.7716 (2)0.07556 (14)0.0240 (8)
C20.11155 (12)0.7170 (3)0.01261 (15)0.0320 (9)
C30.13435 (13)0.6494 (3)0.02156 (16)0.0351 (9)
C40.18908 (13)0.6260 (3)0.00395 (15)0.0297 (9)
C50.21229 (15)0.5592 (3)0.03334 (16)0.0359 (10)
C60.26506 (15)0.5380 (3)0.00885 (17)0.0378 (10)
C70.29652 (14)0.5838 (3)0.05388 (18)0.0373 (10)
C80.27554 (13)0.6506 (3)0.09176 (16)0.0312 (9)
C90.22085 (12)0.6729 (2)0.06788 (14)0.0258 (8)
C100.19693 (11)0.7471 (2)0.10402 (14)0.0240 (8)
C110.22523 (11)0.7765 (2)0.17248 (14)0.0236 (8)
C120.23835 (11)0.8489 (3)0.28089 (14)0.0259 (8)
C130.20409 (11)0.7852 (3)0.31281 (14)0.0264 (8)
C140.15487 (11)0.8626 (3)0.30383 (14)0.0265 (8)
C150.07193 (11)0.8512 (2)0.21471 (14)0.0243 (8)
C160.03019 (11)0.8852 (3)0.15189 (14)0.0237 (8)
C170.01851 (11)0.8180 (3)0.12751 (14)0.0258 (8)
C180.02482 (13)0.7013 (3)0.15323 (16)0.0317 (9)
C190.07116 (14)0.6372 (3)0.12614 (18)0.0396 (11)
C200.11356 (13)0.6855 (3)0.07190 (19)0.0412 (11)
C210.10943 (12)0.7981 (3)0.04577 (16)0.0347 (9)
C220.06213 (11)0.8663 (3)0.07250 (15)0.0277 (8)
C230.05656 (12)0.9810 (3)0.04395 (16)0.0311 (9)
C240.00985 (11)1.0411 (3)0.06555 (15)0.0276 (8)
C250.03480 (11)0.9914 (2)0.11817 (15)0.0231 (8)
C260.18840 (13)0.6549 (3)0.28459 (17)0.0347 (9)
C270.23717 (13)0.7789 (3)0.38843 (15)0.0342 (9)
Cl1A0.11134 (12)0.36651 (18)0.28031 (10)0.1016 (8)0.800
Cl20.06716 (6)0.14580 (16)0.31642 (8)0.0913 (6)
C280.0768 (2)0.2286 (5)0.2529 (2)0.0657 (17)
Cl1B0.0605 (5)0.3839 (7)0.2649 (4)0.102 (4)0.200
Cl30.02059 (6)0.4230 (2)0.09019 (10)0.0919 (8)0.750
Cl40.13068 (6)0.4167 (3)0.11352 (11)0.0993 (8)0.750
C290.0693 (3)0.3744 (8)0.0643 (4)0.088 (3)0.750
H20.074500.728000.005600.0380*
H30.112800.616600.064200.0420*
H50.190700.528300.076400.0430*
H60.280200.492400.034400.0450*
H70.333300.568800.071000.0450*
H80.298000.681900.134300.0370*
H110.257000.732200.195100.0280*
H12A0.247500.933300.299900.0310*
H12B0.271500.801500.292400.0310*
H14A0.134800.819500.326700.0320*
H14B0.166200.943800.326100.0320*
H150.062800.800300.244400.0290*
H180.003600.666700.190000.0380*
H190.074500.559000.144400.0480*
H200.145400.639800.053200.0490*
H210.138600.830900.009300.0420*
H230.086101.016400.009100.0370*
H240.006901.117400.045300.0330*
H26A0.220100.605300.292900.0520*
H26B0.167800.659900.236200.0520*
H26C0.167200.615600.306500.0520*
H27A0.268500.728000.396500.0510*
H27B0.247900.862900.405700.0510*
H27C0.216200.741900.411300.0510*
H28A0.096200.175600.232900.0790*0.800
H28B0.042100.247800.217300.0790*0.800
H28C0.112400.217500.255300.0790*0.200
H28D0.052300.201200.209200.0790*0.200
H29A0.068100.282700.061000.1060*0.750
H29B0.061400.407400.018700.1060*0.750
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0189 (1)0.0204 (1)0.0216 (1)0.0010 (1)0.0080 (1)0.0015 (1)
O10.0227 (9)0.0256 (9)0.0249 (10)0.0011 (7)0.0092 (8)0.0046 (7)
O20.0215 (9)0.0231 (9)0.0287 (10)0.0001 (7)0.0103 (8)0.0010 (8)
O30.0272 (10)0.0320 (11)0.0308 (11)0.0018 (8)0.0133 (9)0.0012 (8)
O40.0278 (10)0.0257 (10)0.0315 (11)0.0013 (8)0.0086 (9)0.0053 (8)
N10.0193 (11)0.0271 (12)0.0220 (11)0.0005 (9)0.0074 (9)0.0015 (9)
N20.0246 (11)0.0235 (11)0.0205 (11)0.0036 (9)0.0097 (10)0.0005 (9)
C10.0292 (14)0.0198 (12)0.0249 (13)0.0016 (10)0.0127 (12)0.0000 (10)
C20.0312 (15)0.0290 (15)0.0301 (15)0.0010 (12)0.0058 (13)0.0057 (12)
C30.0465 (18)0.0275 (15)0.0261 (15)0.0007 (13)0.0086 (14)0.0046 (11)
C40.0446 (17)0.0215 (13)0.0280 (14)0.0004 (12)0.0196 (14)0.0005 (11)
C50.060 (2)0.0229 (14)0.0318 (16)0.0016 (13)0.0254 (16)0.0004 (12)
C60.062 (2)0.0243 (14)0.0428 (18)0.0024 (14)0.0375 (18)0.0004 (13)
C70.0467 (19)0.0271 (15)0.0501 (19)0.0051 (13)0.0318 (17)0.0059 (13)
C80.0372 (16)0.0276 (14)0.0352 (16)0.0024 (12)0.0212 (14)0.0019 (12)
C90.0358 (15)0.0181 (12)0.0290 (14)0.0015 (11)0.0186 (13)0.0029 (10)
C100.0277 (14)0.0205 (12)0.0243 (13)0.0003 (10)0.0107 (12)0.0001 (10)
C110.0215 (13)0.0247 (13)0.0278 (14)0.0021 (10)0.0132 (12)0.0015 (10)
C120.0224 (13)0.0310 (14)0.0203 (13)0.0046 (11)0.0038 (11)0.0023 (11)
C130.0263 (14)0.0291 (14)0.0221 (13)0.0048 (11)0.0077 (12)0.0005 (11)
C140.0271 (14)0.0318 (14)0.0206 (13)0.0033 (11)0.0094 (12)0.0012 (11)
C150.0267 (14)0.0241 (13)0.0257 (14)0.0008 (10)0.0141 (12)0.0019 (10)
C160.0222 (13)0.0257 (13)0.0243 (13)0.0024 (10)0.0104 (11)0.0016 (10)
C170.0267 (14)0.0285 (14)0.0252 (14)0.0004 (11)0.0133 (12)0.0051 (11)
C180.0350 (16)0.0318 (15)0.0327 (16)0.0036 (12)0.0180 (14)0.0024 (12)
C190.0454 (19)0.0353 (17)0.0453 (19)0.0133 (14)0.0254 (17)0.0073 (14)
C200.0330 (17)0.0463 (19)0.0472 (19)0.0173 (14)0.0188 (16)0.0143 (15)
C210.0243 (14)0.0477 (18)0.0331 (16)0.0042 (13)0.0121 (13)0.0106 (14)
C220.0216 (13)0.0359 (15)0.0274 (14)0.0016 (11)0.0116 (12)0.0072 (12)
C230.0238 (14)0.0383 (16)0.0279 (15)0.0042 (12)0.0065 (13)0.0009 (12)
C240.0261 (14)0.0284 (14)0.0283 (14)0.0043 (11)0.0106 (12)0.0036 (11)
C250.0209 (13)0.0230 (13)0.0263 (14)0.0011 (10)0.0101 (12)0.0035 (10)
C260.0378 (17)0.0294 (15)0.0369 (17)0.0023 (13)0.0145 (14)0.0008 (12)
C270.0332 (16)0.0433 (18)0.0248 (15)0.0124 (13)0.0097 (13)0.0043 (12)
Cl1A0.150 (2)0.0683 (11)0.0748 (11)0.0216 (12)0.0309 (13)0.0188 (9)
Cl20.0686 (8)0.1124 (12)0.0813 (9)0.0082 (8)0.0163 (7)0.0270 (8)
C280.067 (3)0.073 (3)0.064 (3)0.009 (2)0.033 (2)0.027 (2)
Cl1B0.166 (9)0.060 (4)0.073 (4)0.011 (5)0.040 (5)0.022 (3)
Cl30.0444 (8)0.150 (2)0.0799 (12)0.0113 (10)0.0225 (8)0.0222 (12)
Cl40.0402 (8)0.157 (2)0.0875 (13)0.0037 (10)0.0105 (8)0.0133 (13)
C290.057 (4)0.114 (6)0.100 (6)0.009 (4)0.038 (4)0.048 (5)
Geometric parameters (Å, º) top
Mo1—O12.0888 (19)C18—C191.369 (5)
Mo1—O21.957 (2)C19—C201.397 (5)
Mo1—O31.702 (2)C20—C211.362 (5)
Mo1—O41.713 (2)C21—C221.412 (5)
Mo1—N12.118 (2)C22—C231.417 (5)
Mo1—N22.297 (2)C23—C241.354 (5)
Cl1A—C281.741 (6)C24—C251.419 (4)
Cl1B—C281.778 (10)C2—H20.9500
Cl2—C281.744 (5)C3—H30.9500
Cl3—C291.727 (9)C5—H50.9500
Cl4—C291.677 (9)C6—H60.9500
O1—C11.302 (3)C7—H70.9500
O2—C251.330 (4)C8—H80.9500
N1—C121.472 (4)C11—H110.9500
N1—C111.300 (4)C12—H12A0.9900
N2—C141.470 (4)C12—H12B0.9900
N2—C151.275 (4)C14—H14B0.9900
C1—C101.409 (4)C14—H14A0.9900
C1—C21.425 (4)C15—H150.9500
C2—C31.355 (5)C18—H180.9500
C3—C41.415 (5)C19—H190.9500
C4—C51.408 (5)C20—H200.9500
C4—C91.413 (4)C21—H210.9500
C5—C61.362 (6)C23—H230.9500
C6—C71.388 (5)C24—H240.9500
C7—C81.377 (5)C26—H26C0.9800
C8—C91.413 (5)C26—H26B0.9800
C9—C101.445 (4)C26—H26A0.9800
C10—C111.417 (4)C27—H27A0.9800
C12—C131.533 (4)C27—H27B0.9800
C13—C261.525 (5)C27—H27C0.9800
C13—C271.535 (4)C28—H28A0.9900
C13—C141.541 (5)C28—H28D0.9700
C15—C161.447 (4)C28—H28B0.9900
C16—C251.389 (4)C28—H28C0.9700
C16—C171.435 (5)C29—H29A0.9900
C17—C181.413 (5)C29—H29B0.9900
C17—C221.423 (4)
O1—Mo1—O284.79 (8)C1—C2—H2120.00
O1—Mo1—O390.00 (9)C3—C2—H2120.00
O1—Mo1—O4163.25 (9)C2—C3—H3119.00
O1—Mo1—N178.85 (8)C4—C3—H3119.00
O1—Mo1—N279.39 (8)C4—C5—H5119.00
O2—Mo1—O3102.96 (10)C6—C5—H5119.00
O2—Mo1—O4100.28 (10)C5—C6—H6120.00
O2—Mo1—N1154.77 (9)C7—C6—H6120.00
O2—Mo1—N278.68 (9)C6—C7—H7119.00
O3—Mo1—O4104.21 (10)C8—C7—H7119.00
O3—Mo1—N196.16 (10)C7—C8—H8120.00
O3—Mo1—N2169.12 (9)C9—C8—H8120.00
O4—Mo1—N190.65 (9)N1—C11—H11117.00
O4—Mo1—N285.92 (9)C10—C11—H11117.00
N1—Mo1—N279.52 (9)N1—C12—H12A109.00
Mo1—O1—C1124.64 (18)N1—C12—H12B109.00
Mo1—O2—C25129.78 (16)C13—C12—H12A109.00
Mo1—N1—C11124.36 (19)C13—C12—H12B109.00
Mo1—N1—C12118.61 (18)H12A—C12—H12B108.00
C11—N1—C12116.8 (2)N2—C14—H14A109.00
Mo1—N2—C14118.55 (19)N2—C14—H14B109.00
Mo1—N2—C15123.10 (18)C13—C14—H14A109.00
C14—N2—C15118.0 (2)C13—C14—H14B109.00
O1—C1—C2118.2 (3)H14A—C14—H14B108.00
O1—C1—C10122.9 (2)N2—C15—H15117.00
C2—C1—C10118.9 (3)C16—C15—H15117.00
C1—C2—C3120.7 (3)C17—C18—H18119.00
C2—C3—C4122.3 (3)C19—C18—H18119.00
C3—C4—C5121.5 (3)C18—C19—H19120.00
C3—C4—C9118.7 (3)C20—C19—H19120.00
C5—C4—C9119.8 (3)C19—C20—H20120.00
C4—C5—C6121.3 (3)C21—C20—H20120.00
C5—C6—C7119.3 (3)C20—C21—H21120.00
C6—C7—C8121.4 (4)C22—C21—H21120.00
C7—C8—C9120.5 (3)C22—C23—H23119.00
C4—C9—C8117.8 (3)C24—C23—H23119.00
C4—C9—C10119.2 (3)C23—C24—H24120.00
C8—C9—C10122.9 (3)C25—C24—H24120.00
C1—C10—C9120.0 (3)C13—C26—H26A110.00
C1—C10—C11118.5 (3)C13—C26—H26B110.00
C9—C10—C11120.5 (3)C13—C26—H26C109.00
N1—C11—C10126.5 (3)H26A—C26—H26B109.00
N1—C12—C13112.7 (2)H26A—C26—H26C109.00
C12—C13—C14111.7 (3)H26B—C26—H26C109.00
C12—C13—C26111.1 (3)C13—C27—H27A109.00
C12—C13—C27106.6 (3)C13—C27—H27B109.00
C14—C13—C26110.4 (3)C13—C27—H27C109.00
C14—C13—C27106.8 (2)H27A—C27—H27B109.00
C26—C13—C27110.2 (3)H27A—C27—H27C110.00
N2—C14—C13114.1 (2)H27B—C27—H27C109.00
N2—C15—C16125.4 (3)Cl1A—C28—Cl2113.5 (2)
C15—C16—C17120.5 (3)Cl1B—C28—Cl2104.0 (4)
C15—C16—C25120.0 (3)Cl1A—C28—H28A109.00
C17—C16—C25119.1 (3)Cl1A—C28—H28B109.00
C16—C17—C18123.1 (3)Cl2—C28—H28A109.00
C16—C17—C22119.4 (3)Cl2—C28—H28B109.00
C18—C17—C22117.5 (3)Cl2—C28—H28C111.00
C17—C18—C19121.2 (3)Cl2—C28—H28D111.00
C18—C19—C20120.7 (3)Cl1B—C28—H28C115.00
C19—C20—C21120.2 (3)Cl1B—C28—H28D108.00
C20—C21—C22120.5 (3)H28A—C28—H28B108.00
C17—C22—C21120.0 (3)H28C—C28—H28D109.00
C17—C22—C23119.0 (3)Cl3—C29—Cl4115.7 (5)
C21—C22—C23121.0 (3)Cl3—C29—H29A109.00
C22—C23—C24121.1 (3)Cl3—C29—H29B108.00
C23—C24—C25120.7 (3)Cl4—C29—H29A108.00
O2—C25—C16123.0 (3)Cl4—C29—H29B108.00
O2—C25—C24116.7 (2)H29A—C29—H29B107.00
C16—C25—C24120.3 (3)
O2—Mo1—O1—C1149.5 (2)C9—C4—C5—C60.4 (5)
O3—Mo1—O1—C146.5 (2)C3—C4—C9—C8178.7 (3)
N1—Mo1—O1—C149.8 (2)C3—C4—C9—C102.4 (4)
N2—Mo1—O1—C1131.1 (2)C5—C4—C9—C80.3 (4)
O1—Mo1—O2—C2533.1 (2)C5—C4—C9—C10176.6 (3)
O3—Mo1—O2—C25121.9 (2)C4—C5—C6—C70.4 (5)
O4—Mo1—O2—C25130.7 (2)C5—C6—C7—C80.3 (5)
N1—Mo1—O2—C2516.4 (4)C6—C7—C8—C90.9 (5)
N2—Mo1—O2—C2547.1 (2)C7—C8—C9—C40.9 (4)
O1—Mo1—N1—C1137.9 (2)C7—C8—C9—C10177.1 (3)
O1—Mo1—N1—C12137.0 (2)C4—C9—C10—C10.2 (4)
O2—Mo1—N1—C1188.4 (3)C4—C9—C10—C11168.5 (3)
O2—Mo1—N1—C1286.5 (3)C8—C9—C10—C1176.3 (3)
O3—Mo1—N1—C1150.9 (2)C8—C9—C10—C1115.4 (4)
O3—Mo1—N1—C12134.2 (2)C1—C10—C11—N123.9 (4)
O4—Mo1—N1—C11155.3 (2)C9—C10—C11—N1167.7 (3)
O4—Mo1—N1—C1229.9 (2)N1—C12—C13—C1465.6 (3)
N2—Mo1—N1—C11119.0 (2)N1—C12—C13—C2658.2 (3)
N2—Mo1—N1—C1255.9 (2)N1—C12—C13—C27178.2 (2)
O1—Mo1—N2—C14131.0 (2)C12—C13—C14—N260.7 (3)
O1—Mo1—N2—C1555.5 (2)C26—C13—C14—N263.5 (3)
O2—Mo1—N2—C14142.3 (2)C27—C13—C14—N2176.8 (3)
O2—Mo1—N2—C1531.3 (2)N2—C15—C16—C17163.0 (3)
O4—Mo1—N2—C1440.9 (2)N2—C15—C16—C2523.8 (4)
O4—Mo1—N2—C15132.6 (2)C15—C16—C17—C1814.9 (5)
N1—Mo1—N2—C1450.5 (2)C15—C16—C17—C22168.7 (3)
N1—Mo1—N2—C15136.0 (2)C25—C16—C17—C18171.9 (3)
Mo1—O1—C1—C2147.8 (2)C25—C16—C17—C224.6 (4)
Mo1—O1—C1—C1034.8 (3)C15—C16—C25—O212.1 (4)
Mo1—O2—C25—C1635.8 (4)C15—C16—C25—C24165.6 (3)
Mo1—O2—C25—C24146.5 (2)C17—C16—C25—O2174.6 (3)
Mo1—N1—C11—C1011.9 (4)C17—C16—C25—C247.7 (4)
C12—N1—C11—C10163.0 (3)C16—C17—C18—C19176.5 (3)
Mo1—N1—C12—C1375.1 (3)C22—C17—C18—C190.1 (5)
C11—N1—C12—C13100.2 (3)C16—C17—C22—C21176.7 (3)
Mo1—N2—C14—C1361.8 (3)C16—C17—C22—C231.1 (5)
C15—N2—C14—C13124.3 (3)C18—C17—C22—C210.1 (5)
Mo1—N2—C15—C165.7 (4)C18—C17—C22—C23177.8 (3)
C14—N2—C15—C16167.9 (3)C17—C18—C19—C200.3 (6)
O1—C1—C2—C3178.1 (3)C18—C19—C20—C210.8 (6)
C10—C1—C2—C34.4 (4)C19—C20—C21—C220.9 (5)
O1—C1—C10—C9179.4 (2)C20—C21—C22—C170.6 (5)
O1—C1—C10—C1112.0 (4)C20—C21—C22—C23177.3 (3)
C2—C1—C10—C93.1 (4)C17—C22—C23—C243.9 (5)
C2—C1—C10—C11165.4 (2)C21—C22—C23—C24174.0 (3)
C1—C2—C3—C42.2 (5)C22—C23—C24—C250.8 (5)
C2—C3—C4—C5177.8 (3)C23—C24—C25—O2177.1 (3)
C2—C3—C4—C91.2 (5)C23—C24—C25—C165.1 (5)
C3—C4—C5—C6179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.433.328 (5)159
C11—H11···O4ii0.952.383.297 (3)161
C12—H12A···O40.992.472.974 (4)111
C27—H27A···O3ii0.982.553.490 (4)161
C28—H28A···O2iii0.992.403.213 (5)139
C28—H28A···O4iii0.992.533.429 (6)151
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Mo(C27H24N2O2)O2]·1.75CH2Cl2
Mr685.04
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)27.6049 (18), 10.7743 (8), 21.6474 (14)
β (°) 112.861 (7)
V3)5932.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.38 × 0.23 × 0.18
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.833, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
21863, 5537, 4789
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.106, 1.12
No. of reflections5537
No. of parameters372
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0575P)2 + 13.6226P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.08, 0.83

Computer programs: EXPOSE in IPDS-I (Stoe & Cie, 2000), CELL in IPDS-I (Stoe & Cie, 2000), INTEGRATE in IPDS-I (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Selected bond lengths (Å) top
Mo1—O12.0888 (19)Mo1—O41.713 (2)
Mo1—O21.957 (2)Mo1—N12.118 (2)
Mo1—O31.702 (2)Mo1—N22.297 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.433.328 (5)159
C11—H11···O4ii0.952.383.297 (3)161
C12—H12A···O40.992.472.974 (4)111
C27—H27A···O3ii0.982.553.490 (4)161
C28—H28A···O2iii0.992.403.213 (5)139
C28—H28A···O4iii0.992.533.429 (6)151
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.
 

References

First citationAbbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141–2147.  Web of Science CSD CrossRef CAS Google Scholar
First citationHolm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaurya, M. R., Jayaswal, M. N., Puranik, V. G., Chakrabarti, P., Gopinathan, S. & Gopinathan, C. (1997). Polyhedron, 16, 3977–3983.  CSD CrossRef CAS Web of Science Google Scholar
First citationNakayima, K., Yokoyama, K., Kano, T. & Kojima, M. (1998). Inorg. Chim. Acta, 282, 209–216.  Google Scholar
First citationRao, C. P., Sreedhara, A., Rao, P. V., Lokanath, N. K., Sridhar, M. A., Prasad, J. S. & Rissanen, K. (1998). Polyhedron, 18, 289–297.  Web of Science CSD CrossRef Google Scholar
First citationSheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733–738.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSyamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183–238.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1124-m1125
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds